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Reviewers' Comments:

Reviewer #1:

Remarks to the Author:

This is a welcomed new computational tool to combine cytometry datasets. The data presented within
the manuscript strongly illustrate the utility of the batch correction module, and the cross-platform
integration module of CyCombine. The ability of the cytometry panel merging module using
overlapping markers and imputation seems less robust, esp with the data shown in Fig 3, with B cells
and myeloid cell 'confusion'. This is all fine to demonstrate the utility of the algorithm, but if one did
not know that B cells were lacking in their dataset, they could have ended up with an incorrectly called
myeloid cluster. It would be great if the authors could perform another analysis of, perhaps CyTOF
data from overlapping multiple panels, using healthy human PBMC where there is known variability,
but what the exact differences could be in marker expression are unknown. Finally, details on how
many datasets can be combined at once using CyCombine arent clear. Details to users of the
algorithm should be forewarned that the imputation could lead to false discovery as shown in Fig 3.

Reviewer #2:
Remarks to the Author:
Summary:

In this article, the authors describe a novel and innovative method, called, cyCombine, for
normalization and integration of mass-cytometry data generated using different panels across
different batches, labs, platforms, and technologies, an important innovation in the field. The
integration across technologies (CyTOF, CITEseq, flow) is particularly exciting. The authors use well-
accepted metrics such as EMD and MAD to demonstrate robustness of their method in integrating
various protein-profiling datasets while retaining biological variance. The cyCombine convincingly
outperforms other widely used software, addressing issues of previous methods such as not relying on
technical replicates, and offers scalability for massive datasets. In addition to using publicly available
datasets, the authors also generated a large dataset with experimental and technical biases from
chronic lymphocytic leukemia (CLL) patients for establishing efficacy of cyCombine. This dataset
additionally provides a resource for future benchmarking of such tools.

Major points:

1. The authors only show coarse cell type annotation for DFCI vs HIMC (~10 cell types), and CyTOF vs
CITE vs SFC, as compared to the fine annotations defined on the dataset generated in-house (Suppl
Fig 2, ~30 cell types). How robust is this approach in defining finer clusters?

2. In the performance evaluation in Figure 6, it would be nice to see the other tools assessed on more
of the other datasets to increase overlap between different tools where possible. Perhaps the DFCI
datasets could be evaluated using CytoNorm and CytofRUV since the panels have replicated samples?
3. The “panel merging” cyCombine module is the least convincing part of the paper. While imputation
could work reasonably well for missing markers that may be reasonably redundant/overlapping in
certain cell types (e.g. imputing CD19 if both panels have CD20), I would be concerned of its
application for lineage markers that may be totally absent (i.e. imputing T cell markers in a panel that
has zero T cell markers) or of activation/functional markers (e.g. Ki67, phospho-proteins, etc). A
thorough discussion of this, and where panel merging is appropriate or not, is warranted.

4. It is difficult to see the extent of batch effect and subsequent correction using only the set of UMAPs
provided as colored (and could be strongly affected by the ordering of how the plots are pointed due
to the density of the points) in Figure 2 and Suppl Fig 1. To make it clearer to the reader, the following
are recommended:

o a series of UMAPs that plot one batch in color at a time with the other batches plotted in gray (e.g.
UMAP A shows batch 1 in color, remaining batches in gray; UMAP B shows batch 2 in color, remaining
batches in gray; etc)



o quantifying batch composition per cluster (for example as stacked bars of batch composition per
cluster)

Minor points:

1. The rationale behind the B cell and CLL cell depletion (and subsequent filtration of the residual) is
not well explained. Additional details in the context of CLL would be useful in the methods or results
section.

2. In Figure 6, are * and + correctly defined? I don’t see any * shown (which are stated to denote the
need for technical replicates), despite several tools in listed needing them

3. Scalability only goes up to 12 million cells - many datasets now have significantly more cells. Would
the authors be able to test cyCombine for time/memory on a larger dataset?

4. There seems to be an erroneous “Figure 4” embedded in the methods (‘time from CLL diagnosis”);
there’s already a figure 4 (and supp figure 4) that are different figures.

