

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Association of Kyphotic Posture with Loss of Independence and Mortality Among Community-Dwelling Older Adults: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052421
Article Type:	Original research
Date Submitted by the Author:	15-Apr-2021
Complete List of Authors:	Hijikata, Yasukazu; Kyoto University Graduate School of Medicine Facult of Medicine, Kamitani, Tsukasa; Kyoto University, Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Sekiguchi, Miho; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Otani, Koji; Fukushima Medical Univ., School of Medicine, Dept. of Orthopaedic Surgery Konno, Shin-ichi; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Takegami, Misa; National Cerebral and Cardiovascular Center, Preventiv Medicine and Epidemiology Informatics Fukuhara, Shunichi; Fukushima Kenritsu Ika Daigaku, Department of General Medicine, Shirakawa Satellite for Teaching And Research (STAR); Graduate School of Medicine, Kyoto University, Section of Clinical Epidemiology, Department of Community Medicine Yamamoto, Yosuke; Kyoto University, Department of Healthcare Epidemiology
Keywords:	Spine < ORTHOPAEDIC & TRAUMA SURGERY, Musculoskeletal disorders < ORTHOPAEDIC & TRAUMA SURGERY, PUBLIC HEALTH, GERIATRIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

1	Association of Kyphotic Posture with Loss of Independence and Mortality Among
2	Community-Dwelling Older Adults: The Locomotive Syndrome and Health Outcomes in
3	Aizu Cohort Study (LOHAS)
4	
5	Yasukazu Hijikata, MPH ¹ , Tsukasa Kamitani, DrPH ¹ , Miho Sekiguchi, PhD ² , Koji Otani,
6	DMSc ² , Shinichi Konno, PhD ² , Misa Takegami, DrPH ³ , Shunichi Fukuhara, DMSc ^{4,5,6} , Yosuke
7	Yamamoto, PhD ¹ *
8	
9	¹ Department of Healthcare Epidemiology, School of Public Health in the Graduate School of
10	Medicine, Kyoto University, Kyoto, Japan
11	² Department of Orthopedic Surgery, Fukushima Medical University School of Medicine,
12	Fukushima, Japan
13	³ Department of Preventive Medicine and Epidemiologic Informatics, National Cerebral and
14	Cardiovascular Center, Osaka, Japan
15	⁴ Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of
16	Medicine, Kyoto University, Kyoto, Japan
17	⁵ Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical
18	University, Fukushima, Japan
19	⁶ Shirakawa STAR for General Medicine, Fukushima Medical University, Fukushima, Japan
20	
21	*Address correspondence and reprint requests to:
22	Yosuke Yamamoto, PhD
	1

BMJ Open

2		
3 4	23	Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine,
5 6	24	Kyoto University
7 8 9	25	Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
9 10 11	26	Phone: +81-75-753-4646; Fax: +81-75-753-4644
12 13	27	Email: <u>yamamoto.yosuke.5n@kyoto-u.ac.jp</u>
14 15	28	ORCID: 000-0003-1104-2612
16 17	29	
18 19 20	30	Email address: Yasukazu Hijikata (hijikata.yasukazu.45z@st.kyoto-u.ac.jp), Tsukasa Kamitani
21 22	31	(kamitani.tsukasa.8w@kyoto-u.ac.jp), Miho Sekiguchi (miho-s@fmu.ac.jp), Koji Otani
23 24	32	(kotani@fmu.ac.jp), Shin-ichi Konno (skonno@fmu.ac.jp), Misa Takegami
25 26 27	33	(takegami@ncvc.go.jp), Shun-ichi Fukuhara (fukuhara.shunichi.6m@kyoto-u.jp)
27 28 29	34	
30 31	35	Word count: 2699 words
32 33	36	
34 35		
36 37		
38 39 40		
40 41 42		
43		
44 45		
46 47		
48		
49 50		
50 51		
52		
53		
54 55		
56		2
57		
58 59		

60

37 Abstract

Objectives: This study aimed to investigate the association between kyphotic posture and future
loss of independence (LOI) and mortality in community-dwelling older adults.

Design: Prospective cohort study.

Setting: Two Japanese municipalities.

Participants: We enrolled 2,193 independent community-dwelling older adults aged ≥ 65 years at 43 the time of their baseline health check-up in 2008. Kyphotic posture was evaluated using the wall-44 occiput test (WOT) and classified into three categories: non-kyphotic, mild (>0 and ≤ 4 cm), and 45 severe (>4 cm).

46 Primary and secondary outcome measures: The primary outcome was mortality, whereas the 47 secondary outcomes were LOI (new long-term care insurance certification levels 1–5) and a 48 composite of LOI and mortality. A Cox proportional hazards model was used to estimate the 49 adjusted hazard ratios (aHR).

Results: Of the 2,193 subjects enrolled, 1,621 were included in the primary analysis; among these,
272 (17%) and 202 (12%) were diagnosed with mild and severe kyphotic posture, respectively.
After a median follow-up of 5.8 years, the aHRs for mortality were 1.17 (95% confidence interval
[CI], 0.70–1.96) and 1.99 (95% CI, 1.20–3.30) in the mild and severe kyphotic posture groups,
respectively. In the secondary analysis, a consistent association was observed for LOI (mild: aHR,
1.70; 95% CI, 1.13–2.55; severe: aHR, 2.08; 95% CI, 1.39–3.10) and the LOI–mortality composite
(mild: aHR, 1.27; 95% CI, 0.90–1.79; severe: aHR, 1.83; 95% CI, 1.31–2.56).

57 Conclusion: Kyphotic posture was associated with LOI and mortality in community-dwelling
58 older adults. Identifying the population with kyphotic posture using the WOT might help improve
59 community health.

1		
2 3 4	60	
5	61	Strengths and limitations of this study:
7 8	62	• We demonstrated the association of kyphotic posture with loss of independence and
9 10 11	63	mortality based on subjects from a general population.
12 13	64	• A high tracking ratio (98.5%) was achieved, which minimized the risk of information bias.
14 15 16	65	• We did not adjust for osteoporosis, a factor that might be associated with loss of
17 18	66	independence and mortality through mechanisms other than kyphotic postures, such as
19 20 21	67	fractures of the long bones.
22 23 24 25 26 27 28 29 30	68	fractures of the long bones.
31 32 33 34 35 36 37		
38 39 40 41 42 43 44 45 46 47 48 49		
50 51 52 53 54 55 56 57 58 59 60		4 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Kyphosis is described as an abnormal posture that develops because of the failure of the posture maintenance mechanism. When standing, lordotic segments (i.e., the cervical and lumbar spine) and kyphotic segments (i.e., the thoracic spine) must balance the occiput over the pelvic axis in an energy-efficient position. As the center of gravity of the trunk shifts forward via kyphosis in one segment of the spine, the other spinal segments, pelvis, hip joint, and knee joint cooperatively compensate to maintain overall sagittal balance.[1] Failure of this compensatory mechanism fails, the posture becomes kyphosis, giving rise to various health problems.[2,3] A kyphotic posture is common among older individuals, with a reported prevalence of 20-40%,[4] and is expected to increase as the population ages. Hence, the extent to which a kyphotic posture affects health is a serious concern.

Kyphotic posture reportedly has several deleterious effects on the afflicted individual's
health, including a decline in physical function,[5] impairment in pulmonary function,[6,7]
pain,[8] gastroesophageal reflux disease,[9] poor quality of life,[10] and accidental falls.[11,12]
Therefore, there has been a growing concern regarding the association between kyphotic posture
and serious health-related outcomes, such as loss of independence (LOI) and mortality.

Three previous studies have reported the association of kyphotic posture with LOI and mortality. First, Kado et al. demonstrated the association between cervicothoracic kyphosis and mortality.[13] As kyphosis was measured in the supine position rather than in the standing position, the evaluation of the kyphotic posture was not precise. In another study, Kado et al. reported an association of thoracic hyperkyphosis in the standing position with mortality in older women.[14] However, these two studies could not yield an assessment on whether the kyphotic posture was a risk factor for mortality in men. Okura et al. showed that kyphotic posture is related to LOI and Page 7 of 30

BMJ Open

mortality.[15] However, there was a potential bias since the study was passed on self-reported data from participants to determine kyphotic posture. Moreover, the researchers only controlled for age and gender as potential confounders. Furthermore, none of these studies adjusted for lumbar degenerative disease and back pain, which are strongly associated with kyphotic posture.

To address these concerns, we conducted a prospective cohort study to examine whether a kyphotic posture in the standing position was associated with LOI and mortality in community-dwelling men and women.

- Materials and methods
- Study Design and Population

This prospective observational study analyzed data from the Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS), a population-based study involving residents from two towns in Japan. The LOHAS evaluated the effect of locomotive dysfunction on healthcare outcomes, including quality of life, medical costs, and occurrence of LOI and mortality. The LOHAS comprised approximately 70% of all the National Health Insurance and Late-Stage Elderly Health Insurance beneficiaries in that region. Details of the study have been described elsewhere.[16]

Study Participants

Independent community-dwelling older adults aged ≥ 65 years without any long-term care insurance (LTCI) certification [17] at the time of their baseline health check-up in 2008 were enrolled. Those in whom kyphotic posture could not be determined due to missing data were excluded. Participants were observed starting from the baseline check-up in 2008 until March 2014.

This study was approved by certified institutional review boards (R1730 and 673) of the participating institutions, and all participants provided written informed consent before participation.

10 119

120 Definition of Kyphotic Posture

121 Kyphotic posture was defined using the wall-occiput test (WOT) at the time of musculoskeletal 122 examination in 2008. The WOT is a semi-quantitative technique used to assess head forward 123 posture in the standing position as well as thoracic vertebral fractures.[18,19] The WOT reflects 124 not only thoracic hyperkyphosis, but also a loss of cervical and lumbar lordosis.

The distance (measured in cm) between the occiput prominence and the wall was measured using a tape while the participants were standing with both of their heels and sacrum against the wall and their head positioned such that an imaginary line from the lateral corner of the eye to the superior point of the auricle was parallel to the floor. In accordance with previous studies,[12,20] we divided the participants into the following three groups based on the degree of kyphosis: none, mild (>0, \leq 4 cm), and severe (>4 cm).

132 Outcomes

The primary outcome was the mortality rate. Data on mortality and its causes were collected from death certificates provided by the Ministry of Health, Labour, and Welfare of Japan. The secondary outcome was the development of LOI, which was defined as a new LTCI certification of level 1– 5 (i.e., a condition requiring any support for daily living). Information on LTCI certification status was obtained from the local government annually. The use of public data allowed us to access all outcome data, except for those participants who moved outside the target area.

60

BMJ Open

1		
2 3 4	139	
5 6	140	Baseline Covariates
7 8 9	141	The following baseline covariates were analyzed as potential confounders for the relationship
9 10 11	142	between kyphotic posture and mortality: age, sex, body mass index (categorized as <18.5, ≥18.5
12 13	143	and <25, and \geq 25 kg/m ² , respectively), present smoking habits, lumbar spinal stenosis (LSS), low
14 15 16	144	back pain (requiring treatment and lasting for more than 24 hours), health status (self-reported
17 18	145	health: good, very good, or excellent vs. poor or very poor), stroke history, and handgrip strength
19 20	146	(dominant hand). LSS was diagnosed using a validated diagnostic support tool for LSS.[21]
21 22	147	
23 24 25	148	Statistical Analysis
26 27	149	The baseline characteristics of the participants were expressed as the presence or absence and the
28 29	150	degree of kyphotic posture, using medians and interquartile ranges. Additionally, numbers and
30 31 32	151	percentages were used for dichotomous variables.
33 34	152	The cumulative incidence method and log-rank test were employed to compare the
35 36	153	intervals between the baseline and predetermined endpoint. Time 0 was considered as the date of
37 38 39	154	each baseline check-up in 2008. Participants were censored after moving out of the target area or
40 41	155	on March 31, 2014. After ascertaining that the proportional hazards assumption had not been
42 43	156	violated, a Cox proportional hazards model with adjustment for possible confounders (i.e., the
44 45 46	157	baseline covariates mentioned above) was used to investigate the association between the kyphotic
40 47 48	158	posture and mortality. We conducted a sensitivity analysis with multiple imputations by chained
49 50	159	equations of missing covariates, which included all variables (including outcomes) in the
51 52	160	prediction model to generate 20 imputed datasets.
53 54 55	161	We performed four secondary analyses. First, we focused on LOI as a secondary outcome.
55 56		8

3	
4	
5	
6	
6 7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
21 22	
22	
23 24	
24 25	
25 26	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50	
51 52	
52 53	
53 54	
54 55	
55 56	
50	
58	
59	
50	

60

1 2

> In that model, participants were censored after moving out of the target area, upon mortality, or on March 31, 2014. Second, we employed another Cox proportional hazard model to evaluate the composite outcome of LOI and mortality. Both models included the same covariates as those in the primary analysis. Third, we performed a subgroup analysis stratified by sex for the primary outcome of mortality. Finally, we analyzed cause-specific mortality in each group, similar to a previous study.[22] Four causes of death were evaluated: cancer, cardiovascular disease, respiratory disease, and others.

> Statistical analyses were performed using Stata version 15.1 (StataCorp LLC, College
> Station, Texas, USA).

4.64

172 *Patient and public involvement*

173 There was no patient and public involvement.

174

171

175 Results

176 Baseline Characteristics

A total of 2,293 eligible participants from the 2008 LOHAS were identified. After excluding 100
subjects who did not undergo the WOT, a total of 2,193 participants were retained. The primary
analysis included 1,621 participants without missing covariates. Fig. 1 shows the flow of subjects
in this study.

181 Of the 1,621 participants enrolled in this study, 272 (17%) and 202 (12%) were diagnosed 182 with mild and severe kyphotic posture, respectively (Table 1). The median age of all participants 183 was 72 years, 61% were female, and 75% had good health status. The average age, proportion of 184 overweight participants, and the proportion of participants with LSS and low back pain were high

Page 11 of 30

BMJ Open

186	status and average handgrip	strength were low	in these groups.		
187					
188	TABLE 1. Baseline Charac	cteristics of Particip	pants Without Missi	ng Covariates	
		Total	Kyphotic Posture		
			None	Mild (>0, ≤4 cm)	Severe (> 4 cn
		<i>n</i> = 1621	<i>n</i> = 1147 (71)	<i>n</i> = 272 (17)	<i>n</i> = 202 (12)
	Age, years	72 (68–76)	71 (67–74)	74 (70–78)	76 (72–80)
	Sex, female	981 (61)	698 (61)	146 (54)	137 (68)
	Body mass index, kg/m ²				
	<18.5	57 (4)	43 (4)	7 (3)	7 (3)
	≤18.5, <25	1042 (64)	756 (66)	175 (64)	111 (55)
	≥25	522 (32)	348 (30)	90 (33)	84 (42)
	Smoking habit	151 (9)	105 (9)	31 (11)	15 (7)
	Lumbar spinal stenosis	274 (17)	175 (15)	53 (19)	46 (23)
	Low back pain	131 (8)	84 (7)	25 (9)	22 (11)
	Self-reported good health	1221 (75)	979 <i>(77</i>)	107 (72)	146 (72)
	status	1221 (75)	878 (77)	197 (72)	146 (72)
	Stroke history	87 (5)	54 (5)	15 (6)	18 (9)
	Handgrip strength, kgw	26 (22–34.5)	27 (22–35)	26 (21.25–35)	22 (18.5–28)
	Note. Data are presented as r	(%) and mean (inter	quartile range).		
189					
190	Primary Analysis and Sens	sitivity Analysis			
191	The cumulative mortality r	ates according to t	he degree of kunhos	is are presented in F	ig 2 After

192	a median follow-up of 5.8 years, participants with mild and severe kyphotic posture showed higher
193	cumulative mortality rates (8% and 13%, respectively) than those without kyphotic posture (5%).
194	The tracking ratio at the end of the study was 98.5%. The mortality rates were 0.008 per year in
195	the non-kyphotic posture group, 0.014 per year in the mild kyphotic posture group, and 0.023 per
196	year in the severe kyphotic posture group (Table 2), with the log-rank test indicating a difference
197	among the groups ($P < 0.001$). Cox regression analysis showed that participants with mild and
198	severe kyphotic posture had higher rates of mortality than those without kyphotic posture, with
199	adjusted hazard ratios (aHRs) of 1.17 (95% confidence interval [CI], 0.70-1.96), and 1.99 (95%
200	CI, 1.20–3.30) respectively. A sensitivity analysis using imputed datasets revealed results similar
201	to those of the primary analysis (aHR, 1.15 [95% CI, 0.71–1.87] and 2.15 [95% CI, 1.35–3.41],
202	respectively; Supplementary table 1).

TABLE 2. Cox Proportional Hazards Model of Mortality According to the Degree of Kyphosis

	Number of		Occurrence	Unadjusted HR	Adjusted HR
	Participants	Mortality	Rate/Year	(95% CI)	(95% CI) ^a
Kyphotic posture					
None	1147	54 (5)	0.008	Ref.	Ref.
Mild	272	22 (8)	0.014	1.74 (1.06, 2.85)	1.17 (0.70, 1.96)
Severe	202	26 (13)	0.023	2.83 (1.77, 4.52)	1.99 (1.20, 3.30)

Note. Data are presented as n (%).

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar spinal stenosis, low back pain, health status, stroke history, and handgrip strength.

