Supplementary Online Content

Katsanos AH, Psychogios K, Turc G, et al. Off-label use of tenecteplase for the treatment of acute ischemic stroke: a systematic review and meta-analysis. *JAMA Netw Open.* 2022;5(3):e224506. doi:10.1001/jamanetworkopen.2022.4506

- **eTable 1.** Definition of Successful Recanalization in Patients With Confirmed Intracranial Vessel Occlusion Across Included Studies
- eTable 2. Definition of Early Neurological Improvement at 24h Across Included Studies
- eTable 3. Adjustment for Potential Confounders Across Included Studies
- eTable 4. Quality Assessment of Included Studies With the Newcastle-Ottawa Scale
- **eFigure 1.** Unadjusted Analyses on the Comparison Between Tenecteplase and Alteplase for the Outcomes of (A) Symptomatic Intracranial Hemorrhage and (B) Parenchymal Hematoma Following Intravenous Thrombolysis
- **eFigure 2.** Adjusted Analyses on the Comparison Between Tenecteplase and Alteplase for the Outcomes of Symptomatic Intracranial Hemorrhage Following Intravenous Thrombolysis
- **eFigure 3.** Funnel Plots on the Unadjusted and Adjusted Comparison Between Intravenous Tenecteplase and Alteplase for the Primary Outcome of Interest (Three-Month Good Functional Outcome; Modified Rankin Scale 0-2)

This supplementary material has been provided by the authors to give readers additional information about their work.

eTable 1: Definition of successful recanalization in patients with confirmed intracranial vessel occlusion across included studies.

Study name	Definition
Alemseged et al, ¹ 2021	mTICI 2b–3 on initial angiogram (before endovascular therapy was performed) or reperfusion ≥50% of the involved territory on multimodal imaging
Parsons et al, ² 2009	24-hour CTA or MRA demonstrating partial flow or normal flow using adapted Thrombolysis in Myocardial Infarction (TIMI) criteria (TIMI≥2)
Psychogios et al, ³ 2021	24-hour CTA or MRA or Transcranial Doppler demonstrating normal flow
Seners et al, ⁴ 2019	mTICI 2b-3 on pre-mechanical thrombectomy first angiographic run or non-invasive vascular imaging
Mahawish et al, ⁵ 2021	N/A
Warrach et al, ⁶ 2021	N/A

mTICI: modified Thrombolysis in Cerebral Infarction; CTA: computed tomography angiography; MRA: magnetic resonance angiography; TIMI: Thrombolysis in Myocardial Infarction; N/A: not available

eTable 2: Definition of early neurological improvement at 24h across included studies.

Study name	Definition
Alemseged et al, ¹ 2021	N/A
Parsons et al, ² 2009	Reduction in the baseline NIHSS score of at least 8 points
Psychogios et al, ³ 2021	Reduction in the baseline NIHSS score of at least 8 points
Seners et al, ⁴ 2019	N/A
Mahawish et al, ⁵ 2021	N/A
Warrach et al, ⁶ 2021	N/A

NIHSS: National Institutes of Health Stroke Scale; N/A: not available

eTable 3: Adjustment for potential confounders across included studies

Study name	Adjusted variables	Method for adjustment
Alemseged et al, ¹	Age, NIHSS score, needle-to-	Multivariable regression
2021	arterial puncture time,	(selection process for
	cardioembolic etiology	confounders not described)
Parsons et al, ² 2009	Age, NIHSS, serum glucose,	Multivariable regression
	infarct core volume, penumbra	(confounders selected based
	volume, percent penumbra, TIMI	on p-values from univariable
	grade 0 (baseline)	analyses)
Psychogios et al, ³	Age, baseline NIHSS score,	Multivariable regression (a
2021	presence of proximal intracranial	priori defined confounders)
	occlusion	
Seners et al, ⁴ 2019	Age, NIHSS, onset-to-IVT time,	Propensity score matching (a
	occlusion site, thrombus length	priori defined confounders)
Mahawish et al, ⁵	Age, sex, pre-morbid mRS, onset-	Multivariable regression (a
2021	to-door-time, NIHSS,	priori defined confounders)
	thrombectomy, door-to-needle time	
Warrach et al,6	N/A	N/A
2021		