5. Figure legends: what are the dots colored by in 2f?

Reviewer #3:
Remarks to the Author:

It was with great pleasure I read the manuscript entitled: “Robust integration of single-cell cytometry
datasets” by Pedersen and Dam et al. The paper addresses an important problem in the field of
biology utilizing cytometry approaches (i.e., flow cytometry, mass cytometry, CITE-seq) of integrating
datasets across different batches. The paper describes a new computational tool, inspired by DNA
microarray data analysis, using an empirical Bayes method. This tool is potentially of broad interest
for biologists working with big cytometry datasets, especially in the field of immunology. It offers
advantages over other tools, by, for example, not relying on a reference sample. It shows promise in
integrating datasets across different cytometry technologies as well, such as flow cytometry, mass
cytometry, and CITE-seq. Congratulations to the authors for this great work, which is also very well
written.

However, there are a few concerns that need to be addressed.
Major concerns:

1)

The extent of information loss after correction is unclear; this may particularly affect the preservation
of rare subsets. It would be useful for the reader to understand to what degree rare subsets are
preserved after the integration of the datasets.

a. Initially, intra-sample heterogeneity is addressed by the grouping of similar cells using a self-
organizing map (SOM) with an 8x8 grid. Since cytometry data contains many nonlinear patterns,
important for accurate rare subset identification, how does this initial correction affect the
preservation of rare subsets?

b. In supplementary figure 1, multiple small clusters (in 1d) appear to disappear after correction (in
le).

c. Since it appears that in the manuscript, typically downsampled UMAPS are shown depicting multiple
immune lineages, how does the uncorrected vs. corrected UMAP look like for zooming-in on an
individual immune lineage, revealing more detail and thereby more rare cell clusters?

2) (related to point 1)

For data integration with partial overlapping markers, the extent of information loss is also currently
not clear. Since this approach does not depend on reference samples, which is both an advantage and
a disadvantage, a more detailed analysis would be useful. It is intuitive to assume that integrating the
data with overlapping markers and imputing the non-overlapping markers can result in some degree



of information loss. CyTOFmerge by Abdelaal et al. (2019) initially calculates for a given dataset which
set of markers best preserves the data heterogeneity so that in prospective studies, a partial
overlapping panel can be designed with optimized markers as a core. The advantage of the current
manuscript is the ability to merge pre-designed panels. However, it is currently not clear what the
confidence level of imputation is for a given analysis and what potential information loss may have
resulted from the correction.

a. An approach to elaborate on this could be to evaluate the quality of the imputed dataset compared
to the original datasets. Compare the clusters of the original uncorrected datasets with the clusters of
the imputed integrated dataset. Are there discrepancies between the two types of clustering?

b. It would be useful for the future users of this tool to have an idea of how successful the imputation
was in terms of the preservation of information. If the overlap of n markers is only 5 vs. 10. vs. 15.
vs. 20, how would this impact the analysis? Also, the nature of markers (canonical vs. noncanonical)
would probably be a factor. The selection of shared markers is likely a strong dependency on success
of imputation that should be addressed.

3) The section of cyCombine outperforms all existing methods shows interesting findings based on the
EMD reductions and MAD scores. However, this section is an important part of the manuscript of
putting this tool in comparison to existing tools and should be more elaborated. It would be useful if
more visualizations are shown to compare this tool with existing tools. For example, UMAPS before
and after correction comparing different datasets and different methods to help understand the
additional benefit of the current tool better. The 2019 CyTOFmerge by Abdelaal et al. is also lacking,
and it would be interesting to see this comparison.

Minor comments:

4) Since data heterogeneity a priori is often unknown, choosing the node grid size for the self-
organizing map (SOM) may be difficult. How does the correction look like for different node grid sizes
than 8x87?

5) How does the probability-based imputation compare with the knn-based imputation?

6) “The combined dataset was clustered based on a subset of 23 lineage markers using SOM12 and
ConsensusCusterPlus13 to 45 meta-clusters, which were labeled manually, cleaned-up, and merged
into a total of 29 clusters” Can the authors clarify what cleaned-up entails, and show the reasoning for
the merging of the 45 meta-clusters to 29 clusters.

7) Consider putting supplementary figure 1 panel g and h in the main figure, as the correction looks
very convincing there.

8) Figure 4: hard to see how the position of cells in uncorrected panel a change to new positions in
corrected panel b. To understand the correction better, it would be interesting to see this change at
the single cell level more clearly.