BMJ Open

2							
3 4	206	Secondary Analysi	Ś				
5 6	207	The rates of LOI we	ere 0.013 per y	year in the non-ky	photic posture	group, 0.036 per yea	r in the mild
7 8 9	208	kyphotic posture gr	oup, and 0.04	8 per year in the s	evere kyphotic	posture group (Table	e 3). Overall,
9 10 11	209	subjects with mild a	and severe kyp	photic posture had	higher rates of	LOI than those with	out kyphotic
12 13	210	posture (aHR, 1.70	[95% CI, 1.1	3–2.55] and 2.08	[95% CI, 1.39-	-3.10], respectively).	
14 15	211						
16 17	212	TABLE 3. Cox Pro	oportional Haz	zards Model of L	oss of Independ	dence According to t	he Degree
18 19 20	213	of Kyphosis					
21 22			Number of	Loss of	Occurrence	Unadjusted HR	Adjusted HR
23 24			Participants	Independence	Rate/Year	(95% CI)	(95% CI) ^a
25 26		Kyphotic posture					
27 28 20		None	1147	82 (7)	0.013	Ref.	Ref.
29 30 31		Mild	272	38 (14)	0.026	2.38 (1.61–3.52)	1.70 (1.13–2.55)
32 33		Severe	202	51 (25)	0.048	3.63 (2.52–5.22)	2.08 (1.39–3.10)
34 35		Note: Data are presen	nted as n (%).				
36 37		Abbreviations: HR =	hazard ratio; C	I = confidence inter	val.		
38 39		^a Estimated from a Co	ox regression m	odel adjusted for ag	e, sex, body mas	s index, smoking habit,	lumbar spinal stenosis,
40 41		low back pain, health	n status, stroke ł	nistory, and handgri	p strength.		
42 43	214						
44 45	215	Consistent results	were obtained	d for the compos	site outcome o	of LOI and mortality	y (Table 4).
46 47 48	216	Participants with n	nild and seven	re kyphotic postu	re had higher	rates of LOI and m	ortality than
48 49 50	217	those without kyph	otic posture ((aHR, 1.27 [95%	CI, 0.90–1.79] and 1.83 [95% CI,	1.31–2.56],
50 51 52	218	respectively).					
53 54	219						
55 56							12
57 58 59							
60		For	peer review only	y - http://bmjopen.b	mj.com/site/abo	ut/guidelines.xhtml	

TABLE 4. Cox Proportional Hazards Model of Loss of Independence and Mortality According

to the Degree of Kyphosis

	Number of Participants	Loss of Independence and Mortality	Occurrence Rate/Year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a
Kyphotic post	ıre				
None	1147	122 (11)	0.02	Ref.	Ref.
Mild	272	52 (19)	0.033	1.78 (1.28–2.50)	1.27 (0.90–1.79)
Severe	202	60 (30)	0.062	2.93 (2.16-3.98)	1.83 (1.31–2.56)
Note. Data are	presented as n (%).				
Abbreviations	HR = hazard ratio; C	I = confidence in	nterval.		
^a Estimated from	m a Cox regression me	odel adjusted for	age, sex, body mas	ss index, smoking hab	oit, lumbar spinal stenos
low back pain,	health status, history	of stroke, and ha	ndgrip strength.		
We d	conducted a subgro	up analysis st	ratified by sex, w	which indicated the	at males had a
	conducted a subgro				
higher cumula	_	ty (10%, 0.018	per year) than fe	emales (4%, 0.007 j	per year). Male
higher cumula	ative rate of mortali	ty (10%, 0.018	per year) than fe	emales (4%, 0.007 j	per year). Male
higher cumula sex also show	ative rate of mortali	ty (10%, 0.018	per year) than fe	emales (4%, 0.007 j	per year). Male
higher cumula sex also show 5).	ative rate of mortali yed a more pronour	ty (10%, 0.018	per year) than fe	emales (4%, 0.007 potic posture and m	per year). Male ortality (Table
higher cumula sex also show 5). TABLE 5. Co	ative rate of mortali ved a more pronour	ty (10%, 0.018	per year) than fe	emales (4%, 0.007 potic posture and m	per year). Male ortality (Table
higher cumula sex also show 5).	ative rate of mortali ved a more pronour	ty (10%, 0.018	per year) than fe	emales (4%, 0.007 potic posture and m	per year). Male ortality (Table
higher cumula sex also show 5). TABLE 5. Co	ative rate of mortali ved a more pronour	ty (10%, 0.018 need associatio	per year) than fe on between kyph	emales (4%, 0.007 potic posture and m	per year). Male ortality (Table
higher cumula sex also show 5). TABLE 5. Co	ative rate of mortalized a more pronour ox Proportional Haz	ty (10%, 0.018	per year) than fe on between kyph Mortality Accor Occurrence	emales (4%, 0.007 potic posture and m	per year). Male ortality (Table

BMJ Open

	Male	640	64 (10)	0.018							
	Kyphotic posture										
	None	449	32 (7)	0.013	Ref.	Ref.					
	Mild	126	19 (15)	0.028	2.19 (1.24, 3.87)	1.64 (0.91, 2.95)					
	Severe	65	13 (20)	0.037	2.97 (1.56, 5.65)	2.31 (1.17, 4.56)					
	Female	981	38 (4)	0.007							
	Kyphotic post	ture									
	None	698	22 (3)	0.006	Ref.	Ref.					
	Mild	146	3 (2)	0.004	0.64 (0.19, 2.15)	0.50 (0.15, 1.73)					
	Severe	3.10 (1.56, 6.14)	1.55 (0.70, 3.45)								
	Note. Data are p	resented as n (%).								
	Abbreviations: HR = hazard ratio; CI = confidence interval.										
	^a Estimated from a Cox regression model adjusted for age, body mass index, smoking habit, lumbar spinal stenosis low back pain, health status, stroke history, and handgrip strength.										
230											
231	The causes of mortality in each group are presented in Fig. 3. The rate of mortality due to										
232	respiratory dise	eases was high	er in the severe	e kyphotic pos	sture group (6 [16%] v	s. 5 [7%] in the					
	non lumbotion	osture group a	nd 2 [7%] in th	e mild kyphot	ic posture group).						
233	поп-курпоне р	obtaile Broup a									
233 234	non-kypnotic p	estare group a	LJ								
	Discussion	ootare Broap a									
234	Discussion			ation between	n kyphotic posture and	mortality using					

data from a relatively large sample. The kyphotic posture detected with the WOT appeared to affect mortality in a way not explained by age, sex, body mass index, smoking, LSS, low back pain, health status, history of stroke, and handgrip strength. Furthermore, a dose-response

relationship was observed in the association; the presence of severe kyphotic posture was related
to a two-fold increase in the risk of mortality than non-kyphotic posture. Additionally, kyphotic
posture was associated with LOI, and the association between kyphotic posture and mortality was
more pronounced in men.

Kado et al. reported that cervicothoracic kyphosis measured in the supine position was associated with mortality in older men and women; they did not observe any sex-specific differences in their study.[13] They also showed that the degree of thoracic hyperkyphosis in the standing position had a predictive value for mortality among older women, in addition to osteoporotic vertebral fractures (OVFs).[14] Our results were similar to those from previous studies, which showed that kyphotic posture was associated with mortality. Additionally, we believe that the present study has the advantage of using the WOT, which measures kyphosis in the standing position and reflects overall sagittal balance. To properly assess the degree of kyphosis, subjects should be in the standing position with their hips and knees fully extended to negate the compensatory mechanisms [23]. With the subjects in the supine position, kyphotic posture may be corrected by a non-physiologic hyper-extensive force so that the degree of kyphosis is consistently underestimated. Furthermore, as described above, kyphotic posture develops due to the failure of the posture maintenance mechanism. When evaluating kyphotic posture, it is necessary to focus not only on one segment, such as the thoracic spine, but also on the alignment of the whole spine.

In the subgroup analysis by sex, the association between kyphotic posture and mortality seemed to be more pronounced in men, although no clear sex difference in mortality was shown in the present study. Sex differences in the prevalence of vertebral fractures have been reported, [24,25] and the nature of kyphosis may differ between men and women. Further studies that

subcategorize kyphosis by vertebral fractures might reveal sex differences categorized by kyphoticposture.

266 Explanations and Implications

We hypothesized two possible explanations for the association between kyphotic posture and mortality. First, we considered that mortality is an outcome of locomotive dysfunction. Several previous studies have reported that kyphotic posture is associated with locomotive dysfunction.[5,11,12,26,27] According to Tominaga et al., severe kyphotic posture measured by the WOT is associated with an increased incidence of falls in men.[12] Katzman et al. indicated an association of cervicothoracic kyphosis in the supine position with impaired lower extremity physical function among older men. [27] Hence, the effect of kyphotic posture might be prominent in men and associated with increased mortality. Early mortality may also be attributable to another possible mechanism. Multiple previous studies have shown that kyphotic posture may be associated with worse health, including diminished pulmonary function.[6,7] Notably, a previous report suggested that those with kyphotic posture were more likely to die of a pulmonary cause.[13] Although no statistical comparison was performed due to a lack of power, our study showed that the proportion of respiratory deaths among those with severe kyphotic posture was high.

The results of the present study suggest that kyphotic posture is a clinically important finding, and further studies on the effects of the prevention and treatment of kyphotic posture are needed. Noticeably, our study demonstrates that the WOT is helpful in predicting serious healthcare outcomes. Among men, those with mild and severe kyphotic posture identified by WOT were shown to have a 2.2-fold and 3-fold increased risk of mortality, respectively. The WOT is easy, inexpensive, and does not require special skills or devices, making it an attractive clinical

tool for the identification of high-risk population. Approximately 40% of older adults with the worst degrees of kyphosis have underlying OVFs,[24,25] and OVFs are widely thought to be a major factor contributing to the development of kyphotic posture. Therefore, osteoporosis treatment may help prevent kyphotic posture via a reduction in the occurrence of OVFs. In addition to structural changes in the vertebral column, back extensor weakness is also associated with a kyphotic posture.[28-30] Despite limited evidence, some reports suggest that exercise may modestly improve back extensor muscle strength [31].

294 Strengths and Limitations

The present study has significant strengths. First, we demonstrated the association of kyphotic posture with LOI and mortality in a community-dwelling population. We believe that the present study is valuable in investigating the longitudinal development of serious healthcare outcomes based on samples from a general population. Second, we used public data, which provided us with reliable and complete information on outcomes, except for participants who moved out of the target area. As relocation was rare, a high tracking ratio (98.5%) was achieved, which minimized the risk of information bias.

Nevertheless, this study has several limitations. First, we did not adjust our dataset for osteoporosis. We did not adjust for OVFs because we were interested not only in kyphosis independent of OVFs, but in overall kyphotic postures, including the ones caused by OVFs. However, osteoporosis may be associated with LOI and mortality through other mechanisms. Second, the WOT does not distinguish rigid kyphosis from flexible kyphosis. To evaluate spinal flexibility, evaluations in both the standing and supine positions need to be performed. The WOT also does not identify participants who can maintain good non-kyphotic posture only for a short

period during measurement. No evaluation method has overcome this problem, and the development of a new method, such as continuous posture analysis, is warranted. Finally, attributing causation is difficult because of other unmeasured confounders, including subclinical diseases. It should be noted that the present study does not provide evidence to support surgical interventions to correct kyphosis. Surgical reconstruction should not be routinely performed in elderly individuals with a typical high-risk profile.

316 Conclusions

Kyphotic posture is associated with LOI and mortality. Therefore, identifying older people with
kyphotic posture using the WOT in the community might help identify high-risk populations that
would benefit from healthcare interventions.

1 2			
3 4	321	Refere	ences
5 6 7 8 9 10 11 12 13	322	1.	Schwab F, Lafage V, Boyce R, et al. Gravity line analysis in adult volunteers: age-related
	323		correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa
	324		1976). 2006;31:959–67.
	325	2.	Farcy JP, Schwab FJ. Management of flatback and related kyphotic decompensation
14 15	326		syndromes. Spine (Phila Pa 1976). 1997;229:2452-7.
16 17 18	327	3.	Ailon T, Shaffrey CI, Lenke LG, et al. Progressive spinal kyphosis in the aging population.
19 20	328		Neurosurgery. 2015;774:164–72.
21 22	329	4.	Kado DM, Prenovost K, Crandall C. Narrative review: hyperkyphosis in older persons.
23 24 25	330		Ann Intern Med. 2007;147:330–8.
26 27	331	5.	Eum R, Leveille SG, Kiely DK, et al. Is kyphosis related to mobility, balance, and
28 29	332		disability? Am J Phys Med Rehabil. 2013;92:980–9.
30 31 32	333	6.	Culham EG, Jimenez HA, King CE. Thoracic kyphosis, rib mobility, and lung volumes
33 34	334		in normal women and women with osteoporosis. Spine (Phila Pa 1976). 1994;19:1250-
35 36	335		5.
37 38 30	336	7.	Lee SJ, Chang JY, Ryu YJ, et al. Clinical features and outcomes of respiratory
 39 40 41 42 43 44 45 46 47 48 	337		complications in patients with thoracic hyperkyphosis. Lung. 2015;193:1009–15.
	338	8.	Ensrud KE, Black DM, Harris F, et al. Correlates of kyphosis in older women. The
	339		Fracture Intervention Trial Research Group. J Am Geriatr Soc. 1997;45:682-7.
	340	9.	Imagama S, Ando K, Kobayashi K, et al. Increase in lumbar kyphosis and spinal
49 50	341		inclination, declining back muscle strength, and sarcopenia are risk factors for onset of
51 52	342		GERD: a 5-year prospective longitudinal cohort study. Eur Spine J. 2019;28:2619–28.
53 54 55	343	10.	Imagama S, Hasegawa Y, Matsuyama Y, et al. Influence of sagittal balance and physical
55 56 57			19
58 59			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			i or peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

BMJ Open

1 2			
2 3 4	344		ability associated with exercise on quality of life in middle-aged and elderly people. Arch
5 6 7 8 9 10 11 12 13	345		<i>Osteoporos</i> . 2011;6:13–20.
	346	11.	McDaniels-Davidson C, Davis A, Wing D, et al. Kyphosis and incident falls among
	347		community-dwelling older adults. Osteoporos Int. 2018;29:163-9.
	348	12.	Tominaga R, Fukuma S, Yamazaki S, et al. Relationship between kyphotic posture and
14 15 16	349		falls in community-dwelling men and women: the Locomotive Syndrome and Health
16 17 18	350		Outcome in Aizu Cohort Study. Spine (Phila Pa 1976). 2016;41:1232-8.
19 20	351	13.	Kado DM, Huang MH, Karlamangla AS, et al. Hyperkyphotic posture predicts mortality
21 22	352		in older community-dwelling men and women: a prospective study. J Am Geriatr Soc.
23 24 25	353		2004;52:1662–7.
26 27	354	14.	Kado DM, Lui LY, Ensrud KE, et al. Hyperkyphosis predicts mortality independent of
28 29	355		vertebral osteoporosis in older women. Ann Intern Med. 2009;150:681-7.
30 31 32	356	15.	Okura M, Ogita M, Yamamoto M, et al. Self-assessed kyphosis and chewing disorders
33 34	357		predict disability and mortality in community-dwelling older adults. J Am Med Dir Assoc.
35 36	358		2017;18:550.e1–6.
37 38	359	16.	Otani K, Takegami M, Fukumori N, et al. Locomotor dysfunction and risk of
39 40 41	360		cardiovascular disease, quality of life, and medical costs: design of the Locomotive
42 43	361		Syndrome and Health Outcome in Aizu Cohort Study (LOHAS) and baseline
44 45	362		characteristics of the study population. J Orthop Sci. 2012;17:261-71.
46 47 48	363	17.	Campbell JC, Ikegami N. Long-term care insurance comes to Japan. Health Aff
49 50	364		(Millwood). 2000;19:26–39.
51 52	365	18.	Green AD, Colon-Emeric CS, Bastian L, et al. Does this woman have osteoporosis?
53 54	366		<i>JAMA</i> . 2004;292:2890–900.
55 56 57			20
57 58 59			

1 2

3 4	367	19.	Ziebart C, Adachi JD, Ashe MC, et al. Exploring the association between number,
5 6	368		severity, location of fracture, and occiput-to-wall distance. Arch Osteoporos. 2019;14:27.
7 8 0	369	20.	Siminoski K, Warshawski RS, Jen H, et al. The accuracy of clinical kyphosis examination
9 10 11	370		for detection of thoracic vertebral fractures: comparison of direct and indirect kyphosis
12 13	371		measures. J Musculoskelet Neuronal Interact. 2011;11:249–56.
14 15	372	21.	Konno S, Kikuchi S, Tanaka Y, et al. A diagnostic support tool for lumbar spinal stenosis:
16 17 18	373		a self-administered, self-reported history questionnaire. BMC Musculoskelet Disord.
19 20	374		2007;8:102.
21 22	375	22.	Yamazaki H, Kamitani T, Matsui T, et al. Association of low alanine aminotransferase
23 24 25	376		with loss of independence or death: a 5-year population-based cohort study. J
26 27	377		Gastroenterol Hepatol. 2019;34:1793–9.
28 29	378	23.	Horton WC, Brown CW, Bridwell KH, et al. Is there an optimal patient stance for
30 31 22	379		obtaining a lateral 36" radiograph? A critical comparison of three techniques. Spine (Phila
32 33 34	380		Pa 1976). 2005;30:427–33.
35 36	381	24.	Schneider DL, von Muhlen D, Barrett-Connor E, et al. Kyphosis does not equal vertebral
37 38	382		fractures: the Rancho Bernardo study. J Rheumatol. 2004;31:747-52.
39 40 41	383	25.	Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older
42 43	384		women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch
44 45	385		Intern Med. 1999;159:1215–20.
46 47 48	386	26.	Kado DM, Huang MH, Barrett-Connor E, et al. Hyperkyphotic posture and poor physical
49 50 51 52	387		functional ability in older community-dwelling men and women: the Rancho Bernardo
	388		study. J Gerontol A Biol Sci Med Sci. 2005;60:633-7.
53 54 55	389	27.	Katzman WB, Harrison SL, Fink HA, et al. Physical function in older men with
56 57 58			21
50 59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