NIHSS: National Institutes of Health Stroke Scale; IVT: intravenous thrombolysis; mRS: modified Rankin Scale; TIMI: Thrombolysis in Myocardial Infarction, N/A: not available

eTable 4: Quality assessment of included studies with the Newcastle–Ottawa Scale.

Study name	Selection	Comparability	Outcome	Overall score
Alemseged et al, ¹ 2021	****	**	***	9/9
Parsons et al, ² 2009	***	*	***	7/9
Psychogios et al, ³ 2021	***	**	**	7/9
Seners et al, ⁴ 2019	***	**	**	7/9
Mahawish et al, ⁵ 2021	***	**	**	7/9
Warrach et al, ⁶ 2021	N/A	N/A	N/A	N/A
Overall Score	16/20	9/10	12/15	37/45

N/A: not available

eReferences:

- 1. Alemseged F, Ng FC, Williams C, et al. Tenecteplase vs Alteplase Before Endovascular Therapy in Basilar Artery Occlusion. Neurology. 2021;96:e1272-e1277.
- 2. Parsons MW, Miteff F, Bateman GA, et al. Acute ischemic stroke: imaging-guided tenecteplase treatment in an extended time window. Neurology. 2009;72:915-21.
- 3. Psychogios K, Palaiodimou L, Katsanos AH, et al. Real-world comparative safety and efficacy of tenecteplase versus alteplase in acute ischemic stroke patients with large vessel occlusion. Ther Adv Neurol Disord. 2021;14:1756286420986727.
- 4. Seners P, Caroff J, Chausson N, et al. Recanalization before Thrombectomy in Tenecteplase vs. Alteplase-Treated Drip-and-Ship Patients. J Stroke. 2019;21:105-107.
- 5. Mahawish K, Gommans J, Kleinig T, Lallu B, Tyson A, Ranta A. Switching to Tenecteplase for Stroke Thrombolysis: Real-World Experience and Outcomes in a Regional Stroke Network. Stroke. 2021;52:e590-e593.
- 6. Warach SJ, Miley JT, Mawla M, et al. Abstract P2: Results of a Prospective Observational Cohort Study of Tenecteplase as Standard of Care Stroke Thrombolytic. Stroke. 2021;52:AP2. https://doi.org/10.1161/str.52.suppl_1.P2

eFigure 1: Unadjusted analyses on the comparison between tenecteplase and alteplase for the outcomes of (A) symptomatic intracranial hemorrhage and (B) parenchymal hematoma following intravenous thrombolysis.

eFigure 2: Adjusted analyses on the comparison between tenecteplase and alteplase for the outcomes of symptomatic intracranial hemorrhage following intravenous thrombolysis.

Odds Ratio Odds Ratio Study or Subgroup log[Odds Ratio] SE Weight IV, Random, 95% CI IV, Random, 95% CI Mahawish et al, 2021 -0.821 0.656 57.1% 0.44 [0.12, 1.59] Psychogios et al, 2021 1.447 1.079 42.9% 4.25 [0.51, 35.23] Total (95% CI) 100.0% 1.16 [0.13, 10.50] Heterogeneity: $Tau^2 = 1.77$; $Chi^2 = 3.23$, df = 1 (P = 0.07); $I^2 = 69\%$ 0.05 Test for overall effect: Z = 0.13 (P = 0.89) Favours TNK Favours alteplase

eFigure 3: Funnel plots on the (A) unadjusted and (B) adjusted comparison between intravenous tenecteplase and alteplase for the primary outcome of interest (three-month good functional outcome; modified Rankin Scale 0-2)