9) Figure 4: please show multiple major immune lineage markers for each of the three technologies
before and after correction

10) Help the (naive) reader to understand EMD reduction and MAD score better.



First and foremost, we would like to express our gratitude to the referees for investing time in
reviewing our manuscript. We have received many great recommendations for additional
analyses and discussions, and have done our best to add them to the manuscript. In some
cases, we have chosen one of our online vignettes as the venue for the additional results and
discussions. The primary reason is that the editorial restrictions on the publication format only
allows for so many figures and so much text, but the format of the vignettes allows us to include
many more examples than would be suitable for an article or its supplementaries, and it also
allows us to organically include all the code necessary to reproduce the examples. If this raises
any concerns, please do not hesitate to let us know and we will do our best to accommodate.
We have provided point-by-point comments to all questions below, and redlined all changes to
the manuscript and supplementary materials.

Reviewer #1 (Expertise: CyTOF, immune cells)

This is a welcomed new computational tool to combine cytometry datasets. The data presented
within the manuscript strongly illustrate the utility of the batch correction module, and the
cross-platform integration module of CyCombine. The ability of the cytometry panel merging
module using overlapping markers and imputation seems less robust, esp with the data shown
in Fig 3, with B cells and myeloid cell 'confusion'. This is all fine to demonstrate the utility of the
algorithm, but if one did not know that B cells were lacking in their dataset, they could have
ended up with an incorrectly called myeloid cluster.

Thank you for the positive feedback and the insightful suggestions. We agree that the
imputation module was not as carefully discussed as the batch correction module in the original
submission, and we have elaborated on this topic in the revised manuscript, the supplementary
materials, and provided multiple detailed examples in the panel merging vignette

(https://biosurf.org/cyCombine_panel_merging.html).

It would be great if the authors could perform another analysis of, perhaps CyTOF data from
overlapping multiple panels, using healthy human PBMC where there is known variability, but
what the exact differences could be in marker expression are unknown.

Using healthy human PBMCs to demonstrate the stability of imputations is a very good idea. To
avoid crowding the manuscript, we have included such an example in the panel merging
vignette (using two batches of healthy donors from the Ogishi dataset to compare batch
correction and imputation).

Finally, details on how many datasets can be combined at once using CyCombine arent clear.
In theory, the upper limit is dictated only by the computational resources available to the user.
We have elaborated on this in the revised manuscript.

Details to users of the algorithm should be forewarned that the imputation could lead to false
discovery as shown in Fig 3.

We agree with the fact that imputation may lead to false inference in certain instances, and we
have written this more directly in the revised manuscript in addition to the vignette. However, in
Figure 3, imputation was not applied - only batch correction. The B cells that appear in the DFCI



sample in Figure 3D represent a mere 0.5% of the total population, and they appear to be CLL
cells that escaped depletion rather than false positive per se, as discussed in the manuscript.

Reviewer #2 (Expertise: cytometry bioinformatics, systems immunology worked on
CyTOF data)

Summary: In this article, the authors describe a novel and innovative method, called,
cyCombine, for normalization and integration of mass-cytometry data generated using different
panels across different batches, labs, platforms, and technologies, an important innovation in
the field. The integration across technologies (CyTOF, CITEseq, flow) is particularly exciting.
The authors use well-accepted metrics such as EMD and MAD to demonstrate robustness of
their method in integrating various protein-profiling datasets while retaining biological variance.
The cyCombine convincingly outperforms other widely used software, addressing issues of
previous methods such as not relying on technical replicates, and offers scalability for massive
datasets. In addition to using publicly available datasets, the authors also generated a large
dataset with experimental and technical biases from chronic lymphocytic leukemia (CLL)
patients for establishing efficacy of cyCombine. This dataset additionally provides a resource for
future benchmarking of such tools.

Thanks a lot for your positive and very useful feedback. We have made the suggested changes
and replied point-by-point to your comments below.