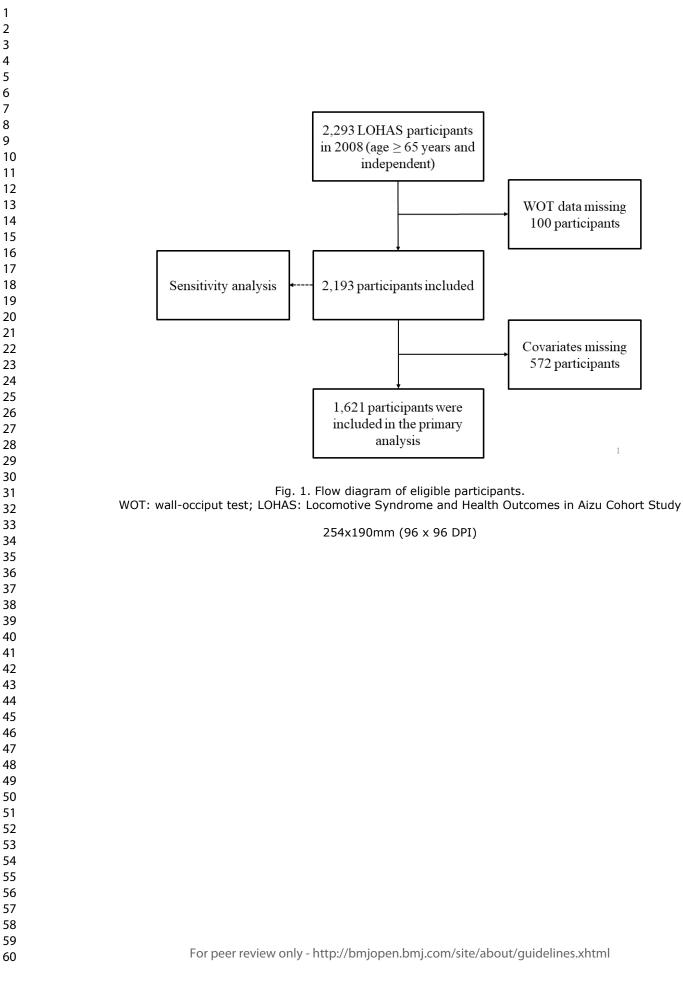
BMJ Open

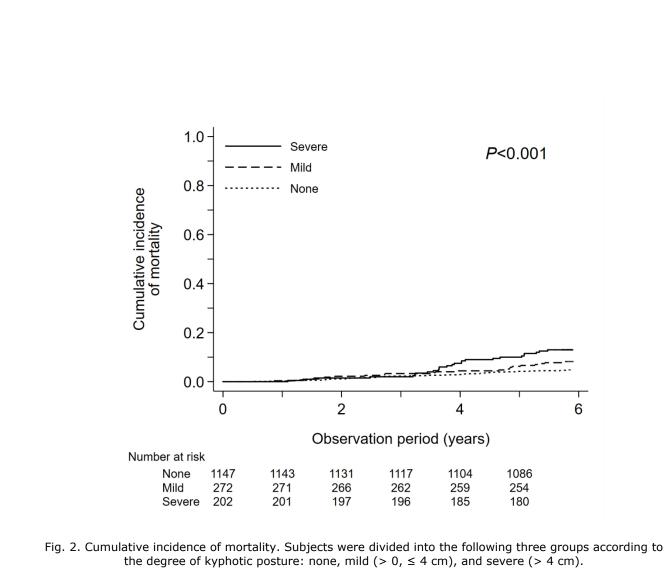
1 2			
2 3 4	390		hyperkyphosis. J Gerontol A Biol Sci Med Sci. 2015;70:635-40.
5 6	391	28.	Sinaki M, Itoi E, Rogers JW, et al. Correlation of back extensor strength with thoracic
7 8 9 10 11 12 13	392		kyphosis and lumbar lordosis in estrogen-deficient women. Am J Phys Med Rehabil.
	393		1996;75:370–4.
13	394	29.	Laroche M, Delisle MB, Aziza R, et al. Is camptocormia a primary muscular disease?
14 15 16	395		Spine (Phila Pa 1976). 1995;20:1011–6.
10 17 18	396	30.	Menezes-Reis R, Bonugli GP, Salmon CEG, et al. Relationship of spinal alignment with
19 20	397		muscular volume and fat infiltration of lumbar trunk muscles. PLoS One.
21 22 23	398		2018;13:e0200198.
23 24 25	399	31.	Bansal S, Katzman WB, Giangregorio LM. Exercise for improving age-related
26 27 28 29	400		hyperkyphotic posture: a systematic review. Arch Phys Med Rehabil. 2014;95:129-40.
	401		
30 31 32	402		
33 34	403		
35 36			
37 38 39			
40 41			
42 43			
44 45			
46 47			
48 49			
50 51			
52			
53 54			
55			
56 57			22
57 58			
59			

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

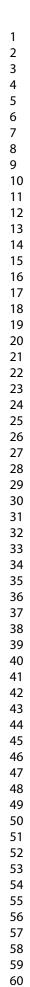
60

404 **Figure legends**


- 405 Fig. 1. Flow diagram of eligible participants.
- 406 WOT: wall-occiput test; LOHAS: Locomotive Syndrome and Health Outcomes in Aizu Cohort
- 407 Study


412

- Fig. 2. Cumulative incidence of mortality. Subjects were divided into the following three groups 408
- according to the degree of kyphotic posture: none, mild (> $0, \le 4$ cm), and severe (> 4 cm). 409
- s. ch group. phosis: non-kyph. 410 Fig. 3. Cause-specific deaths in each group. Subjects were divided into the following three groups
 - according to the degree of kyphosis: non-kyphotic, mild ($> 0, \le 4$ cm), and severe (> 4 cm). 411


BMJ Open

2 3	44.0	
4	413	Footnotes
5 6 7	414	Contributors: Conception and design of the study: YH, TK, SF, YY; Acquisition of data: MS,
7 8 9	415	KO, SK, MT; Analysis and interpretation of data: YH, TK, SF, YY; Drafting the article or revising
) 10 11	416	it critically for important intellectual content: YH, TK, MS, KO, SK, MT, SF, YY; Final approval
12 13	417	of the version to be submitted: YH, TK, MS, KO, SK, MT, SF, YY.
14 15	418	Funding: This research received no specific grant from any funding agency in the public,
16 17 18	419	commercial or not-for-profit sectors.
19 20	420	Data availability statement: The data presented in the study are not currently available separately.
21 22	421	Additional unpublished data is still being analyzed for another research project.
23 24 25	422	Competing interests: None declared.
23 26 27	423	
28		
29 30		
31		
32 33		
34 35		
35 36		
37 38		
39		
40 41		
41		
43		
44 45		
46		
47 48		
40 49		
50		
51		
52 53		
54		
55		24
56 57		24
58		
59		For near review only http://hmiener.htmic.com/site/shevit/suidelines.yhtml
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

549x475mm (72 x 72 DPI)

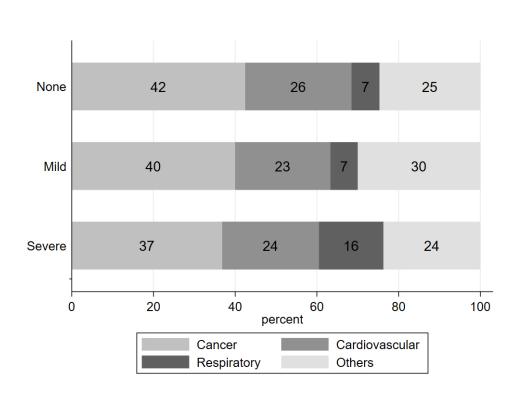


Fig. 3. Cause-specific deaths in each group. Participants were divided into the following three groups according to the degree of kyphosis: None, Mild (> 0, \leq 4 cm), and Severe (> 4 cm).

366x266mm (72 x 72 DPI)

Supplemental Material 1

Supplemental material for: "Association of Kyphotic Posture with Loss of Independence and Mortality Among Community-Dwelling Older Adults: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)"

Supplemental Table 1. Sensitivity Analysis with Multiple Imputation for Mortality According to the Degree of Kyphosis

	Number of	Montolity	Occurrence	Unadjusted HR	Adjusted HR
	Participants	Mortality Rate/Year		(95% CI)	(95% CI) ^a
Kyphotic posture					
None	1525	73 (5)	0.009	Ref.	Ref.
Mild	369	30 (8)	0.015	1.72 (1.13–2.64)	1.19 (0.77–1.84)
Severe	299	38 (13)	0.023	2.76 (1.86-4.08)	1.80 (1.17–2.77)

Note: Data are presented as n (%).

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar

spinal stenosis, low back pain, health status, history of stroke, and handgrip strength.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Page No
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	3
		abstract	
		(b) Provide in the abstract an informative and balanced summary of what was	3
		done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			1
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
C		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
I I		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	-
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	No
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	8
		(d) If applicable, explain how loss to follow-up was addressed	8
		(<u>e</u>) Describe any sensitivity analyses	8
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
n i i r n n		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	9
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	No
		(c) Summarise follow-up time (eg, average and total amount)	10
Outcome data	15*	Report numbers of outcome events or summary measures over time	11

and why they were included and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses Discussion Key results 18 Summarise key results with reference to study objectives Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results Other information 20 Summarise hegeneralisability (external validity) of the study results				
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses Discussion Key results 18 Summarise key results with reference to study objectives Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision Discuss both direction and magnitude of any potential bias Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results Other information Constant	Main results	16	precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses Discussion Key results 18 Summarise key results with reference to study objectives Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results			(b) Report category boundaries when continuous variables were categorized	
Discussion Key results 18 Summarise key results with reference to study objectives Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision Discuss both direction and magnitude of any potential bias Discuss both direction and magnitude of any potential bias Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results Other information Discuss the generalisability (external validity) of the study results				
Key results 18 Summarise key results with reference to study objectives Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results Other information Image: Construct of the study results Construct of the study results	Other analyses	17		
Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision Discuss both direction and magnitude of any potential bias Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results Other information 20	Discussion			
Discuss both direction and magnitude of any potential bias Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results Other information	Key results	18	Summarise key results with reference to study objectives	
Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence Generalisability 21 Discuss the generalisability (external validity) of the study results Other information 20	Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	
Other information	Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	
	Generalisability	21	Discuss the generalisability (external validity) of the study results	
Funding 22. Circular sector of the start of the trade of	Other informati	on		
Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	Funding	22	Give the source of funding and the role of the funders for the present study and, if	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052421.R1
Article Type:	Original research
Date Submitted by the Author:	20-Nov-2021
Complete List of Authors:	Hijikata, Yasukazu; Kyoto University Graduate School of Medicine Faculty of Medicine, Department of Healthcare Epidemiology Kamitani, Tsukasa; Kyoto University Graduate School of Medicine Faculty of Medicine, Department of Healthcare Epidemiology Sekiguchi, Miho; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Otani, Koji; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Konno, Shin-ichi; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Takegami, Misa; National Cerebral and Cardiovascular Center, Preventive Medicine and Epidemiology Informatics Fukuhara, Shunichi; Fukushima Kenritsu Ika Daigaku, Department of General Medicine, Shirakawa Satellite for Teaching And Research (STAR); Kyoto University Graduate School of Medicine Faculty of Medicine Yamamoto, Yosuke; Kyoto University Graduate School of Medicine Faculty of Medicine, Department of Healthcare Epidemiology
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Public health
Keywords:	Spine < ORTHOPAEDIC & TRAUMA SURGERY, Musculoskeletal disorders < ORTHOPAEDIC & TRAUMA SURGERY, PUBLIC HEALTH, GERIATRIC MEDICINE

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
Δ	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
20	
21 22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

1

Association of kyphotic posture with loss of independence and mortality in a community-1 2 based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu 3 **Cohort Study (LOHAS)** 4 Yasukazu Hijikata, MPH¹, Tsukasa Kamitani, DrPH¹, Miho Sekiguchi, PhD², Koji Otani, 5 DMSc², Shinichi Konno, PhD², Misa Takegami, DrPH³, Shunichi Fukuhara, DMSc^{4,5,6}, Yosuke 6 7 Yamamoto, PhD1* 8 ¹Department of Healthcare Epidemiology, School of Public Health in the Graduate School of 9 10 Medicine, Kyoto University, Kyoto, Japan ²Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, 11 12 Fukushima, Japan ³Department of Preventive Medicine and Epidemiologic Informatics, National Cerebral and 13 Cardiovascular Center, Osaka, Japan 14 15 ⁴Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan 16 ⁵Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical 17 18 University, Fukushima, Japan ⁶Shirakawa STAR for General Medicine, Fukushima Medical University, Fukushima, Japan 19 20 21 *Address correspondence and reprint requests to: 22 Yosuke Yamamoto, PhD

1 2	
2 3 4	23
5 6	24
7 8	25
9 10 11	26
12 13	27
14 15	28
16 17 18	29
19 20	30
21 22	31
23 24 25	32
25 26 27	33
28 29	34
30 31	35
32 33 34	
35 36	
37 38	
39 40 41	
42 43	
44 45	
46 47	
48 49 50	
51 52	
53 54	
55 56 57	
57 58	

60

Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine,

- Kyoto University
- Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Phone: +81-75-753-4646; Fax: +81-75-753-4644
- Email: yamamoto.yosuke.5n@kyoto-u.ac.jp
 - ORCID: 000-0003-1104-2612

Email address: Yasukazu Hijikata (hijikata.yasukazu.45z@st.kyoto-u.ac.jp), Tsukasa Kamitani

(kamitani.tsukasa.8w@kyoto-u.ac.jp), Miho Sekiguchi (miho-s@fmu.ac.jp), Koji Otani

(kotani@fmu.ac.jp), Shin-ichi Konno (skonno@fmu.ac.jp), Misa Takegami

(takegami@ncvc.go.jp), Shun-ichi Fukuhara (fukuhara.shunichi.6m@kyoto-u.jp)

Word count: 2915 words

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
33	
34	
35	
36	
36 37	
38	
38 39	
40	
40	
42	
4Z	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

36 Abstract

1

Objectives: This study aimed to investigate the association between kyphotic posture and future
loss of independence (LOI) and mortality in community-dwelling older adults.

39 Design: Prospective cohort study.

40 **Setting:** Two Japanese municipalities.

41 **Participants:** We enrolled 2,193 independent community-dwelling older adults aged ≥ 65 years at 42 the time of their baseline health check-up in 2008. Kyphotic posture was evaluated using the wall-43 occiput test (WOT) and classified into three categories: non-kyphotic, mild (>0 and ≤ 4 cm), and 44 severe (>4 cm).

45 Primary and secondary outcome measures: The primary outcome was mortality and the 46 secondary outcomes were LOI (new long-term care insurance certification levels 1–5) and a 47 composite of LOI and mortality. A Cox proportional hazards model was used to estimate the 48 adjusted hazard ratios (aHRs).

49 **Results:** Of the 2,193 subjects enrolled, 1,621 were included in the primary analysis. Among these, 50 272 (17%) and 202 (12%) were diagnosed with mild and severe kyphotic posture, respectively. 51 The median follow-up time was 5.8 years. Compared to the non-kyphotic group, the aHRs for mortality were 1.17 (95% confidence interval [CI], 0.70-1.96) and 1.99 (95% CI, 1.20-3.30) in 52 53 the mild and severe kyphotic posture groups, respectively. In the secondary analysis, a consistent 54 association was observed for LOI (mild: aHR, 1.70; 95% CI, 1.13–2.55; severe: aHR, 2.08; 95% 55 CI, 1.39–3.10) and the LOI-mortality composite (mild: aHR, 1.27; 95% CI, 0.90–1.79; severe: aHR, 1.83; 95% CI, 1.31-2.56). 56

57 Conclusion: Kyphotic posture was associated with LOI and mortality in community-dwelling
58 older adults. Identifying the population with kyphotic posture using the WOT might help improve

60

BMJ Open

1 2		
3 4 5	59	community health.
5 6	60	
7 8 9	61	Strengths and limitations of this study:
10 11	62	• The results were obtained from a relatively large cohort of a community-based population.
12 13	63	• Only 1.5% (31) of the 2,193 participants included in the study were lost to follow up due
14 15	64	to change of residence from the target area, which minimized the risk of information bias.
16 17 18	65	• We did not adjust for osteoporosis, a factor that might be associated with loss of
19 20	66	independence and mortality through mechanisms other than kyphotic postures, such as
21 22	67	fractures of the long bones.
23 24 25	68	• The wall-occiput test does not distinguish rigid kyphosis from flexible kyphosis.
26 27	69	• Attributing causation is difficult because of other unmeasured confounders, including
28 29	70	subclinical diseases.
30 31 32		
33 34		subclinical diseases.
35 36		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56		4
57 58		

> Kyphosis is described as an abnormal posture that develops because of the failure of the posture maintenance mechanism. When standing, lordotic segments (i.e., the cervical and lumbar spine) and kyphotic segments (i.e., the thoracic spine) must balance the occiput over the pelvic axis in an energy-efficient position. As the centre of gravity of the trunk shifts forward due to kyphosis in one segment of the spine, the other spinal segments, pelvis, hip joint, and knee joint cooperatively compensate to maintain overall sagittal balance.[1] Failure of this compensatory mechanism results in kyphotic posture, leading to various health problems. [2,3] A kyphotic posture is common among older individuals, with a reported prevalence of 20–40%,[4] and is expected to increase as the population ages. Hence, the extent to which a kyphotic posture affects health is a serious concern.

> 83 Several deleterious effects of kyphotic posture on the afflicted individual's health have 84 been reported, including a decline in physical function,[5] impairment in pulmonary function,[6,7] 85 pain,[8] gastroesophageal reflux disease,[9] poor quality of life,[10,11] and accidental falls.[12,13] 86 Therefore, there has been a growing concern regarding the association between kyphotic posture 87 and serious health-related outcomes, such as loss of independence (LOI) and mortality.

88 Three previous studies reported an association of kyphotic posture with LOI and mortality. 89 First, Kado et al. demonstrated the association between cervicothoracic kyphosis and 90 mortality.[14] It should be noted that, as kyphosis was measured in the supine position rather than 91 in the standing position, the evaluation of the kyphotic posture was not precise. In another study, 92 Kado et al. reported an association of thoracic hyperkyphosis in the standing position with 93 mortality in older women.[15] Nonetheless, these two studies could not assess whether the 94 kyphotic posture was a risk factor for mortality in men. Okura et al. showed that kyphotic posture

BMJ Open

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24 24	
25	
25 26	
27	
28	
29	
30	
31	
32	
33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

95 is related to LOI and mortality.[16] However, there was a potential bias in this study, as the 96 determination of kyphotic posture was based on self-reported data from participants. Moreover, the researchers only controlled for age and sex as potential confounders. Furthermore, none of 97 98 these studies adjusted for lumbar degenerative disease and back pain, which are strongly associated 99 with kyphotic posture.

100 To address these concerns, we conducted a prospective cohort study to examine whether a kyphotic posture in the standing position was associated with LOI and mortality in community-101 102 dwelling men and women.

103

104 Materials and methods

105 Study Design and Population

106 This prospective observational study analyzed data from the Locomotive Syndrome and Health 107 Outcomes in Aizu Cohort Study (LOHAS), a population-based study involving residents from two 108 towns in Japan. The LOHAS evaluated the effect of locomotive dysfunction on healthcare 109 outcomes, including quality of life, medical costs, and occurrence of LOI and mortality. The LOHAS comprised approximately 70% of all the National Health Insurance and Late-Stage 110 Elderly Health Insurance beneficiaries in that region. Details of the study have been described 111 elsewhere.[17] 112

113

60

114 **Study Participants**

115 Independent community-dwelling older adults aged ≥ 65 years without any long-term care 116 insurance (LTCI) certification [18] at the time of their baseline health check-up in 2008 were 117 enrolled. Those in whom kyphotic posture could not be determined due to missing data were

excluded. Participants were observed starting from the baseline check-up in 2008 until March 2014.
This study was approved by certified institutional review boards (R1730 and 673) of the
participating institutions, and all participants provided written informed consent before
participation.

13 122

123 Definition of Kyphotic Posture

124 Kyphotic posture was defined using the wall-occiput test (WOT) at the time of musculoskeletal 125 examination in 2008. The WOT is a semi-quantitative technique used to assess head forward 126 posture in the standing position as well as thoracic vertebral fractures.[19,20] The WOT reflects 127 not only thoracic hyperkyphosis, but also a loss of cervical and lumbar lordosis.

The distance (in cm) between the occiput prominence and the wall was measured using a tape while the participants were standing with both of their heels and sacrum against the wall and their head positioned such that an imaginary line from the lateral corner of the eye to the superior point of the auricle was parallel to the floor. In accordance with previous studies,[13,21] we divided the participants into the following three groups based on the degree of kyphosis: none, mild (>0, <4 cm), and severe (>4 cm).

40 134

135 Outcomes

The primary outcome was the time to mortality. Data on mortality and its causes were collected from death certificates provided by the Ministry of Health, Labour, and Welfare of Japan. The secondary outcome was the development of LOI, which was defined as a new LTCI certification of level 1–5 (i.e., a condition requiring any support for daily living). Information on LTCI certification status was obtained from the local government annually. The use of public data

BMJ Open

allowed us to access all outcome data, except for those participants who changed their residence outside the target area.

Baseline Covariates

The following baseline covariates were analysed as potential confounders for the relationship between kyphotic posture and mortality: age, sex, body mass index (categorized as $<18.5, \ge 18.5$ and <25, and \geq 25 kg/m²), present smoking habits, lumbar spinal stenosis (LSS), low back pain (requiring treatment and lasting for more than 24 h), good health status (self-reported health: good, very good, or excellent), stroke history, and handgrip strength (dominant hand). LSS was diagnosed using a validated diagnostic support tool for specifically designed for this purpose.[22] Handgrip strength was measured using a digital dynamometer (Takei Scientific Instruments Co., el. Ltd, Japan).

Statistical Analysis

The baseline characteristics of the participants were expressed as the presence or absence and the degree of kyphotic posture, using medians and interquartile ranges. Additionally, absolute and relative frequencies were used for dichotomous or categorical variables.

The cumulative incidence method and log-rank test were applied to compare the intervals between the baseline and date of mortality. The date of each baseline check-up in 2008 was considered as Time 0. Participants were censored after changing their residence out of the target area or on March 31, 2014. After confirming that the proportional hazards assumption had not been violated, a Cox proportional hazards model with adjustment for possible confounders (i.e., age, sex, body mass index, smoking habit, LSS, low back pain, good health status, stroke history,

2	
3 4	164
5 6	165
7 8 9	166
9 10 11	167
12 13	168
14 15	169
16 17	170
18 19 20	171
20 21 22	172
23 24	173
25 26	174
27 28	175
29 30	
31 32	176
33 34 35	177
35 36 37	178
38 39	179
40 41	180
42 43	181
44 45	182
46 47	183
48 49 50	184
50 51 52	185
53 54	186
55 56	
57	
58 59	

1

164 and handgrip strength) was used to investigate the association between the kyphotic posture and 165 mortality. We conducted a sensitivity analysis with multiple imputations by chained equations of 166 missing covariates, which included all variables (including outcomes) in the prediction model to 167 generate 20 imputed datasets.

168 We performed four secondary analyses. First, we focused on LOI as a secondary outcome. 169 In that model, participants were censored after moving out of the target area, upon mortality, or on 170 March 31, 2014. Second, we employed another Cox proportional hazard model to evaluate the 171 composite outcome of LOI and mortality. Both models included the same covariates as those in 172 the primary analysis. For these secondary analyses, we performed sensitivity analyses using 173 multiple imputations as in the main analysis. Third, we performed a subgroup analysis stratified 174 by sex for the primary outcome of mortality. Finally, we analyzed cause-specific mortality in each 175 group, as in a previous study.[23] Four causes of death were evaluated: cancer, cardiovascular 176 disease, respiratory disease, and others.

177 Statistical analyses were performed using Stata version 15.1 (StataCorp LLC, College 178 Station, Texas, USA).

- Patient and public involvement 180
 - There was no patient and public involvement in this study. 181
- 182

60

- 183 **Results**
- 184 **Baseline Characteristics**

A total of 2,294 eligible participants from the 2008 LOHAS were identified. After excluding 101 185 186 subjects who did not undergo the WOT, a total of 2,193 participants were retained. The primary Page 11 of 33

1

BMJ Open

2	
3 4	187
5 6	188
7 8	189
9 10 11	190
12 13	191
14 15	192
16 17	193
18 19 20	194
21 22	195
23 24	196
25 26 27	197
27 28 29	
30 31	
32 33	
34	
35 36	
37 38	
39 40	
41 42	
43 44	
45	
46 47	
48 49	
50 51	
52 53	
53 54 55	
56	
57 58	
59 60	

analysis included 1,621 participants without missing covariates. Fig. 1 shows the flow diagram of
subjects in this study.

Of the 1,621 participants enrolled in this study, 272 (17%) and 202 (12%) were diagnosed with mild and severe kyphotic posture, respectively (Table 1). The median age of all participants was 72 years, 61% were female, and 75% had good health status. The average age, the proportion of overweight participants (body mass index \geq 25 kg/m²), and the proportion of participants with LSS and low back pain were high in the mild and severe kyphotic posture groups compared to the non-kyphotic posture group. The proportions of participants with good health status and average handgrip strength were low in these groups.

TABLE 1. Baseline characteristics of participants without missing covariates

	Total	Kyphotic posture				
		N	Mild (>0, ≤4	Severe (>4		
		None	cm)	cm)		
	<i>n</i> = 1621	<i>n</i> = 1147 (71)	<i>n</i> = 272 (17)	n = 202 (12)		
Age, years	72 (68–76)	71 (67–74)	74 (70–78)	76 (72–80)		
Female sex	981 (61)	698 (61)	146 (54)	137 (68)		
Body mass index, kg/m ²						
<18.5	57 (4)	43 (4)	7 (3)	7 (3)		
≤18.5, <25	1042 (64)	756 (66)	175 (64)	111 (55)		
≥25	522 (32)	348 (30)	90 (33)	84 (42)		
Smoking habit	151 (9)	105 (9)	31 (11)	15 (7)		

Lumbar spinal stenosis	274 (17)	175 (15)	53 (19)	46 (23)
Low back pain	131 (8)	84 (7)	25 (9)	22 (11)
Good health status	1221 (75)	878 (77)	197 (72)	146 (72)
Stroke history	87 (5)	54 (5)	15 (6)	18 (9)
Handgrip strength, kgw	26 (22–34.5)	27 (22–35)	26 (21.25–35)	22 (18.5–28)

Note. Data are presented as n (%) or median and interquartile range.

199 Primary Analysis and Sensitivity Analysis

The cumulative mortality rates according to the degree of kyphosis are presented in Fig. 2. The median follow-up time was 5.8 years. The participants with mild and severe kyphotic posture showed higher cumulative mortality rates (8% and 13%, respectively) than those without kyphotic posture (5%). The tracking ratio at the end of the study was 98.5%. The mortality rates were 0.008 per year in the non-kyphotic posture group, 0.014 per year in the mild kyphotic posture group, and 0.023 per year in the severe kyphotic posture group (Table 2), with the log-rank test indicating a difference among the groups (P < 0.001). Cox regression analysis showed that participants with mild and severe kyphotic posture had higher rates of mortality than those without kyphotic posture, with adjusted hazard ratios (aHRs) of 1.17 (95% confidence interval [CI], 0.70–1.96), and 1.99 (95% CI, 1.20–3.30), respectively. A sensitivity analysis using imputed datasets revealed similar results to those of the primary analysis (aHR, 1.15 [95% CI, 0.71-1.87] and 2.15 [95% CI, 1.35-3.41], respectively; Supplementary Table 1).

50 212

TABLE 2. Cox proportional hazards model of mortality according to the degree of kyphosis

			Number of participants	Frequency of mortality	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a		
)		Kyphotic posture							
		None	1147	54	0.008	Ref.	Ref.		
		Mild	272	22	0.014	1.74 (1.06, 2.85)	1.17 (0.70, 1.96)		
		Severe	202	26	0.023	2.83 (1.77, 4.52)	1.99 (1.20, 3.30)		
		Abbreviations: HI	R = hazard ratio	; CI = confid	ence interval.				
		^a Estimated from a	Cox regression	n model adjus	ted for age, sex	, body mass index, sr	noking habit, lumba		
		spinal stenosis, lo	w back pain, go	od health sta	tus, stroke histo	ory, and handgrip stre	ngth.		
	214								
	215	Secondary Analysis							
	216	The rates of LOI were 0.013 per year in the non-kyphotic posture group, 0.036 per year in the mild							
	217	kyphotic posture gr	oup, and 0.048	per year in th	e severe kyphot	ic posture group (Tab	le 3). Overall,		
	218	subjects with mild a	and severe kyph	otic posture h	had higher rates	of LOI than those wit	hout kyphotic		
	219	posture (aHR, 1.70	[95% CI, 1.13-	-2.55] and 2.0	95% CI, 1.39	9–3.10], respectively)	. A sensitivity		
	220	analysis using imp	uted datasets re	vealed simila	r results (aHR,	1.47 [95% CI, 1.03–2	2.10] and 1.74		
	221	[95% CI, 1.25–2.4.	3], respectively	; Supplement	ary Table 2).				
	222								
	223	TABLE 3. Cox Press	oportional Haza	ards Model of	Loss of Indepe	endence According to	the Degree		
	224	of Kyphosis							
1							12		
		For	peer review only	- http://bmjope	n.bmj.com/site/al	oout/guidelines.xhtml			

		Number of participants	Frequency of loss of independence	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a		
	Kyphotic posture	2						
	None	1147	82	0.013	Ref.	Ref.		
	Mild	272	38	0.026	2.38 (1.61-3.52)	1.70 (1.13–2.55)		
	Severe	202	51	0.048	3.63 (2.52–5.22)	2.08 (1.39–3.10)		
	Abbreviations: H	IR = hazard ratio	o; CI = confidenc	e interval.				
	^a Estimated from	a Cox regressio	n model adjusted	for age, sex, bo	ody mass index, smo	king habit, lumbar		
	spinal stenosis, lo	ow back pain, g	ood health status,	stroke history,	and handgrip streng	th.		
225								
226	Consistent results	were obtained	for the compos	ite outcome of	ELOI and mortality	(Table 4).		
227	Participants with mild and severe kyphotic posture had higher rates of LOI and mortality than							
228	those without kyp	bhotic posture (a	aHR, 1.27 [95%	CI, 0.90–1.79]	and 1.83 [95% CI,	1.31–2.56],		
229	respectively). A s	ensitivity analy	sis using impute	d datasets reve	aled similar results	(aHR, 1.26		
230	[95% CI, 0.93–1.6	59] and 1.63 [95	6% CI, 1.23–2.16], respectively;	Supplementary Tabl	e 3).		
231								
232	TABLE 4. Cox p	roportional haza	ards model of loss	s of independen	ce and mortality acc	cording to		
233	the degree of kypl	nosis						
		Number of participants	Frequency of loss of independence	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a		

1 2 3				and mortalit	tyb				
4 5 6									
6 7 0		Kyphotic posture							
8 9 10		None	1147	122	0.02	Ref.	Ref.		
11 12		Mild	272	52	0.033	1.78 (1.28–2.50) 1.27 (0.90–1.79)		
13 14		Severe	202	60	0.062	2.93 (2.16-3.98) 1.83 (1.31–2.56)		
15 16 17		Abbreviations: H	R = hazard ratio	o; CI = confid	lence interval.				
18 19		^a Estimated from a	Cox regression	n model adjus	sted for age, sex	x, body mass index, si	noking habit, lumbar		
20 21		spinal stenosis, lo	w back pain, go	ood health sta	tus, history of	stroke, and handgrip s	trength.		
22 23 24		^b Composite of los	s of independent	nce and morta	ality.				
25 26	234								
27 28	235	We conducted a subgroup analysis stratified by sex, which indicated that men had a higher							
29 30 31	236	cumulative rate of mortality (10%, 0.018 per year) than women (4%, 0.007 per year). Male sex							
32 33	237	also showed a more pronounced association between kyphotic posture and mortality (Table 5).							
34 35	238								
36 37 38	239	TABLE 5. Cox proportional hazards model of mortality according to the degree of kyphosis							
39 40	240	stratified by sex							
41 42 43			Number of	Frequency	Occurrence	Unadjusted HR	Adjusted HR		
44 45 46 47			participants	mortality	rate/year	(95% CI)	(95% CI) ^a		
48 49		Male	640	64	0.018				
50 51 52		Kyphotic posture							
53 54		None	449	32	0.013	Ref.	Ref.		
55 56							14		
57 58 59									
59 60		For	peer review only	- http://bmjope	en.bmj.com/site/a	bout/guidelines.xhtml			

Mild	126	19	0.028	2.19 (1.24, 3.87)	1.64 (0.91, 2.95)
Severe	65	13	0.037	2.97 (1.56, 5.65)	2.31 (1.17, 4.56)
 Female	981	38	0.007		
Kyphotic posture	e				
None	698	22	0.006	Ref.	Ref.
Mild	146	3	0.004	0.64 (0.19, 2.15)	0.50 (0.15, 1.73)
Severe	137	13	0.017	3.10 (1.56, 6.14)	1.55 (0.70, 3.45)

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, body mass index, smoking habit, lumbar spinal stenosis, low back pain, good health status, stroke history, and handgrip strength.

> The causes of mortality in each group are presented in Fig. 3. Although the frequencies were very low, the rate of mortality due to respiratory diseases was higher in the severe kyphotic posture group (6 [16%] vs. 5 [7%] in the non-kyphotic posture group and 2 [7%] in the mild kyphotic posture group).

Discussion

In the present study, we explored the association between kyphotic posture and mortality using data from a relatively large sample. The kyphotic posture detected with the WOT appeared to affect mortality in a way not explained by age, sex, body mass index, smoking habit, LSS, low back pain, good health status, history of stroke, or handgrip strength. Furthermore, the association was stronger in the severe kyphotic posture group; the presence of severe kyphotic posture was related to a two-fold increase in the hazards of mortality in relation to the non-kyphotic posture.

Additionally, kyphotic posture was associated with LOI, and the association between kyphoticposture and mortality was more pronounced in men.

Kado et al. reported that cervicothoracic kyphosis measured in the supine position was associated with mortality in older men and women. Notably, they did not observe any sex-specific differences in their study.[14] They also showed that the degree of thoracic hyperkyphosis in the standing position, in addition to osteoporotic vertebral fractures (OVFs), had a predictive value for mortality among older women.[15] Our results were similar to those from previous studies showing that kyphotic posture is associated with mortality. Additionally, we believe that the present study has the advantage of using the WOT, which measures kyphosis in the standing position and reflects overall sagittal balance. To accurately assess the degree of kyphosis, subjects should be in the standing position with their hips and knees fully extended to prevent compensatory mechanisms [24]. With the subjects in the supine position, kyphotic posture may be corrected by a non-physiologic hyper-extensive force, leading to a consistent underestimation of the degree of kyphosis. Furthermore, as described above, kyphotic posture develops due to the failure of the posture maintenance mechanism. When evaluating kyphotic posture, it is necessary to focus not only on one segment, such as the thoracic spine, but also on the alignment of the whole spine.

In the subgroup analysis by sex, the association between kyphotic posture and mortality seemed to be more pronounced in men, although no clear sex difference in mortality was found in the present study. Sex differences in the prevalence of vertebral fractures have been reported, [25,26] and the nature of the kyphosis may differ between men and women. Further studies that subcategorize kyphosis by vertebral fractures might reveal sex differences in kyphotic posture.