Major points:

1. The authors only show coarse cell type annotation for DFCI vs HIMC (~10 cell types), and
CyTOF vs CITE vs SFC, as compared to the fine annotations defined on the dataset generated
in-house (Suppl Fig 2, ~30 cell types). How robust is this approach in defining finer clusters?
The clustering and cell type annotation for the cross-study examples (DFCI vs. HIMC and
CyTOF vs. CITE vs. SFC) was limited by the overlapping markers, which in this case was only
11. For an integration of the CyTOF vs SFC datasets, we have in total 26 overlapping markers,
which allows for a deeper characterization as requested. As shown below, this allowed us to
identify a larger number of subpopulations, which are well-conserved when considering the data
from each platform pre- and post-batch correction. To avoid crowding the manuscript with a lot
of similar examples, we added the analysis and a thorough discussion in a dedicated usage
vignette https://biosurf.org/cyCombine Spectralflow CyTOF.html
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2. In the performance evaluation in Figure 6, it would be nice to see the other tools assessed on
more of the other datasets to increase overlap between different tools where possible. Perhaps
the DFCI datasets could be evaluated using CytoNorm and CytofRUV since the panels have
replicated samples?



This is a good point and we have added analysis using batch 3 from both panels 1 and 2 (based
on the 15 overlapping markers between the panels) to Figure 5. This means that there are
essentially only replicates in the data (except for the single sample which was only included in
panel 1). We selected batch 3 since it displayed the strongest batch effects out of the seven,
although these were still relatively minor.

A couple of caveats of this analysis to consider: Firstly, the other tools are not geared for
correction of samples, for which the panels are not identical. In the case of the DFCI dataset, we
have both generally different panels, but also a marker included in both panels, that switches
metal (HLA-DR). Because the tools read samples directly from the FCS format, we could only
address these issues by either altering the actual FCS files, or editing the source code of the
tools (which we are very hesitant to do) to only consider overlapping markers. Secondly, all the
two-panel samples are technical replicates, which is a very artificial scenario and thus not ideal
for testing batch correction performance (which is also true for the Van Gassen and Trussart
sets). Biological variance between technical replicates is generally expected to be close to zero,
making it a relatively simple problem to solve (variance is essentially only subject to removal,
meaning that the challenges of maintaining biological variance are not applicable). We have
added these points to the Supplementary Discussion.

3. The “panel merging” cyCombine module is the least convincing part of the paper. While
imputation could work reasonably well for missing markers that may be reasonably
redundant/overlapping in certain cell types (e.g. imputing CD19 if both panels have CD20), |
would be concerned of its application for lineage markers that may be totally absent (i.e.
imputing T cell markers in a panel that has zero T cell markers) or of activation/functional
markers (e.g. Ki67, phospho-proteins, etc). A thorough discussion of this, and where panel
merging is appropriate or not, is warranted.

This is a very good point, and we completely agree that (all) imputation should be used with
caution. In this case, careful consideration of the set of overlapping markers is paramount to
performance. We have elaborated on the advantages and shortcomings of panel merging in the
manuscript discussion and updated the panel merging vignette with additional examples. We
have also updated the R package to display a message cautioning users to analyze imputed
values directly (we do not use imputed values in our statistical analyses - we only use them for
visualization purposes).

4. It is difficult to see the extent of batch effect and subsequent correction using only the set of
UMAPSs provided as colored (and could be strongly affected by the ordering of how the plots are
pointed due to the density of the points) in Figure 2 and Suppl Fig 1. To make it clearer to the
reader, the following are recommended:

o a series of UMAPs that plot one batch in color at a time with the other batches plotted in gray
(e.g. UMAP A shows batch 1 in color, remaining batches in gray; UMAP B shows batch 2 in
color, remaining batches in gray; etc)

o quantifying batch composition per cluster (for example as stacked bars of batch composition
per cluster)



We have added the suggested plot with grey “background” coloring to the supplementary figures
(Supp. Figure 2).

The per cluster composition does not really change with batch correction (as indicated by
supplementary figure 2), and we have been unable to convince ourselves that this would clarify
the extent of batch effect/correction, even if it did. It is natural that composition varies from
sample to sample (and thus there is no right or wrong batch composition). We apologize if this is
not what you meant, and if you are not satisfied with our reply, please clarify and we will be
happy to address this point.

Minor points:

1. The rationale behind the B cell and CLL cell depletion (and subsequent filtration of the
residual) is not well explained. Additional details in the context of CLL would be useful in the
methods or results section.

Fair point. We have elaborated on the rationale behind depletion being used for this particular
study in the results section “cyCombine enables large-scale integration of multi-batch,
multi-panel cytometry data”, and have further mentioned the arguments in relation to clean-up of
the residual in the methods section.