276 Explanations and Implications

We hypothesized two possible explanations for the association between kyphotic posture and mortality. First, we considered that mortality is an outcome of locomotive dysfunction. Further, several previous studies have reported that kyphotic posture is associated with locomotive dysfunction.[5,12,13,27,28] According to Tominaga et al., severe kyphotic posture measured by the WOT is associated with an increased incidence of falls in men.[13] Katzman et al. indicated an association of cervicothoracic kyphosis in the supine position with impaired lower extremity physical function among older men.[28] Hence, the effect of kyphotic posture might be prominent and associated with increased mortality in men. Early mortality may also be attributable to other mechanisms. Multiple previous studies have shown that kyphotic posture may be associated with worse health, including diminished pulmonary function.[6,7] Notably, a previous report suggested that individuals with kyphotic posture are more likely to die of a pulmonary cause.[14] Although no statistical comparison was performed due to a lack of power, our results suggest that the proportion of respiratory deaths among those with severe kyphotic posture is high.

The results of the present study also suggest that kyphotic posture is a clinically important finding, and that further studies are required to fully explore the effects of the prevention and treatment of kyphotic posture. Noticeably, our study demonstrates that the WOT is helpful in predicting serious healthcare outcomes. Among men, those with mild and severe kyphotic posture identified by WOT had a 2.2-fold and 3-fold increased hazards of mortality, respectively. The WOT is easy, inexpensive, and does not require special skills or devices, making it an attractive clinical tool for the identification of high-risk individuals. As approximately 40% of older adults with severe kyphosis reported to have underlying OVFs,[24] OVFs are widely thought to be a major factor contributing to the development of kyphotic posture. Therefore, osteoporosis treatment may help prevent kyphotic posture via a reduction in the occurrence of OVFs. In addition

Page 19 of 33

1

BMJ Open

2	
3	
4	
3 4 5 7 8 9 10	
6	
-	
/	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	
23	
24	
25	
26	
27	
2/	
28	
29	
30	
21	
21	
32	
 31 32 33 34 35 36 37 38 	
34	
25	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

to structural changes in the vertebral column, back extensor weakness is also associated with
kyphotic posture.[29-31] Despite the limited evidence, some reports suggest that exercise may
modestly improve back extensor muscle strength [32].

303

304 Strengths and Limitations

The present study has significant strengths. First, we demonstrated the association of kyphotic posture with LOI and mortality in a community-dwelling population. We believe that the present study is a valuable contribution in that it investigated the longitudinal development of serious healthcare outcomes based on samples from a general population. Second, we used public data, which provided us with reliable and complete information on outcomes, except for participants who changed their residence out of the target area. As relocation was rare, a high tracking ratio (98.5%) was achieved, which minimized the risk of information bias.

312 Nevertheless, this study also has several limitations. First, we did not adjust our dataset 313 for osteoporosis. We did not adjust for OVFs because we were interested not only in kyphosis 314 independent of OVFs, but in overall kyphotic postures, including the ones caused by OVFs. 315 However, osteoporosis may be associated with LOI and mortality through other mechanisms. 316 Second, the measurement of kyphotic posture may not be sufficiently precise. The WOT does not 317 allow to distinguish rigid kyphosis from flexible kyphosis. To evaluate spinal flexibility, 318 evaluations in both the standing and supine positions need to be performed. The WOT also does 319 not identify participants who can maintain good non-kyphotic posture only for a short period 320 during measurement. No evaluation method has overcome this problem, and the development of a 321 new method, such as continuous posture analysis, is warranted. Furthermore, we did not use X-322 rays or inclinometer to assess kyphotic posture, and so it was not possible to determine the cause

of the posture. However, we believe that the absence of spinal parameters such as kyphotic angle does not introduce a serious bias, as our focus is on the resulting kyphosis posture, not on its cause. Finally, attributing causation is difficult because of other unmeasured confounders, including subclinical diseases. It should be noted that the present study does not provide evidence to support surgical interventions to correct kyphosis. Surgical reconstruction should not be routinely performed in elderly individuals with a typical high-risk profile.

330 Conclusions

This study suggests that kyphotic posture is associated with LOI and mortality. Therefore, identifying community-dwelling older people with kyphotic posture using the WOT might help identify high-risk populations that would benefit from healthcare interventions.

1 2			
3 4	335	Refere	ences
5 6	336	1.	Schwab F, Lafage V, Boyce R, et al. Gravity line analysis in adult volunteers: age-related
7 8 9	337		correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa
9 10 11	338		<i>1976</i>). 2006;31:959–67.
12 13	339	2.	Farcy JP, Schwab FJ. Management of flatback and related kyphotic decompensation
14 15	340		syndromes. Spine (Phila Pa 1976). 1997;229:2452–7.
16 17	341	3.	Ailon T, Shaffrey CI, Lenke LG, et al. Progressive spinal kyphosis in the aging population.
18 19 20	342		Neurosurgery. 2015;774:164–72.
21 22	343	4.	Kado DM, Prenovost K, Crandall C. Narrative review: hyperkyphosis in older persons.
23 24	344		Ann Intern Med. 2007;147:330–8.
25 26 27	345	5.	Eum R, Leveille SG, Kiely DK, et al. Is kyphosis related to mobility, balance, and
27 28 29	346		disability? Am J Phys Med Rehabil. 2013;92:980–9.
30 31	347	6.	Culham EG, Jimenez HA, King CE. Thoracic kyphosis, rib mobility, and lung volumes
32 33	348		in normal women and women with osteoporosis. Spine (Phila Pa 1976). 1994;19:1250-
34 35 36	349		5.
37 38	350	7.	Lee SJ, Chang JY, Ryu YJ, et al. Clinical features and outcomes of respiratory
39 40	351		complications in patients with thoracic hyperkyphosis. <i>Lung</i> . 2015;193:1009–15.
41 42	352	8.	Ensrud KE, Black DM, Harris F, et al. Correlates of kyphosis in older women. The
43 44 45	353		Fracture Intervention Trial Research Group. J Am Geriatr Soc. 1997;45:682–7.
45 46 47	354	9.	Imagama S, Ando K, Kobayashi K, et al. Increase in lumbar kyphosis and spinal
48 49	355		inclination, declining back muscle strength, and sarcopenia are risk factors for onset of
50 51	356		GERD: a 5-year prospective longitudinal cohort study. <i>Eur Spine J</i> . 2019;28:2619–28.
52 53	357	10.	Imagama S, Hasegawa Y, Matsuyama Y, et al. Influence of sagittal balance and physical
54 55 56	100	10.	20
57 58			
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	358		ability associated with exercise on quality of life in middle-aged and elderly people. Arch
4 5	359		Osteoporos. 2011;6:13–20.
6 7			
8 9	360	11.	Langella F, Villafañe JH, Lafage V, et al. Xipho-pubic angle (XPA) correlates with
10 11	361		patient's reported outcomes in a population of adult spinal deformity: results from a multi-
12 13 14 15	362		center cohort study. <i>Eur Spine J.</i> 2018;27:670–77.
16 17	363	12.	McDaniels-Davidson C, Davis A, Wing D, et al. Kyphosis and incident falls among
18 19 20	364		community-dwelling older adults. Osteoporos Int. 2018;29:163-9.
20 21 22	365	13.	Tominaga R, Fukuma S, Yamazaki S, et al. Relationship between kyphotic posture and
23 24	366		falls in community-dwelling men and women: the Locomotive Syndrome and Health
25 26 27	367		Outcome in Aizu Cohort Study. Spine (Phila Pa 1976). 2016;41:1232-8.
27 28 29	368	14.	Kado DM, Huang MH, Karlamangla AS, et al. Hyperkyphotic posture predicts mortality
30 31	369		in older community-dwelling men and women: a prospective study. J Am Geriatr Soc.
32 33 34	370		2004;52:1662–7.
34 35 36	371	15.	Kado DM, Lui LY, Ensrud KE, et al. Hyperkyphosis predicts mortality independent of
37 38	372		vertebral osteoporosis in older women. Ann Intern Med. 2009;150:681-7.
39 40	373	16.	Okura M, Ogita M, Yamamoto M, et al. Self-assessed kyphosis and chewing disorders
41 42 43	374		predict disability and mortality in community-dwelling older adults. J Am Med Dir Assoc.
44 45	375		2017;18:550.e1–6.
46 47	376	17.	Otani K, Takegami M, Fukumori N, et al. Locomotor dysfunction and risk of
48 49 50	377		cardiovascular disease, quality of life, and medical costs: design of the Locomotive
50 51 52	378		Syndrome and Health Outcome in Aizu Cohort Study (LOHAS) and baseline
53 54	379		characteristics of the study population. J Orthop Sci. 2012;17:261-71.
55 56 57			21
57 58			

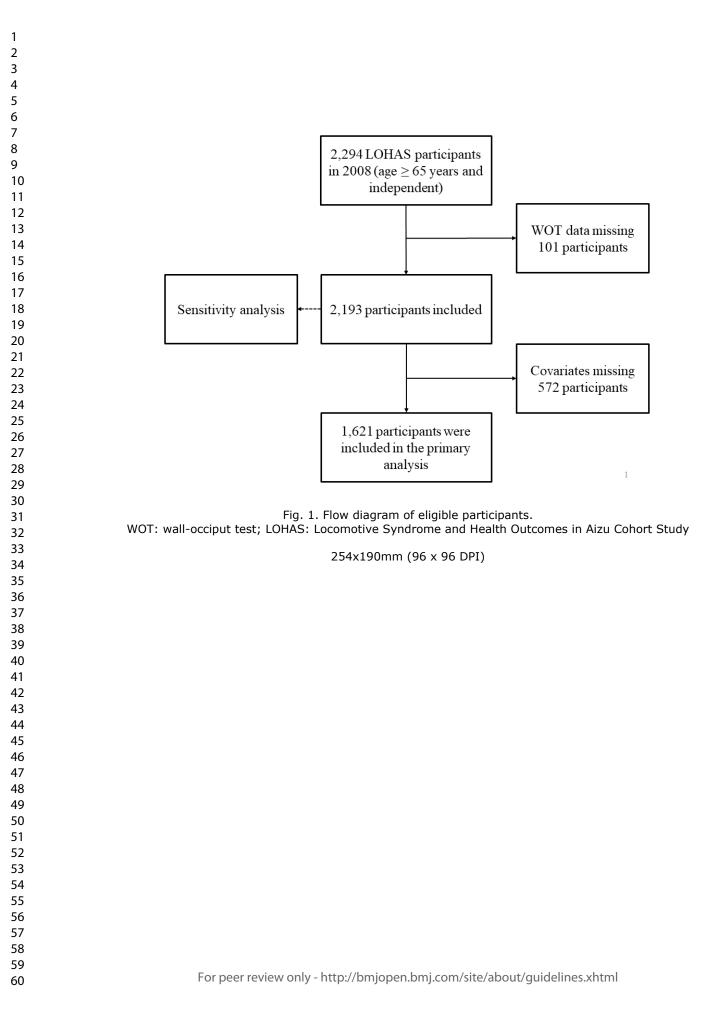
Page 23 of 33

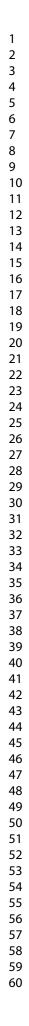
59

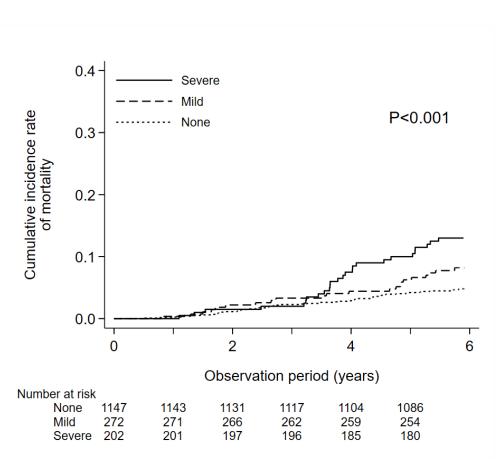
60

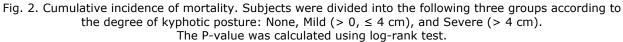
BMJ Open

1 2							
2 3 4	380	18.	Campbell JC, Ikegami N. Long-term care insurance comes to Japan. Health Aff				
5 6	381		(Millwood). 2000;19:26–39.				
7 8 9 10 11 12 13	382	19.	Green AD, Colon-Emeric CS, Bastian L, et al. Does this woman have osteoporosis?				
	383		JAMA. 2004;292:2890–900.				
	384	20.	Ziebart C, Adachi JD, Ashe MC, et al. Exploring the association between number,				
14 15 16	385		severity, location of fracture, and occiput-to-wall distance. Arch Osteoporos. 2019;14:27.				
10 17 18	386	21.	Siminoski K, Warshawski RS, Jen H, et al. The accuracy of clinical kyphosis examination				
19 20	387		for detection of thoracic vertebral fractures: comparison of direct and indirect kyphosis				
21 22	388		measures. J Musculoskelet Neuronal Interact. 2011;11:249–56.				
23 24 25	389	22.	Konno S, Kikuchi S, Tanaka Y, et al. A diagnostic support tool for lumbar spinal stenosis:				
26 27	390		a self-administered, self-reported history questionnaire. BMC Musculoskelet Disord.				
28 29 30 31 32 33 34	391		2007;8:102.				
	392	23.	Yamazaki H, Kamitani T, Matsui T, et al. Association of low alanine aminotransferase				
	393		with loss of independence or death: a 5-year population-based cohort study. J				
35 36	394		Gastroenterol Hepatol. 2019;34:1793–9.				
37 38 39	395	24.	Horton WC, Brown CW, Bridwell KH, et al. Is there an optimal patient stance for				
40 41	396		obtaining a lateral 36" radiograph? A critical comparison of three techniques. Spine (Phila				
42 43	397		<i>Pa 1976</i>). 2005;30:427–33.				
44 45 46	398	25.	Schneider DL, von Muhlen D, Barrett-Connor E, et al. Kyphosis does not equal vertebral				
40 47 48	399		fractures: the Rancho Bernardo study. J Rheumatol. 2004;31:747-52.				
49 50	400	26.	Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older				
51 52	401		women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch				
53 54 55	402		Intern Med. 1999;159:1215–20.				
56 57			22				
58							

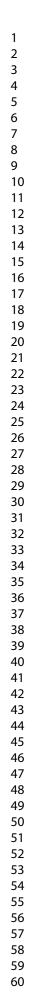

1 2 3


59


3 4	403	27.	Kado DM, Huang MH, Barrett-Connor E, et al. Hyperkyphotic posture and poor physical
5 6	404		functional ability in older community-dwelling men and women: the Rancho Bernardo
7 8	405		study. J Gerontol A Biol Sci Med Sci. 2005;60:633-7.
9 10 11	406	28.	Katzman WB, Harrison SL, Fink HA, et al. Physical function in older men with
12 13	407		hyperkyphosis. J Gerontol A Biol Sci Med Sci. 2015;70:635-40.
14 15	408	29.	Sinaki M, Itoi E, Rogers JW, et al. Correlation of back extensor strength with thoracic
16 17 18	409		kyphosis and lumbar lordosis in estrogen-deficient women. Am J Phys Med Rehabil.
19 20	410		1996;75:370–4.
21 22	411	30.	Laroche M, Delisle MB, Aziza R, et al. Is camptocormia a primary muscular disease?
23 24 25	412		Spine (Phila Pa 1976). 1995;20:1011–6.
25 26 27	413	31.	Menezes-Reis R, Bonugli GP, Salmon CEG, et al. Relationship of spinal alignment with
28	414		muscular volume and fat infiltration of lumbar trunk muscles. PLoS One.
29 30	415		2018;13:e0200198.
31 32	416	32.	Bansal S, Katzman WB, Giangregorio LM. Exercise for improving age-related
33 34	417		hyperkyphotic posture: a systematic review. Arch Phys Med Rehabil. 2014;95:129–40.
35 36			
37			
38 39			
40			
41			
42 43			
44			
45			
46 47			
47 48			
49			
50			
51			
52			
53 54			
55			
56			23
57			
58			


1 2		
2 3 4	418	Figure Legends
4 5 6	419	Fig. 1. Flow diagram of eligible participants.
0 7 8	420	WOT: wall-occiput test; LOHAS: Locomotive Syndrome and Health Outcomes in Aizu Cohort
9 10	421	Study
11 12 13	422	Fig. 2. Cumulative incidence of mortality. Subjects were divided into the following three groups
14 15	423	according to the degree of kyphotic posture: None, Mild (> $0, \le 4$ cm), and Severe (> 4 cm).
16 17	424	The P-value was calculated using log-rank test.
18 19 20	425	Fig. 3. Cause-specific deaths in each group. Participants were divided into the following three
20 21 22	426	groups according to the degree of kyphosis: None, Mild (> $0, \le 4$ cm), and Severe (> 4 cm).
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 50 51 52 34 55 56		<text></text>
57 58 59		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Footnotes Contributors: Conception and design of the study: YH, TK, SF, and YY; Acquisition of data: MS, KO, SK, and MT; Analysis and interpretation of data: YH, TK, SF, and YY; Drafting the article or revising it critically for important intellectual content: YH, TK, MS, KO, SK, MT, SF, and YY; Final approval of the version to be submitted: YH, TK, MS, KO, SK, MT, SF, and YY. **Funding:** This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Data availability statement: The data presented in the study are not currently available. Additional unpublished data is still being analysed for another research project. Competing interests: None declared. Ethics approval: This study was approved by the institutional Review Boards of Fukushima Medical University and Kyoto University Graduate School and Faculty of Medicine of Kyoto University Hospital (No. 673 and R1730, respectively).