2. In Figure 6, are * and + correctly defined? | don’t see any * shown (which are stated to denote
the need for technical replicates), despite several tools in listed needing them

We have increased the size of the *’s, which were indeed very small in the original version. The
figure is now ‘Figure 5’, since the numbering has been corrected.

3. Scalability only goes up to 12 million cells — many datasets now have significantly more cells.
Would the authors be able to test cyCombine for time/memory on a larger dataset?

Because cyCombine scales linearly (both in time and memory) for all tested data sizes, the
computational requirements for larger sets can be extrapolated directly from our existing
analysis. We have elaborated on this in the revised manuscript.

4. There seems to be an erroneous “Figure 4” embedded in the methods (‘time from CLL
diagnosis”); there’s already a figure 4 (and supp figure 4) that are different figures.
Thank you for pointing out this mistake. we have corrected this in the revised manuscript.

5. Figure legends: what are the dots colored by in 2f?
The dots were colored by patient, but it actually is unnecessary. We have adjusted to use a
single color.

| found this paper very impressive, thorough, and an important addition to the field. We have
been working with several of the existing batch correction algorithms available for CyTOF data
(CytofRUV, CytoNorm), and are pleased to see that cyCombine addresses several of their
limitations. Would recommend this paper for publication (and am looking forward to giving it a try
on some of our datal)

Thanks a lot - we really appreciate that you took the time to review the manuscript, and we are
looking forward to hearing from users to keep updating and improving the cyCombine package.



Reviewer #3 (Expertise: high dimensional cytometry data analysis, junior)

It was with great pleasure | read the manuscript entitled: “Robust integration of single-cell
cytometry datasets” by Pedersen and Dam et al. The paper addresses an important problem in
the field of biology utilizing cytometry approaches (i.e., flow cytometry, mass cytometry,
CITE-seq) of integrating datasets across different batches. The paper describes a new
computational tool, inspired by DNA microarray data analysis, using an empirical Bayes method.
This tool is potentially of broad interest for biologists working with big cytometry datasets,
especially in the field of immunology. It offers advantages over other tools, by, for example, not
relying on a reference sample. It shows promise in integrating datasets across different
cytometry technologies as well, such as flow cytometry, mass cytometry, and CITE-seq.
Congratulations to the authors for this great work, which is also very well written.

Thank you for taking the time to provide excellent suggestions for the improvement of our
manuscript. We have addressed each of your points below.

However, there are a few concerns that need to be addressed.

Major concerns:

1)

The extent of information loss after correction is unclear; this may particularly affect the
preservation of rare subsets. It would be useful for the reader to understand to what degree rare
subsets are preserved after the integration of the datasets.

a. Initially, intra-sample heterogeneity is addressed by the grouping of similar cells using a
self-organizing map (SOM) with an 8x8 grid. Since cytometry data contains many nonlinear
patterns, important for accurate rare subset identification, how does this initial correction affect
the preservation of rare subsets?

As a general feature of SOMs, the detection of rare clusters may indeed be affected by the grid
size. In cyCombine, an 8x8 grid is applied by default as this captures rare populations in the
vast majority of cases we have tested. The grid size is adjustable if more or less heterogeneity
is anticipated. Generally speaking, increasing the grid size beyond an already good size won’t
change performance in any significant way (but it will increase runtime), whereas a grid size that
is too small may lead to loss of rare subsets in the post-correction dataset. As in any analysis
involving a clustering step, we would recommend initial explorations of all datasets to establish
an idea of the heterogeneity in the data, and then set the grid size accordingly when running
cyCombine. We added this recommendation and a detailed discussion of how to do this in
practice to the vignette (https://biosurf.org/cyCombine CyTOF 1panel.html), and also illustrate
the effects of choosing different grid sizes with multiple examples.

b. In supplementary figure 1, multiple small clusters (in 1d) appear to disappear after correction
(in 1e).



Good point. In order to trace the cells from the small clusters in Supplementary Figure 1d+e, we
have made an additional Supplementary Figure 3 where we show that the smaller clusters
move around in UMAP space (as expected when re-running the dimensionality reduction after
correcting values), but that they are generally conserved.

c. Since it appears that in the manuscript, typically downsampled UMAPS are shown depicting
multiple immune lineages, how does the uncorrected vs. corrected UMAP look like for
zooming-in on an individual immune lineage, revealing more detail and thereby more rare cell
clusters?

Downsampling was only used to avoid over-cluttering the UMAP plots. All clustering and
statistical analyses were done on the full dataset. Of course, you are right that very rare cell
types are at risk of being omitted from the visual representation when downsampling, but they
were not omitted from any clustering, statistical analysis, nor interpretation. We have clarified
this in the manuscript. Below we show UMAPs including all cells originating from panel 1, which
were labeled as CD8+ T and NKT cells in the final clustering. Each row shows a batch and the
three columns show the UMAP layouts for the uncorrected, corrected (panel 1 only), and
corrected (together with panel 2) + imputed sets, respectively. Labels are those from the final
clustering based on 23 lineage markers from the fully integrated set, and the UMAP layout is
based on expression of the 36 panel 1 markers. When we visually inspect the plots below, we
hope you agree that nothing indicates that downsampling distorts the visual representations to a
worrying degree.
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2) (related to point 1)

For data integration with partial overlapping markers, the extent of information loss is also
currently not clear. Since this approach does not depend on reference samples, which is both
an advantage and a disadvantage, a more detailed analysis would be useful. It is intuitive to
assume that integrating the data with overlapping markers and imputing the non-overlapping
markers can result in some degree of information loss.

We have added two new examples to our panel merging vignette
(https://biosurf.org/cyCombine_panel_merging.html), and we have also elaborated on these
points in the discussion section of the manuscript. In the vignette, one example directly
compares the results from batch correction on a large set of overlapping markers to batch
correction on a smaller set and performing imputation for the remaining markers. In this
example, it is directly seen how information is passed through the different modules of
cyCombine.

CyTOFmerge by Abdelaal et al. (2019) initially calculates for a given dataset which set of
markers best preserves the data heterogeneity so that in prospective studies, a partial
overlapping panel can be designed with optimized markers as a core. The advantage of the
current manuscript is the ability to merge pre-designed panels. However, it is currently not clear
what the confidence level of imputation is for a given analysis and what potential information
loss may have resulted from the correction.

You are correct that CyTOFmerge and the merging module of cyCombine differs on this key
point, which is also why we didn’t include a direct comparison with CyTOFmerge in the paper - it
simply would not be fair to evaluate a tool’s performance on a problem for which it wasn’t
designed to solve.

Regarding the confidence levels of imputation, you are correct that we did not explicitly calculate
this, for which there are multiple reasons. First of all, imputations are only used for co-visualizing
two datasets with non-overlapping markers. We do not perform any statistical analysis directly
on the imputed values, and do not recommend users to do so (we also added a message to the
script warning users not to directly analyze imputed values). We have added a more detailed
discussion of this in the manuscript and the panel merging vignette. The second reason for not
diving deeper into the accuracy of the imputations, is that they are, in a sense, “perfect”. This is
because we are imputing the expression of markers based on the expression patterns of highly
similar cells in a technical replicate. The imputation is based on a multidimensional density
draw, meaning that we essentially replicate the expression of the markers in the cells of the
“training” set, which, quite naturally, will be extremely similar to the expression in the cells of the
“test” set as these are technical replicates. So in this sense the imputed values are actually
“perfect”, but they are of course also perfectly uninformative in the sense that they do not supply
any new information - they merely fill in blanks without adding noise (the very essence of
imputations). This allows us to make one nice big plot using a method that does not handle
missing values (UMAP, in this case). One should not impute markers from other samples (a
worst case example would be imputing markers in a patient sample based on expression in a
healthy donor sample), nor should one attempt to impute markers from a very small training set



where the heterogeneity of the missing values is not captured. We have elaborated extensively
on this in the panel merging vignette (https://biosurf.org/cyCombine panel merging.html).

a. An approach to elaborate on this could be to evaluate the quality of the imputed dataset
compared to the original datasets. Compare the clusters of the original uncorrected datasets
with the clusters of the imputed integrated dataset. Are there discrepancies between the two
types of clustering?