333x288mm (72 x 72 DPI)

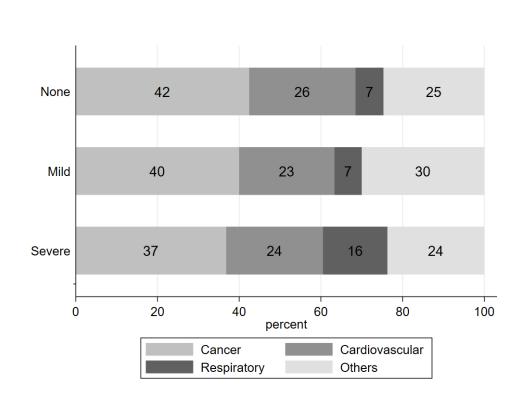


Fig. 3. Cause-specific deaths in each group. Participants were divided into the following three groups according to the degree of kyphosis: None, Mild (> 0, \leq 4 cm), and Severe (> 4 cm).

366x266mm (72 x 72 DPI)

Page 30 of 33

Supplementary Material 1

Supplemental material for: "Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)"

Supplementary Table 1. Sensitivity analysis with multiple imputation for mortality according to

the degree of kyphosis

	Number of participants	Frequency of mortality	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a
Kyphotic posture					
None	1525	73	0.009	Ref.	Ref.
Mild	369	30	0.015	1.72 (1.13–2.64)	1.19 (0.77–1.84)
Severe	299	38	0.023	2.76 (1.86-4.08)	1.80 (1.17–2.77)

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar

spinal stenosis, low back pain, good health status, history of stroke, and handgrip strength.

Supplementary Material 2 Supplemental material for: "Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)"

Supplementary Table 2. Sensitivity analysis with multiple imputation for loss of independence according to the degree of kyphosis

	Number of participants	Frequency of loss of independence	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a
Kyphotic posture					
None	1525	114	0.015	Ref.	Ref.
Mild	369	47	0.018	2.10 (1.49–2.97)	1.47 (1.03–2.10)
Severe	299	73	0.045	3.33 (2.46–4.49)	1.74 (1.25–2.43)

Abbreviations: HR = hazard ratio; CI = confidence interval.

a Estimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar spinal stenosis, low back pain, good health status, stroke history, and handgrip strength.

Page 32 of 33

Supplementary Material 3 Supplemental material for: "Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)"

Supplementary Table 3. Sensitivity analysis with multiple imputation for loss of independence and mortality according to the degree of kyphosis

		Frequency of			
	Number of	loss of	Occurrence	Unadjusted HR	Adjusted HR
	Participants	independence and mortality	rate/year	(95% CI)	(95% CI) ^a
Kyphotic posture					
None	1525	176	0.021	Ref.	Ref.
Mild	369	65	0.033	1.78 (1.33–2.37)	1.26 (0.93–1.69)
Severe	299	93	0.06	2.78 (2.16–3.59)	1.63 (1.23–2.16)

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar spinal stenosis, low back pain, good health status, stroke history, and handgrip strength.

^bComposite outcome of loss of independence and mortality.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
5		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
I I I I I I	-	participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	-
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement	-	assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	No
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8
		5	9
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	8
		(d) If applicable, explain how loss to follow-up was addressed	9
		(<u>e</u>) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	10
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9
		and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	No
		(c) Summarise follow-up time (eg, average and total amount)	11
		Report numbers of outcome events or summary measures over time	11

Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	12
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for	
		and why they were included	
		(b) Report category boundaries when continuous variables were categorized	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	-
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	1
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	1
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	1
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	1
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	1
Other informati	ion		
E 1:	22	Give the source of funding and the role of the funders for the present study and, if	2
Funding			

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052421.R2
Article Type:	Original research
Date Submitted by the Author:	10-Feb-2022
Complete List of Authors:	Hijikata, Yasukazu; Kyoto University Graduate School of Medicine Faculty of Medicine, Department of Healthcare Epidemiology Kamitani, Tsukasa; Kyoto University Graduate School of Medicine Faculty of Medicine, Department of Healthcare Epidemiology Sekiguchi, Miho; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Otani, Koji; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Konno, Shin-ichi; Fukushima Medical University School of Medicine, Department of Orthopedic Surgery Takegami, Misa; National Cerebral and Cardiovascular Center, Preventive Medicine and Epidemiology Informatics Fukuhara, Shunichi; Fukushima Kenritsu Ika Daigaku, Department of General Medicine, Shirakawa Satellite for Teaching And Research (STAR); Kyoto University Graduate School of Medicine Faculty of Medicine Yamamoto, Yosuke; Kyoto University Graduate School of Medicine Faculty of Medicine, Department of Healthcare Epidemiology
Primary Subject Heading :	Geriatric medicine
Secondary Subject Heading:	Public health
Keywords:	Spine < ORTHOPAEDIC & TRAUMA SURGERY, Musculoskeletal disorders < ORTHOPAEDIC & TRAUMA SURGERY, PUBLIC HEALTH, GERIATRIC MEDICINE

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reliez oni

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	
3	
Δ	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
16 17	
17	
18	
19	
20	
י <u>≁</u> רר	
21 22 23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	

60

1

Association of kyphotic posture with loss of independence and mortality in a community-1 2 based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu 3 **Cohort Study (LOHAS)** 4 Yasukazu Hijikata, MPH¹, Tsukasa Kamitani, DrPH¹, Miho Sekiguchi, PhD², Koji Otani, 5 DMSc², Shinichi Konno, PhD², Misa Takegami, DrPH³, Shunichi Fukuhara, DMSc^{4,5,6}, Yosuke 6 7 Yamamoto, PhD1* 8 ¹Department of Healthcare Epidemiology, School of Public Health in the Graduate School of 9 10 Medicine, Kyoto University, Kyoto, Japan ²Department of Orthopedic Surgery, Fukushima Medical University School of Medicine, 11 12 Fukushima, Japan ³Department of Preventive Medicine and Epidemiologic Informatics, National Cerebral and 13 Cardiovascular Center, Osaka, Japan 14 15 ⁴Section of Clinical Epidemiology, Department of Community Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan 16 ⁵Center for Innovative Research for Communities and Clinical Excellence, Fukushima Medical 17 18 University, Fukushima, Japan ⁶Shirakawa STAR for General Medicine, Fukushima Medical University, Fukushima, Japan 19 20 21 *Address correspondence and reprint requests to: 22 Yosuke Yamamoto, PhD

1	
2 3 4	23
5 6	24
7 8	25
9 10 11	26
12 13	27
14 15	28
16 17	29
18 19 20	30
21 22	31
23 24	32
25 26 27	33
28 29	34
30 31	35
32 33 34	
35 36	
37 38	
39 40 41	
41 42 43	
44 45	
46 47	
48 49 50	
51 52	
53 54	
55 56 57	
57 58	

60

Department of Healthcare Epidemiology, School of Public Health, Graduate School of Medicine,

- Kyoto University
- Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Phone: +81-75-753-4646; Fax: +81-75-753-4644
- Email: yamamoto.yosuke.5n@kyoto-u.ac.jp
 - ORCID: 000-0003-1104-2612

Email address: Yasukazu Hijikata (hijikata.yasukazu.45z@st.kyoto-u.ac.jp), Tsukasa Kamitani

(kamitani.tsukasa.8w@kyoto-u.ac.jp), Miho Sekiguchi (miho-s@fmu.ac.jp), Koji Otani

(kotani@fmu.ac.jp), Shin-ichi Konno (skonno@fmu.ac.jp), Misa Takegami

(takegami@ncvc.go.jp), Shun-ichi Fukuhara (fukuhara.shunichi.6m@kyoto-u.jp)

Word count: 3002 words

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
33	
34	
35	
36	
36 37	
38	
38 39	
40	
40	
42	
4Z	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

36 Abstract

1

Objectives: This study aimed to investigate the association between kyphotic posture and future
loss of independence (LOI) and mortality in community-dwelling older adults.

39 Design: Prospective cohort study.

40 **Setting:** Two Japanese municipalities.

41 **Participants:** We enrolled 2,193 independent community-dwelling older adults aged ≥ 65 years at 42 the time of their baseline health check-up in 2008. Kyphotic posture was evaluated using the wall-43 occiput test (WOT) and classified into three categories: non-kyphotic, mild (>0 and ≤ 4 cm), and 44 severe (>4 cm).

45 Primary and secondary outcome measures: The primary outcome was mortality and the 46 secondary outcomes were LOI (new long-term care insurance certification levels 1–5) and a 47 composite of LOI and mortality. A Cox proportional hazards model was used to estimate the 48 adjusted hazard ratios (aHRs).

49 **Results:** Of the 2,193 subjects enrolled, 1,621 were included in the primary analysis. Among these, 50 272 (17%) and 202 (12%) were diagnosed with mild and severe kyphotic posture, respectively. 51 The median follow-up time was 5.8 years. Compared to the non-kyphotic group, the aHRs for mortality were 1.17 (95% confidence interval [CI], 0.70-1.96) and 1.99 (95% CI, 1.20-3.30) in 52 53 the mild and severe kyphotic posture groups, respectively. In the secondary analysis, a consistent 54 association was observed for LOI (mild: aHR, 1.70; 95% CI, 1.13–2.55; severe: aHR, 2.08; 95% 55 CI, 1.39–3.10) and the LOI-mortality composite (mild: aHR, 1.27; 95% CI, 0.90–1.79; severe: aHR, 1.83; 95% CI, 1.31-2.56). 56

57 Conclusion: Kyphotic posture was associated with LOI and mortality in community-dwelling
58 older adults. Identifying the population with kyphotic posture using the WOT might help improve

60

BMJ Open

1 2		
3 4 5	59	community health.
5 6	60	
7 8 9	61	Strengths and limitations of this study:
10 11	62	• The results were obtained from a relatively large cohort of a community-based population.
12 13	63	• Only 1.5% (31) of the 2,193 participants included in the study were lost to follow up due
14 15	64	to change of residence from the target area, which minimized the risk of information bias.
16 17 18	65	• We did not adjust for osteoporosis, a factor that might be associated with loss of
19 20	66	independence and mortality through mechanisms other than kyphotic postures, such as
21 22	67	fractures of the long bones.
23 24 25	68	• The wall-occiput test does not distinguish rigid kyphosis from flexible kyphosis.
26 27	69	• Attributing causation is difficult because of other unmeasured confounders, including
28 29	70	subclinical diseases.
30 31 32		
33 34		subclinical diseases.
35 36		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56		4
57 58		

> Kyphosis is described as an abnormal posture that develops because of the failure of the posture maintenance mechanism. When standing, lordotic segments (i.e., the cervical and lumbar spine) and kyphotic segments (i.e., the thoracic spine) must balance the occiput over the pelvic axis in an energy-efficient position. As the centre of gravity of the trunk shifts forward due to kyphosis in one segment of the spine, the other spinal segments, pelvis, hip joint, and knee joint cooperatively compensate to maintain overall sagittal balance.[1] Failure of this compensatory mechanism results in kyphotic posture, leading to various health problems. [2,3] A kyphotic posture is common among older individuals, with a reported prevalence of 20–40%,[4] and is expected to increase as the population ages. Hence, the extent to which a kyphotic posture affects health is a serious concern.

> 83 Several deleterious effects of kyphotic posture on the afflicted individual's health have 84 been reported, including a decline in physical function,[5] impairment in pulmonary function,[6,7] 85 pain,[8] gastroesophageal reflux disease,[9] poor quality of life,[10,11] and accidental falls.[12,13] 86 Therefore, there has been a growing concern regarding the association between kyphotic posture 87 and serious health-related outcomes, such as loss of independence (LOI) and mortality.

88 Three previous studies reported an association of kyphotic posture with LOI and mortality. 89 First, Kado et al. demonstrated the association between cervicothoracic kyphosis and 90 mortality.[14] It should be noted that, as kyphosis was measured in the supine position rather than 91 in the standing position, the evaluation of the kyphotic posture was not precise. In another study, 92 Kado et al. reported an association of thoracic hyperkyphosis in the standing position with 93 mortality in older women.[15] Nonetheless, these two studies could not assess whether the 94 kyphotic posture was a risk factor for mortality in men. Okura et al. showed that kyphotic posture

BMJ Open

3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24 24	
25	
25 26	
27	
28	
29	
30	
31	
32	
33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

95 is related to LOI and mortality.[16] However, there was a potential bias in this study, as the 96 determination of kyphotic posture was based on self-reported data from participants. Moreover, the researchers only controlled for age and sex as potential confounders. Furthermore, none of 97 98 these studies adjusted for lumbar degenerative disease and back pain, which are strongly associated 99 with kyphotic posture.

100 To address these concerns, we conducted a prospective cohort study to examine whether a kyphotic posture in the standing position was associated with LOI and mortality in community-101 102 dwelling men and women.

103

104 Materials and methods

105 Study Design and Population

106 This prospective observational study analyzed data from the Locomotive Syndrome and Health 107 Outcomes in Aizu Cohort Study (LOHAS), a population-based study involving residents from two 108 towns in Japan. The LOHAS evaluated the effect of locomotive dysfunction on healthcare 109 outcomes, including quality of life, medical costs, and occurrence of LOI and mortality. The LOHAS comprised approximately 70% of all the National Health Insurance and Late-Stage 110 Elderly Health Insurance beneficiaries in that region. Details of the study have been described 111 elsewhere.[17] 112

113

60

114 **Study Participants**

115 Independent community-dwelling older adults aged ≥ 65 years without any long-term care 116 insurance (LTCI) certification [18] at the time of their baseline health check-up in 2008 were 117 enrolled. Those in whom kyphotic posture could not be determined due to missing data were

excluded. Participants were observed starting from the baseline check-up in 2008 until March 2014.
This study was approved by certified institutional review boards (R1730 and 673) of the
participating institutions, and all participants provided written informed consent before
participation.

13 122

123 Definition of Kyphotic Posture

124 Kyphotic posture was defined using the wall-occiput test (WOT) at the time of musculoskeletal 125 examination in 2008. The WOT is a semi-quantitative technique used to assess head forward 126 posture in the standing position as well as thoracic vertebral fractures.[19,20] The WOT reflects 127 not only thoracic hyperkyphosis, but also a loss of cervical and lumbar lordosis.

The distance (in cm) between the occiput prominence and the wall was measured using a tape while the participants were standing with both of their heels and sacrum against the wall and their head positioned such that an imaginary line from the lateral corner of the eye to the superior point of the auricle was parallel to the floor. In accordance with previous studies,[13,21] we divided the participants into the following three groups based on the degree of kyphosis: none, mild (>0, <4 cm), and severe (>4 cm).

40 134

135 Outcomes

The primary outcome was the time to mortality. Data on mortality and its causes were collected from death certificates provided by the Ministry of Health, Labour, and Welfare of Japan. The secondary outcome was the development of LOI, which was defined as a new LTCI certification of level 1–5 (i.e., a condition requiring any support for daily living). Information on LTCI certification status was obtained from the local government annually. The use of public data

BMJ Open

allowed us to access all outcome data, except for those participants who changed their residence outside the target area.

Baseline Covariates

The following baseline covariates were analysed as potential confounders for the relationship between kyphotic posture and mortality: age, sex, body mass index (categorized as $<18.5, \ge 18.5$ and <25, and \geq 25 kg/m²), present smoking habits, lumbar spinal stenosis (LSS), low back pain (requiring treatment and lasting for more than 24 h), good health status (self-reported health: good, very good, or excellent), stroke history, and handgrip strength (dominant hand). LSS was diagnosed using a validated diagnostic support tool specifically designed for this purpose.[22] Handgrip strength was measured using a digital dynamometer (Takei Scientific Instruments Co., 67.6 Ltd, Japan).

Statistical Analysis

The baseline characteristics of the participants were expressed as the presence or absence and the degree of kyphotic posture, using medians and interquartile ranges. Additionally, absolute and relative frequencies were used for dichotomous or categorical variables.

The cumulative incidence method and log-rank test were applied to compare the intervals between the baseline and date of mortality. The date of each baseline check-up in 2008 was considered as Time 0. Participants were censored after changing their residence out of the target area or on March 31, 2014. After confirming that the proportional hazards assumption had not been violated, a Cox proportional hazards model with adjustment for possible confounders (i.e., age, sex, body mass index, smoking habit, LSS, low back pain, good health status, stroke history,

2	
3 4	164
5 6	165
7 8 9	166
9 10 11	167
12 13	168
14 15	169
16 17	170
18 19 20	171
20 21 22	172
23 24	173
25 26	174
27 28	175
29 30	
31 32	176
33 34 35	177
35 36 37	178
38 39	179
40 41	180
42 43	181
44 45	182
46 47	183
48 49 50	184
50 51 52	185
53 54	186
55 56	
57	
58 59	

1

164 and handgrip strength) was used to investigate the association between the kyphotic posture and 165 mortality. We conducted a sensitivity analysis with multiple imputations by chained equations of 166 missing covariates, which included all variables (including outcomes) in the prediction model to 167 generate 20 imputed datasets.

168 We performed four secondary analyses. First, we focused on LOI as a secondary outcome. 169 In that model, participants were censored after moving out of the target area, upon mortality, or on 170 March 31, 2014. Second, we employed another Cox proportional hazard model to evaluate the 171 composite outcome of LOI and mortality. Both models included the same covariates as those in 172 the primary analysis. For these secondary analyses, we performed sensitivity analyses using 173 multiple imputations as in the main analysis. Third, we performed a subgroup analysis stratified 174 by sex for the primary outcome of mortality. Finally, we analyzed cause-specific mortality in each 175 group, as in a previous study.[23] Four causes of death were evaluated: cancer, cardiovascular 176 disease, respiratory disease, and others.

177 Statistical analyses were performed using Stata version 15.1 (StataCorp LLC, College 178 Station, Texas, USA).

- Patient and public involvement 180
 - There was no patient and public involvement in this study. 181
- 182

60

- 183 **Results**
- 184 **Baseline Characteristics**

A total of 2,294 eligible participants from the 2008 LOHAS were identified. After excluding 101 185 186 subjects who did not undergo the WOT, a total of 2,193 participants were retained. The primary Page 11 of 33

1

BMJ Open

2	
3 4	187
5 6	188
7 8 9	189
9 10 11	190
12 13	191
14 15	192
16 17 18	193
19 20	194
21 22	195
23 24 25	196
25 26 27	197
28 29	
30 31	
32 33 34	
35 36	
37 38	
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

analysis included 1,621 participants without missing covariates. Fig. 1 shows the flow diagram ofsubjects in this study.

Of the 1,621 participants enrolled in this study, 272 (17%) and 202 (12%) were diagnosed with mild and severe kyphotic posture, respectively (Table 1). The median age of all participants was 72 years, 61% were female, and 75% had good health status. The average age, the proportion of overweight participants (body mass index \geq 25 kg/m²), and the proportion of participants with LSS and low back pain were high in the mild and severe kyphotic posture groups compared to the non-kyphotic posture group. The proportions of participants with good health status and average handgrip strength were low in these groups.

TABLE 1. Baseline characteristics of participants without missing covariates

	Total	Kyphotic posture			
		None	Mild (>0, ≤4	Severe (>4	
			cm)	cm)	
	<i>n</i> = 1621	<i>n</i> = 1147 (71)	<i>n</i> = 272 (17)	n = 202 (12)	
Age, years	72 (68–76)	71 (67–74)	74 (70–78)	76 (72–80)	
Female sex	981 (61)	698 (61)	146 (54)	137 (68)	
Body mass index, kg/m ²					
<18.5	57 (4)	43 (4)	7 (3)	7 (3)	
≤18.5, <25	1042 (64)	756 (66)	175 (64)	111 (55)	
≥25	522 (32)	348 (30)	90 (33)	84 (42)	
Smoking habit	151 (9)	105 (9)	31 (11)	15 (7)	
Smoking haon	151 ())	105 ())	51 (11)	15(7)	

Lumbar spinal stenosis	274 (17)	175 (15)	53 (19)	46 (23)
Low back pain	131 (8)	84 (7)	25 (9)	22 (11)
Good health status	1221 (75)	878 (77)	197 (72)	146 (72)
Stroke history	87 (5)	54 (5)	15 (6)	18 (9)
Handgrip strength, kgw	26 (22–34.5)	27 (22–35)	26 (21.25–35)	22 (18.5–28)

Note. Data are presented as n (%) or median and interquartile range.

199 Primary Analysis and Sensitivity Analysis

The cumulative mortality rates according to the degree of kyphosis are presented in Fig. 2. The median follow-up time was 5.8 years. The participants with mild and severe kyphotic posture showed higher cumulative mortality rates (8% and 13%, respectively) than those without kyphotic posture (5%). The tracking ratio at the end of the study was 98.5%. The mortality rates were 0.008 per year in the non-kyphotic posture group, 0.014 per year in the mild kyphotic posture group, and 0.023 per year in the severe kyphotic posture group (Table 2), with the log-rank test indicating a difference among the groups (p < 0.001). Cox regression analysis showed that participants with mild and severe kyphotic posture had higher rates of mortality than those without kyphotic posture, with adjusted hazard ratios (aHRs) of 1.17 (95% confidence interval [CI], 0.70–1.96), and 1.99 (95% CI, 1.20–3.30), respectively. A sensitivity analysis using imputed datasets revealed similar results to those of the primary analysis (aHR, 1.15 [95% CI, 0.71-1.87] and 2.15 [95% CI, 1.35-3.41], respectively; Supplementary Table 1).

50 212

TABLE 2. Cox proportional hazards model of mortality according to the degree of kyphosis

		Number of participants	Frequency of mortality	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a			
	Kyphotic posture								
	None	1147	54	0.008	Ref.	Ref.			
	Mild	272	22	0.014	1.74 (1.06, 2.85)	1.17 (0.70, 1.96)			
	Severe	202	26	0.023	2.83 (1.77, 4.52)	1.99 (1.20, 3.30)			
	Abbreviations: H	R = hazard ratio	; CI = confid	ence interval.					
	^a Estimated from a	a Cox regression	n model adjus	ted for age, sex	, body mass index, sr	noking habit, lumbar			
	spinal stenosis, lo	w back pain, go	od health sta	tus, stroke histo	ory, and handgrip stre	ngth.			
214									
215	Secondary Analysis								
216	The rates of LOI were 0.013 per year in the non-kyphotic posture group, 0.026 per year in the mild								
217	kyphotic posture group, and 0.048 per year in the severe kyphotic posture group (Table 3). Overall,								
218	subjects with mild	and severe kyph	otic posture h	had higher rates	of LOI than those wit	hout kyphotic			
219	posture (aHR, 1.70) [95% CI, 1.13–	-2.55] and 2.0	8 [95% CI, 1.39	9–3.10], respectively)	. A sensitivity			
220	analysis using imp	outed datasets re-	vealed simila	r results (aHR,	1.47 [95% CI, 1.03–2	2.10] and 1.74			
221	[95% CI, 1.25–2.4	3], respectively;	; Supplement	ary Table 2).					
222									
223	TABLE 3. Cox Pr	oportional Haza	ards Model of	Loss of Indepe	endence According to	the Degree			
224	of Kyphosis								
						10			
						12			
	Foi	r peer review only ·	- http://bmjope	n.bmj.com/site/al	oout/guidelines.xhtml				
	215 216 217 218 219 220 221 222 223	None Mild Severe Abbreviations: H ^a Estimated from a spinal stenosis, lo 214 215 <i>Secondary Analys</i> 216 The rates of LOI w 217 kyphotic posture g 218 subjects with mild 219 posture (aHR, 1.70 220 analysis using imp 221 [95% CI, 1.25–2.4 222 TABLE 3. Cox Pr 224 of Kyphosis	kyphotic postureNone1147Mild272Severe202Abbreviations: HR = hazard ration *Estimated from a \leftarrow x regression spinal stenosis, low back pain, go214215Secondary Analysis216The rates of LOI were 0.013 per yet aujects with mild and severe kyph217kyphotic posture group, and 0.048218subjects with mild and severe kyph219posture (aHR, 1.70 [95% CI, 1.13-120)220analysis using imput datasets ref221[95% CI, 1.25-2.43], respectively222TABLE 3. Cox Propositional Haza223TABLE 3. Cox Propositional Haza224of Kyphosis	Number of participantsof mortalityKyphotic posture	Number of participantsOccurrence of mortalityOccurrence rate/yearKyphotic posture $$$$ None1147147540.008Mild272220.014Severe202260.023Abbreviations: HR = hazard ratio; CI = confidence interval. *Estimated from a Cox regression model adjusted for age, sex spinal stenosis, low back pain, good health status, stroke histor214215Secondary Analysis216The rates of LOI were 0.013 per year in the non-kyphotic postur217kyphotic posture group, and 0.048 per year in the severe kyphot218subjects with mild and severe kyphotic posture had higher rates219posture (aHR, 1.70 [95% CI, 1.13–2.55] and 2.08 [95% CI, 1.39220analysis using imputed datasets revealed similar results (aHR,211[95% CI, 1.25–2.43], respectively; Supplementary Table 2).222223TABLE 3. Cox Proportional Hazards Model of Loss of Indepe224of Kyphosis	Number of participantsOccurrenceUnadjusted HR rate/yearKyphotic postureinortality(95% CI)Kyphotic postureNone1147540.008Ref.Mild272220.0141.74 (1.06, 2.85)Severe202260.0232.83 (1.77, 4.52)Abbreviations: HR = hazard ratio; CI = confidence interval."Estimated from a Cox regression model adjusted for age, sex, body mass index, sr spinal stenosis, low back pain, good health status, stroke history, and handgrip stree214Secondary Analysis215Secondary Analysis216The rates of LOI were 0.013 per year in the non-kyphotic posture group, 0.026 per year217kyphotic posture group, and 0.048 per year in the severe kyphotic posture group (Tab subjects with mild and severe kyphotic posture had higher rates of LOI than those wit218subjects with mild and severe kyphotic posture lad just (aHR, 1.47 [95% CI, 1.03-2220analysis using imputed datasets revealed similar results (aHR, 1.47 [95% CI, 1.03-2221[95% CI, 1.25-2.43], respectively; Supplementary Table 2).222TABLE 3. Cox Proportional Hazards Model of Loss of Independence According to			

		Number of participants	Frequency of loss of independence	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a			
	Kyphotic posture	2							
	None	1147	82	0.013	Ref.	Ref.			
	Mild	272	38	0.026	2.38 (1.61-3.52)	1.70 (1.13–2.55)			
	Severe	202	51	0.048	3.63 (2.52–5.22)	2.08 (1.39–3.10)			
	Abbreviations: H	IR = hazard ratio	o; CI = confidenc	e interval.					
	^a Estimated from	a Cox regressio	n model adjusted	for age, sex, bo	ody mass index, smo	king habit, lumbar			
	spinal stenosis, lo	ow back pain, g	ood health status,	stroke history,	and handgrip streng	th.			
225									
226	Consistent results were obtained for the composite outcome of LOI and mortality (Table 4).								
227	Participants with mild and severe kyphotic posture had higher rates of LOI and mortality than								
228	those without kyp	bhotic posture (a	aHR, 1.27 [95%	CI, 0.90–1.79]	and 1.83 [95% CI,	1.31–2.56],			
229	respectively). A s	ensitivity analy	sis using impute	d datasets reve	aled similar results	(aHR, 1.26			
230	[95% CI, 0.93–1.6	59] and 1.63 [95	6% CI, 1.23–2.16], respectively;	Supplementary Tabl	e 3).			
231									
232 TABLE 4. Cox proportional hazards model of loss of independence and mortality according to						cording to			
233	the degree of kypl	nosis							
		Number of participants	Frequency of loss of independence	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a			

1 2 3				and mortalit	y ^b					
4 5 6										
6 7 0		Kyphotic posture								
8 9 10		None	1147	122	0.02	Ref.	Ref.			
11 12		Mild	272	52	0.033	1.79 (1.28–2.50) 1.27 (0.90–1.79)			
13 14 15		Severe	202	60	0.062	2.93 (2.16-3.98) 1.83 (1.31–2.56)			
15 16 17		Abbreviations: H	R = hazard ratio	o; CI = confid	lence interval.					
18 19		^a Estimated from a	Cox regression	n model adjus	sted for age, sex	x, body mass index, si	moking habit, lumbar			
20 21		spinal stenosis, lo	w back pain, go	ood health sta	tus, history of	stroke, and handgrip s	strength.			
22 23 24		^b Composite of los	s of independent	nce and morta	ality.					
25 26	234									
27 28	235	We conducted a subgroup analysis stratified by sex, which indicated that men had a higher								
29 30 31	236	cumulative rate of mortality (10%, 0.018 per year) than women (4%, 0.007 per year). Male sex								
32 33	237	also showed a more pronounced association between kyphotic posture and mortality (Table 5).								
34 35	238									
36 37 38	239	TABLE 5. Cox proportional hazards model of mortality according to the degree of kyphosis								
39 40	240	stratified by sex								
41 42 43			Number of	Frequency	Occurrence	Unadjusted HR	Adjusted HR			
44 45 46 47 48 49			participants	mortality	rate/year	(95% CI)	(95% CI) ^a			
		Male	640	64	0.018					
50 51 52		Kyphotic posture								
53 54		None	449	32	0.013	Ref.	Ref.			
55 56							14			
57 58										
59 60	5960For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml									

Mild	126	19	0.028	2.19 (1.24, 3.87)	1.64 (0.91, 2.95)
Severe	65	13	0.037	2.97 (1.56, 5.65)	2.31 (1.17, 4.56)
 Female	981	38	0.007		
Kyphotic posture	e				
None	698	22	0.006	Ref.	Ref.
Mild	146	3	0.004	0.64 (0.19, 2.15)	0.50 (0.15, 1.73)
Severe	137	13	0.017	3.10 (1.56, 6.14)	1.55 (0.70, 3.45)

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, body mass index, smoking habit, lumbar spinal stenosis, low back pain, good health status, stroke history, and handgrip strength.

> The causes of mortality in each group are presented in Fig. 3. Although the frequencies were very low, the rate of mortality due to respiratory diseases was higher in the severe kyphotic posture group (6 [16%] vs. 5 [7%] in the non-kyphotic posture group and 2 [7%] in the mild kyphotic posture group).

247 Discussion

In the present study, we explored the association between kyphotic posture and mortality using data from a relatively large sample. The kyphotic posture detected with the WOT appeared to affect mortality in a way not explained by age, sex, body mass index, smoking habit, LSS, low back pain, good health status, history of stroke, or handgrip strength. Furthermore, the association was stronger in the severe kyphotic posture group; the presence of severe kyphotic posture was related to a two-fold increase in the hazards of mortality in relation to the non-kyphotic posture.

Additionally, kyphotic posture was associated with LOI, and the association between kyphoticposture and mortality was more pronounced in men.

Kado et al. reported that cervicothoracic kyphosis measured in the supine position was associated with mortality in older men and women. Notably, they did not observe any sex-specific differences in their study.[14] They also showed that the degree of thoracic hyperkyphosis in the standing position, in addition to osteoporotic vertebral fractures (OVFs), had a predictive value for mortality among older women.[15] Our results were similar to those from previous studies showing that kyphotic posture is associated with mortality. Additionally, we believe that the present study has the advantage of using the WOT, which measures kyphosis in the standing position and reflects overall sagittal balance. To accurately assess the degree of kyphosis, subjects should be in the standing position with their hips and knees fully extended to prevent compensatory mechanisms [24]. With the subjects in the supine position, kyphotic posture may be corrected by a non-physiologic hyper-extensive force, leading to a consistent underestimation of the degree of kyphosis. Furthermore, as described above, kyphotic posture develops due to the failure of the posture maintenance mechanism. When evaluating kyphotic posture, it is necessary to focus not only on one segment, such as the thoracic spine, but also on the alignment of the whole spine.

In the subgroup analysis by sex, the association between kyphotic posture and mortality seemed to be more pronounced in men, although no clear sex difference in mortality was found in the present study. Sex differences in the prevalence of vertebral fractures have been reported, [25,26] and the nature of the kyphosis may differ between men and women. Further studies that subcategorize kyphosis by vertebral fractures might reveal sex differences in kyphotic posture.

276 Explanations and Implications

We hypothesized two possible explanations for the association between kyphotic posture and mortality. First, we considered that mortality is an outcome of locomotive dysfunction. Further, several previous studies have reported that kyphotic posture is associated with locomotive dysfunction.[5,12,13,27,28] According to Tominaga et al., severe kyphotic posture measured by the WOT is associated with an increased incidence of falls in men.[13] Katzman et al. indicated an association of cervicothoracic kyphosis in the supine position with impaired lower extremity physical function among older men.[28] Hence, the effect of kyphotic posture might be prominent and associated with increased mortality in men. Early mortality may also be attributable to other mechanisms. Multiple previous studies have shown that kyphotic posture may be associated with worse health, including diminished pulmonary function.[6,7] Notably, a previous report suggested that individuals with kyphotic posture are more likely to die of a pulmonary cause.[14] Although no statistical comparison was performed due to a lack of power, our results suggest that the proportion of respiratory deaths among those with severe kyphotic posture is high.

The results of the present study also suggest that kyphotic posture is a clinically important finding, and that further studies are required to fully explore the effects of the prevention and treatment of kyphotic posture. Noticeably, our study demonstrates that the WOT is helpful in predicting serious healthcare outcomes. Among men, those with mild and severe kyphotic posture identified by WOT had a 2.2-fold and 3-fold increased hazards of mortality, respectively. The WOT is easy, inexpensive, and does not require special skills or devices, making it an attractive clinical tool for the identification of high-risk individuals. As approximately 40% of older adults with severe kyphosis reported to have underlying OVFs,[24] OVFs are widely thought to be a major factor contributing to the development of kyphotic posture. Therefore, osteoporosis treatment may help prevent kyphotic posture via a reduction in the occurrence of OVFs. In addition

Page 19 of 33

1

BMJ Open

2	
3	
4	
5	
6	
7	
, 8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20 21	
∠ I つつ	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

to structural changes in the vertebral column, back extensor weakness is also associated with
 kyphotic posture.[29-31] Despite the limited evidence, some reports suggest that exercise may
 modestly improve back extensor muscle strength. [32]

303

304 Strengths and Limitations

The present study has significant strengths. First, we demonstrated the association of kyphotic posture with LOI and mortality in a community-dwelling population. We believe that the present study is a valuable contribution in that it investigated the longitudinal development of serious healthcare outcomes based on samples from a general population. Second, we used public data, which provided us with reliable and complete information on outcomes, except for participants who changed their residence out of the target area. As relocation was rare, a high tracking ratio (98.5%) was achieved, which minimized the risk of information bias.

312 Nevertheless, this study also has several limitations. First, we did not adjust our dataset 313 for osteoporosis. We did not adjust for OVFs because we were interested not only in kyphosis 314 independent of OVFs, but in overall kyphotic postures, including the ones caused by OVFs. 315 However, osteoporosis may be associated with LOI and mortality through other mechanisms. 316 Second, the measurement of kyphotic posture may not be sufficiently precise. The WOT does not 317 allow to distinguish rigid kyphosis from flexible kyphosis. To evaluate spinal flexibility, 318 evaluations in both the standing and supine positions need to be performed. The WOT also does 319 not identify participants who can maintain good non-kyphotic posture only for a short period 320 during measurement. No evaluation method has overcome this problem, and the development of a 321 new method, such as continuous posture analysis, is warranted. Additionally, the WOT values may 322 contain measurement errors due to denture wear and respiratory variability. Thus, measurement

using WOT has some disadvantages. However, as mentioned above, it is a very simple method of measurement, which makes it possible to survey a relatively large number of the general population and has the advantage of easy clinical application. Another limitation in the measurement of kyphotic posture is the inability to identify the cause of the posture since it is not assessed using X-rays or inclinometer. However, we believe that the absence of spinal parameters such as kyphotic angle does not introduce a serious bias, as our focus is on the resulting kyphosis posture, not on its cause. Finally, attributing causation is difficult because of other unmeasured confounders, including subclinical diseases. In addition, since more than 10 years have passed since the baseline measurement in 2008, confounding factors may have changed due to lifestyle changes such as the spread of smartphones. It should be noted that the present study does not provide evidence to support surgical interventions to correct kyphosis. Surgical reconstruction should not be routinely performed in elderly individuals with a typical high-risk profile.