As discussed above, this would merely replicate the training set and the new clustering will look
exactly the same (insofar as there are enough cells in the training set to capture the
heterogeneity). However, this point is addressed in Supplementary Figure 3 (generated to
answer a related question by Reviewer #1), which shows the clusters obtained from the fully
corrected and imputed dataset in the UMAP layouts for each of the analysis stages in the CLL
dataset. In these plots, each UMAP is generated using all markers available for the given set -
i.e. the layout for panel 1 (a-b) is based on the 36 markers in that panel. If we consider panel 1
(a-b), we observe that the myeloid cell clusters are not well-separated. This is due to the lack of
multiple myeloid markers in the panel, and as such, higher-resolution clustering of these cell
populations is not possible for the panel 1-cells unless imputation is applied. A similar pattern is
observed for the panel 2 data (c-d), when looking at the CD8+ T cell clusters - at least when
considering the EM and TEMRA populations. As such, when we consider the clusters that could
be obtained using the original uncorrected datasets vs. the “final” clusters based on the
integrated and imputed data, there are natural discrepancies due to the different available
markers. However, we also believe that the UMAPs in Supplementary Figure 3 depict that most
of the clusters are indeed stable between the uncorrected and integrated datasets. We have
added these points to the Supplementary Discussion.

b. It would be useful for the future users of this tool to have an idea of how successful the
imputation was in terms of the preservation of information. If the overlap of n markers is only 5
vs. 10. vs. 15. vs. 20, how would this impact the analysis? Also, the nature of markers
(canonical vs. noncanonical) would probably be a factor. The selection of shared markers is
likely a strong dependency on success of imputation that should be addressed.

This is something which we have discussed extensively while developing cyCombine. We
concluded that it is essentially not feasible to do a thorough test of all potential imputations - not
even for subsets such as 5, 10, 15, 20 as suggested. The reason is, that the number of imputed
markers alone is not enough to draw conclusion on accuracy - rather it comes down to whether
the heterogeneity of the missing markers is captured in the “training” portion of the dataset, and
whether the overlapping markers allow for a clustering that captures the similarities in the
non-overlapping. E.g. imagine trying to impute all T cell markers, from a “training” set that
contained no T cells (or no T cells discernible by clustering if the relevant markers were missing)
- this couldn’t be done. This means that a thorough test would be done on every combination of
k markers drawn from the total set of n markers. This has a time complexity of O(n choose k) for
n=25 and k=[5,10,15,20] (resulting in approximately 6.6 million comparisons), rendering the test
extremely computationally demanding, and the results unmanageable to interpret. Instead, we
have illustrated these points with ‘easy-to-impute’ and ‘hard-to-impute’ examples in the vignette,



and elaborated the discussion of the limitations of imputation in the manuscript. We hope this
addresses the concern.

3) The section of cyCombine outperforms all existing methods shows interesting findings based
on the EMD reductions and MAD scores. However, this section is an important part of the
manuscript of putting this tool in comparison to existing tools and should be more elaborated. It
would be useful if more visualizations are shown to compare this tool with existing tools. For
example, UMAPS before and after correction comparing different datasets and different
methods to help understand the additional benefit of the current tool better. The 2019
CyTOFmerge by Abdelaal et al. is also lacking, and it would be interesting to see this
comparison.

This is a very good point - since one of our own key results are highlighted with dimensionality
reduction and density plots, it is reasonable to add such visualizations for the other tools as well.
We have added a discussion of these results to the revised manuscript and show the results in
Supplementary Figures 8 and 9. Comprehensive analyses and discussions have also been
added to the benchmarking vignette (https://biosurf.org/cyCombine_benchmarking.html), where
we exemplify with UMAPs and density plots for all five tools on the Van Gassen dataset (if we
were to show the density plots for each correction with all tools, we would have a total of 829
density plots, which would each contain both the uncorrected and corrected densities per
batch). Furthermore, as there are 29 runs in total, for which we could show uncorrected and
corrected UMAPs, it would likely be hard to grasp for the reader. We hope you agree that our
selection of markers effectively illustrates the point.

Regarding CyTOFmerge: the merging module of cyCombine differs from this tool in that
CyTOFmerge is designed to first detect the most informative markers, such that the panels can
be designed to overlap with these channels. However, in many real world applications, the
panels are designed and the samples run, prior to addressing merging. cyCombine is designed
to work (almost) regardless of how the panels were designed, which means that while
CyTOFmerge and cyCombine seemingly solve a very similar problem, they are based on
different premises for data acquisition. This is why we didn’t include a direct comparison with
CyTOFmerge in the manuscript - it simply would not be fair to evaluate a CyTOFmerge’s
performance on a problem for which it wasn’t designed to solve. We have discussed these key
differences between the two tools in the updated panel merging vignette
(https://biosurf.org/cyCombine_panel_merging.html), as we feel that the vignettes are better
suited for these more theoretical discussions. The performance of these two imputation
approaches is not directly compatible with the batch correction benchmark, which relies on the
EMD reduction and MAD score.

Minor comments:

4) Since data heterogeneity a priori is often unknown, choosing the node grid size for the
self-organizing map (SOM) may be difficult. How does the correction look like for different node
grid sizes than 8x87?

As in any analysis involving a clustering step, we would recommend initial explorations of all
datasets to establish an idea of the heterogeneity in the data, and then set a grid size that likely



captures all expected populations when running cyCombine. Decreasing the grid size means
potentially missing rare populations in the initial clustering and also typically lowers the
performance. Increasing the grid size to, for example, 12x12 or 16x16 doesn’t affect
performance in any meaningful way (we would always recommend an over-clustering if in
doubt), but runtimes will increase. In all our tests of cyCombine on PBMC with standard
phenotyping panels, 8x8 performs robustly. We added recommendations and a short discussion
of how to do this in practice to the manuscript and a full analysis of different grid sizes to the

batch correction vignette (https://biosurf.org/cyCombine_CyTOF_1panel.html).

5) How does the probability-based imputation compare with the knn-based imputation?

Our panel merging vignette (https://biosurf.or: mbin nel_merging.html) has been
updated to elaborate on this matter. Essentially, what was observed in our tests for cyCombine
vs. CyTOFmerge was that the knn + median-based approach (CyTOFmerge) works reasonably
well when considering unimodal distributions, but fails to grasp bimodality and often truncates
distributions. Since informative/interesting markers are actually often those with larger variance,
knn is suboptimal compared to probability-based imputation. In fairness, the CyTOFmerge tool
was not designed to handle bimodal distributions, as the tool has an initial step that allows the
user to design the panels selecting low variance markers for the non-overlapping portion.

6) “The combined dataset was clustered based on a subset of 23 lineage markers using SOM'?
and ConsensusCusterPlus™ to 45 meta-clusters, which were labeled manually, cleaned-up, and
merged into a total of 29 clusters” Can the authors clarify what cleaned-up entails, and show the
reasoning for the merging of the 45 meta-clusters to 29 clusters.

We have elaborated on the clean-up and merging in the methods section. Briefly, we labeled
clusters based on their expression of the 23 lineage markers. In some cases, two clusters had
very similar expression patterns for all of the major markers, and in those cases, we decided to
use the same label for two clusters - effectively merging them. The clean-up was an extra step
to get rid of any B/CLL cells that escaped the magnetic depletion.

7) Consider putting supplementary figure 1 panel g and h in the main figure, as the correction
looks very convincing there.

We appreciate the suggestion, but we have decided to keep the figures as they were, since we
believe that Figure 2a-b provides convincing results for the main figure. In addition, this means
that all UMAPSs in Figure 2 are based on the same part of the 23 lineage markers used in
clustering, whereas Supp. Figure 1 contains UMAPSs including all available markers for each set.

8) Figure 4: hard to see how the position of cells in uncorrected panel a change to new positions
in corrected panel b. To understand the correction better, it would be interesting to see this
change at the single cell level more clearly.

Great suggestion. We have added figures showing uncorrected data with labels (Figure 4d).

9) Figure 4: please show multiple major immune lineage markers for each of the three
technologies before and after correction



Good suggestion. We have added this as Supplementary Figure 6 for six of the markers on
un-faceted plots and for all eleven markers with faceted plots in the vignette:

https://biosurf.org/cyCombine_CITEseq_Spectral_CyTOF.html.

10) Help the (naive) reader to understand EMD reduction and MAD score better.
We have elaborated on this in our benchmarking vignette

(https://biosurf.org/cyCombine_benchmarking.html), where we describe the EMD reduction and
MAD score, and discuss their strengths and limitations. We have added a reference to this in

the manuscript.
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Reviewer #1:
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Reviewer #2:
Remarks to the Author:
The authors have provided satisfactory responses to my comments and I have no further concerns.

Reviewer #3:
Remarks to the Author:
Thank you for the elaborate reply.

All concerns have been addressed, and I fully support the publication of this work that I am sure will
gain great attraction.
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