336 Conclusions

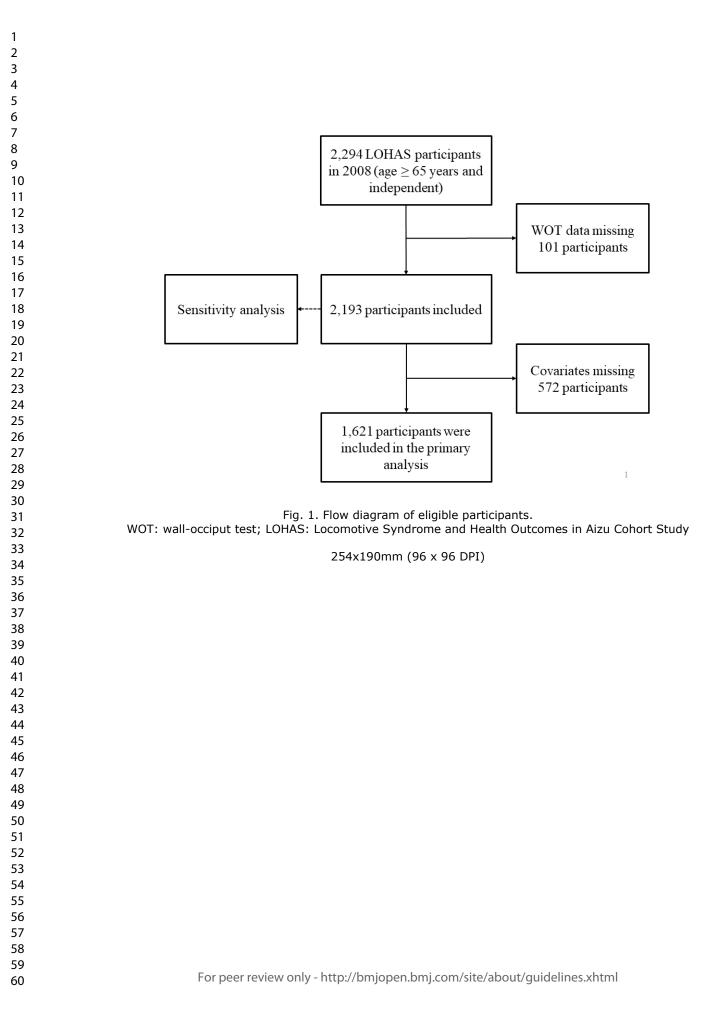
This study suggests that kyphotic posture is associated with LOI and mortality. Therefore,
identifying community-dwelling older people with kyphotic posture using the WOT might help
identify high-risk populations that would benefit from healthcare interventions.

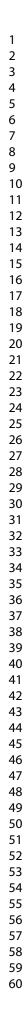
1 2			
3 4	341	Refere	ences
5 6	342	1.	Schwab F, Lafage V, Boyce R, et al. Gravity line analysis in adult volunteers: age-related
7 8 9	343		correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa
9 10 11	344		1976). 2006;31:959–67.
12 13	345	2.	Farcy JP, Schwab FJ. Management of flatback and related kyphotic decompensation
14 15	346		syndromes. Spine (Phila Pa 1976). 1997;229:2452–7.
16 17	347	3.	Ailon T, Shaffrey CI, Lenke LG, et al. Progressive spinal kyphosis in the aging population.
18 19 20	348		Neurosurgery. 2015;774:164–72.
21 22	349	4.	Kado DM, Prenovost K, Crandall C. Narrative review: hyperkyphosis in older persons.
23 24	350		Ann Intern Med. 2007;147:330–8.
25 26 27	351	5.	Eum R, Leveille SG, Kiely DK, et al. Is kyphosis related to mobility, balance, and
27 28 29	352		disability? Am J Phys Med Rehabil. 2013;92:980–9.
30 31	353	6.	Culham EG, Jimenez HA, King CE. Thoracic kyphosis, rib mobility, and lung volumes
32 33	354		in normal women and women with osteoporosis. Spine (Phila Pa 1976). 1994;19:1250-
34 35 36	355		5.
37 38	356	7.	Lee SJ, Chang JY, Ryu YJ, et al. Clinical features and outcomes of respiratory
39 40	357		complications in patients with thoracic hyperkyphosis. <i>Lung.</i> 2015;193:1009–15.
41 42	358	8.	Ensrud KE, Black DM, Harris F, et al. Correlates of kyphosis in older women. The
43 44 45	359		Fracture Intervention Trial Research Group. J Am Geriatr Soc. 1997;45:682–7.
45 46 47	360	9.	Imagama S, Ando K, Kobayashi K, et al. Increase in lumbar kyphosis and spinal
48 49	361		inclination, declining back muscle strength, and sarcopenia are risk factors for onset of
50 51	362		GERD: a 5-year prospective longitudinal cohort study. <i>Eur Spine J</i> . 2019;28:2619–28.
52 53		10	
54 55 56	363	10.	Imagama S, Hasegawa Y, Matsuyama Y, et al. Influence of sagittal balance and physical 20
57 58			20
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	364		ability associated with exercise on quality of life in middle-aged and elderly people. Arch
5 6	365		<i>Osteoporos</i> . 2011;6:13–20.
7 8 9	366	11.	Langella F, Villafañe JH, Lafage V, et al. Xipho-pubic angle (XPA) correlates with
9 10 11	367		patient's reported outcomes in a population of adult spinal deformity: results from a multi-
12 13	368		center cohort study. Eur Spine J. 2018;27:670–77.
14 15	369	12.	McDaniels-Davidson C, Davis A, Wing D, et al. Kyphosis and incident falls among
16 17 18	370		community-dwelling older adults. Osteoporos Int. 2018;29:163-9.
19 20	371	13.	Tominaga R, Fukuma S, Yamazaki S, et al. Relationship between kyphotic posture and
21 22	372		falls in community-dwelling men and women: the Locomotive Syndrome and Health
23 24 25	373		Outcome in Aizu Cohort Study. Spine (Phila Pa 1976). 2016;41:1232-8.
25 26 27	374	14.	Kado DM, Huang MH, Karlamangla AS, et al. Hyperkyphotic posture predicts mortality
28 29	375		in older community-dwelling men and women: a prospective study. J Am Geriatr Soc.
30 31 22	376		2004;52:1662–7.
32 33 34	377	15.	Kado DM, Lui LY, Ensrud KE, et al. Hyperkyphosis predicts mortality independent of
35 36	378		vertebral osteoporosis in older women. Ann Intern Med. 2009;150:681-7.
37 38	379	16.	Okura M, Ogita M, Yamamoto M, et al. Self-assessed kyphosis and chewing disorders
39 40 41	380		predict disability and mortality in community-dwelling older adults. J Am Med Dir Assoc.
42 43	381		2017;18:550.e1–6.
44 45	382	17.	Otani K, Takegami M, Fukumori N, et al. Locomotor dysfunction and risk of
46 47 48	383		cardiovascular disease, quality of life, and medical costs: design of the Locomotive
40 49 50	384		Syndrome and Health Outcome in Aizu Cohort Study (LOHAS) and baseline
51 52	385		characteristics of the study population. J Orthop Sci. 2012;17:261-71.
53 54	386	18.	Campbell JC, Ikegami N. Long-term care insurance comes to Japan. Health Aff
55 56 57			21

58 59

60


BMJ Open


2			
2 3 4	387		(Millwood). 2000;19:26–39.
5 6	388	19.	Green AD, Colon-Emeric CS, Bastian L, et al. Does this woman have osteoporosis?
7 8	389		JAMA. 2004;292:2890–900.
9 10 11	390	20.	Ziebart C, Adachi JD, Ashe MC, et al. Exploring the association between number,
12 13	391		severity, location of fracture, and occiput-to-wall distance. Arch Osteoporos. 2019;14:27.
14 15	392	21.	Siminoski K, Warshawski RS, Jen H, et al. The accuracy of clinical kyphosis examination
16 17 18	393		for detection of thoracic vertebral fractures: comparison of direct and indirect kyphosis
19 20	394		measures. J Musculoskelet Neuronal Interact. 2011;11:249–56.
21 22	395	22.	Konno S, Kikuchi S, Tanaka Y, et al. A diagnostic support tool for lumbar spinal stenosis:
23 24 25	396		a self-administered, self-reported history questionnaire. BMC Musculoskelet Disord.
26 27	397		2007;8:102.
28 29	398	23.	Yamazaki H, Kamitani T, Matsui T, et al. Association of low alanine aminotransferase
30 31 32	399		with loss of independence or death: a 5-year population-based cohort study. J
32 33 34	400		Gastroenterol Hepatol. 2019;34:1793–9.
35 36	401	24.	Horton WC, Brown CW, Bridwell KH, et al. Is there an optimal patient stance for
37 38	402		obtaining a lateral 36" radiograph? A critical comparison of three techniques. Spine (Phila
39 40 41	403		<i>Pa 1976</i>). 2005;30:427–33.
42 43	404	25.	Schneider DL, von Muhlen D, Barrett-Connor E, et al. Kyphosis does not equal vertebral
44 45	405		fractures: the Rancho Bernardo study. J Rheumatol. 2004;31:747-52.
46 47 48	406	26.	Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older
49 50	407		women: a prospective study. Study of Osteoporotic Fractures Research Group. Arch
51 52	408		Intern Med. 1999;159:1215–20.
53 54 55 56	409	27.	Kado DM, Huang MH, Barrett-Connor E, et al. Hyperkyphotic posture and poor physical 22
57 58			
59 60			For peer review only - http://bmiopen.bmi.com/site/about/guidelines.xhtml

3 4	410		functional ability in older community-dwelling men and women: the Rancho Bernardo
5 6	411		study. J Gerontol A Biol Sci Med Sci. 2005;60:633-7.
7 8	412	28.	Katzman WB, Harrison SL, Fink HA, et al. Physical function in older men with
9 10 11	413		hyperkyphosis. J Gerontol A Biol Sci Med Sci. 2015;70:635-40.
12 13	414	29.	Sinaki M, Itoi E, Rogers JW, et al. Correlation of back extensor strength with thoracic
14 15 16	415		kyphosis and lumbar lordosis in estrogen-deficient women. Am J Phys Med Rehabil.
16 17 18	416		1996;75:370–4.
19 20	417	30.	Laroche M, Delisle MB, Aziza R, et al. Is camptocormia a primary muscular disease?
21 22	418		Spine (Phila Pa 1976). 1995;20:1011–6.
23 24 25	419	31.	Menezes-Reis R, Bonugli GP, Salmon CEG, et al. Relationship of spinal alignment with
26	420		muscular volume and fat infiltration of lumbar trunk muscles. PLoS One.
27 28	421		2018;13:e0200198.
29 30	422	32.	Bansal S, Katzman WB, Giangregorio LM. Exercise for improving age-related
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	423		hyperkyphotic posture: a systematic review. <i>Arch Phys Med Rehabil</i> . 2014;95:129–40.
53 54 55 56 57 58 59 60			23 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3	424	Figure Legends
4 5 6	425	Fig. 1. Flow diagram of eligible participants.
0 7 8	426	WOT: wall-occiput test; LOHAS: Locomotive Syndrome and Health Outcomes in Aizu Cohort
9 10	427	Study
11 12 13	428	Fig. 2. Cumulative incidence of mortality. Subjects were divided into the following three groups
13 14 15	429	according to the degree of kyphotic posture: None, Mild (> $0, \le 4$ cm), and Severe (> 4 cm).
16 17	430	The p-value was calculated using log-rank test.
18 19 20	431	Fig. 3. Cause-specific deaths in each group. Participants were divided into the following three
20 21 22	432	groups according to the degree of kyphosis: None, Mild (> $0, \le 4$ cm), and Severe (> 4 cm).
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 50 51 52 354 55		groups according to the degree of kyphosis: None, Mild (> 0, \leq 4 cm), and Severe (> 4 cm).
56 57 58		24
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Footnotes Contributors: Conception and design of the study: YH, TK, SF, and YY; Acquisition of data: MS, KO, SK, and MT; Analysis and interpretation of data: YH, TK, SF, and YY; Drafting the article or revising it critically for important intellectual content: YH, TK, MS, KO, SK, MT, SF, and YY; Final approval of the version to be submitted: YH, TK, MS, KO, SK, MT, SF, and YY. **Funding:** This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Data availability statement: The data presented in the study are not currently available. Additional unpublished data is still being analysed for another research project. Competing interests: None declared. Ethics approval: This study was approved by the institutional Review Boards of Fukushima Medical University and Kyoto University Graduate School and Faculty of Medicine of Kyoto University Hospital (No. 673 and R1730, respectively).

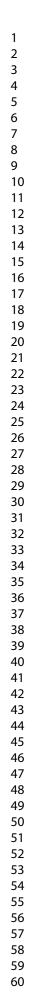



Fig. 2. Cumulative incidence of mortality. Subjects were divided into the following three groups according to the degree of kyphotic posture: None, Mild (> 0, \leq 4 cm), and Severe (> 4 cm). The p-value was calculated using log-rank test.

333x288mm (72 x 72 DPI)

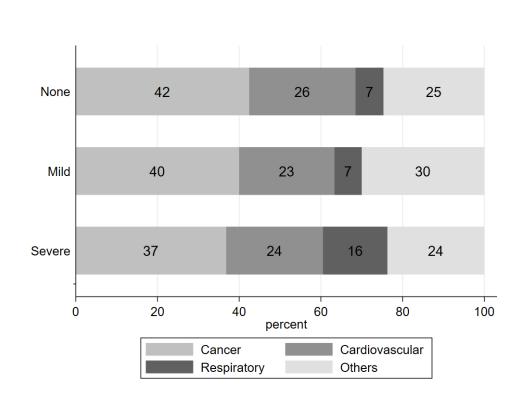


Fig. 3. Cause-specific deaths in each group. Participants were divided into the following three groups according to the degree of kyphosis: None, Mild (> 0, \leq 4 cm), and Severe (> 4 cm).

366x266mm (72 x 72 DPI)

Page 30 of 33

Supplementary Material 1

Supplemental material for: "Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)"

Supplementary Table 1. Sensitivity analysis with multiple imputation for mortality according to

the degree of kyphosis

	Number of participants	Frequency of mortality	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a
Kyphotic posture					,
None	1525	73	0.009	Ref.	Ref.
Mild	369	30	0.015	1.72 (1.13–2.64)	1.19 (0.77–1.84)
Severe	299	38	0.023	2.76 (1.86-4.08)	1.80 (1.17–2.77)

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar

spinal stenosis, low back pain, good health status, history of stroke, and handgrip strength.

Supplementary Material 2 Supplemental material for: "Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)"

Supplementary Table 2. Sensitivity analysis with multiple imputation for loss of independence according to the degree of kyphosis

	Number of participants	Frequency of loss of independence	Occurrence rate/year	Unadjusted HR (95% CI)	Adjusted HR (95% CI) ^a
Kyphotic posture					
None	1525	114	0.015	Ref.	Ref.
Mild	369	47	0.018	2.10 (1.49–2.97)	1.47 (1.03–2.10)
Severe	299	73	0.045	3.33 (2.46-4.49)	1.74 (1.25–2.43)

Abbreviations: HR = hazard ratio; CI = confidence interval.

a Estimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar spinal stenosis, low back pain, good health status, stroke history, and handgrip strength.

Page 32 of 33

Supplementary Material 3 Supplemental material for: "Association of kyphotic posture with loss of independence and mortality in a community-based prospective cohort study: The Locomotive Syndrome and Health Outcomes in Aizu Cohort Study (LOHAS)"

Supplementary Table 3. Sensitivity analysis with multiple imputation for loss of independence and mortality according to the degree of kyphosis

		Frequency of			
	Number of	loss of	Occurrence	Unadjusted HR	Adjusted HR
	Participants	independence and mortality	rate/year	(95% CI)	(95% CI) ^a
Kyphotic posture					
None	1525	176	0.021	Ref.	Ref.
Mild	369	65	0.033	1.78 (1.33–2.37)	1.26 (0.93–1.69)
Severe	299	93	0.06	2.78 (2.16–3.59)	1.63 (1.23–2.16)

Abbreviations: HR = hazard ratio; CI = confidence interval.

^aEstimated from a Cox regression model adjusted for age, sex, body mass index, smoking habit, lumbar spinal stenosis, low back pain, good health status, stroke history, and handgrip strength.

^bComposite outcome of loss of independence and mortality.

STROBE Statement—Checklist of items that should be included in reports of cohort studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	3
		(<i>b</i>) Provide in the abstract an informative and balanced summary of what was done and what was found	3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6
Setting	5	Describe the setting, locations, and relevant dates, including periods of	6
0		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of	6
1		participants. Describe methods of follow-up	
		(b) For matched studies, give matching criteria and number of exposed and	-
		unexposed	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7
measurement		assessment (measurement). Describe comparability of assessment methods if	
		there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8
Study size	10	Explain how the study size was arrived at	No
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7
		describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	8
		(b) Describe any methods used to examine subgroups and interactions	9
		(c) Explain how missing data were addressed	9
		(d) If applicable, explain how loss to follow-up was addressed	8
			9
		(<u>e</u>) Describe any sensitivity analyses	-
Results			9
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	9
		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	0
		(b) Give reasons for non-participation at each stage	9
		(c) Consider use of a flow diagram	10
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social)	9
		and information on exposures and potential confounders	N T
		(b) Indicate number of participants with missing data for each variable of interest	No
		(c) Summarise follow-up time (eg, average and total amount)	11
Outcome data	15*	Report numbers of outcome events or summary measures over time	11

Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	12
		(b) Report category boundaries when continuous variables were categorized	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	15
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	18
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other informati	on		·
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	25

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at http://www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml