
Supplement to: “Individualized Treatment Effects
with Censored Data via Fully Nonparametric
Bayesian Accelerated Failure Time Models”

A Posterior Computation

In the description of the Gibbs sampler, we use zi to denote a latent variable that represents

a transformed, imputed survival time, and we let yci denote the “complete-data” survival

times for the transformed survival times. That is, yc,tri = ytri if δi = 1 and yc,tri = zi if δi = 0.

For posterior computation related to the Dirichlet process mixture, we let Si denote the

cluster to which the ith observation has been assigned.

An outline of the steps used in a single iteration of our Gibbs sampler is provided below.

1. Using log yc,tri − τSi as the responses, update trees T1, . . . , TJ and node parameters

B1, . . . , BJ using the Bayesian backfitting approach of Chipman and others (2010).

Using the updated T1, . . . , TJ and B1, . . . , BJ , one may directly update m(Ai,xi), for

i = 1, . . . , n.

2. Update cluster labels S1, . . . , Sn by sampling with probabilities

P (Si = h) ∝ πhφ
( log yc,tri −m(Ai,xi)− τh

σ

)
,

and tabulate cluster membership counts nh =
∑

i 1{Si = h}.

3. Sample stick-breaking weights Vh, h = 1, . . . , H − 1 as Vh ∼ Beta(αh, βh) where

αh = 1+nh and βh = M+
∑H

k=h+1 nk. Set VH = 1. The updated mixture proportions

are then determined by πh = Vh
∏

k<h(1− Vk), for h = 1, . . . , H.

4. Sample unconstrained cluster locations τ ∗h

τ ∗h ∼ Normal
( σ2

τ

nhσ2
τ + σ2

n∑
i=1

{log yc,tri −m(Ai,xi)}1{Si = h}, σ2
τσ

2

nhσ2
τ + σ2

)
,

and update constrained cluster locations τh = τ ∗h − µG∗ , where µG∗ =
∑H

h=1 πhτ
∗
h .
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5. Update mass parameter M ∼ Gamma
(
ψ1 +H−1, ψ2−

∑H−1
h=1 log(1−Vh)

)
and scale

parameter σ2 ∼ Inverse-Gamma
(
ν+n
2
, ŝ

2+κν
2

)
, where ŝ2 is given by

ŝ2 =
H∑
h=1

n∑
i=1

{log(yc,tri )−m(Ai,xi)− τh}21{Si = h}.

6. For each i ∈ {k : δk = 0}, update zi by sampling

log zi ∼ Truncated-Normal(m(Ai,xi) + τSi , σ
2; log ytri ),

and set yc,tri = zi. Here, X ∼ Truncated-Normal(µ, σ2; a) means that X is distributed

as Z|Z > a where Z ∼ Normal(µ, σ2).

Because we use the transformed responses log(ytri ) = log(yi)− µ̂AFT in posterior computa-

tion, we add µ̂AFT to the posterior draws of m(A,x) in the final output.

B Additional Inferential Targets for HTE Analysis

B.1 Individual-level Survival Functions

In terms of the quantities of the non-parametric AFT model described in the main paper,

individual-specific survival curves are defined by

P{T > t|A,x,m,G, σ} = 1−
∫

Φ
( log t−m(A,x)− τ

σ

)
dG(τ).

Using the truncated distribution GH as an approximation in posterior computation, the

survival curves are given by

P{T > t|A,x,m,GH , σ} = 1−
H∑
h=1

Φ
( log t−m(A,x)− τh

σ

)
πh, (1)

which may be directly estimated using posterior draws of the regression function and τh, πh.

Figure S1 shows estimated survival curves for randomly selected patients from the

SOLVD treatment trial. Averages of these individual-level survival curves are computed

for each treatment arm and compared with the corresponding Kaplan-Meier estimates of

survival. It is apparent from Figure S1 that considerable heterogeneity in patient risk is

present. Indeed, in the control arm, 20% percent of patients had an estimated median

survival time less than 500 days, 54% had between 500 and 1500 days, and 26% had an

estimated median survival time of more than 1500 days.
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B.2 Treatment Allocation

Individualized treatment recommendations may be directly obtained by combining a fit of

the non-parametric AFT model with a procedure minimizing the posterior risk associated

with a chosen loss function. For instance, when trying to minimize the proportion of treat-

ment misclassifications, one would assign treatment based on whether or not the posterior

probability of the event {θ(x) > 0} was greater than 0.5. Alternatively, one could optimize

a weighted mis-classification loss where mis-classifications are weighted by the correspond-

ing magnitude |θ(x)| of the treatment effect, in which case the optimal treatment decision

would depend on the posterior mean of 1{θ(x) > 0} × |θ(x)|. Though we do not explore

the issue here, such approaches to individualized treatment allocation could potentially

be used, for example, in the development of adaptive randomization strategies for clinical

trials.

C Simulation Study Using Friedman’s Randomly Gen-

erated Functions

In this extra simulation study, we further evaluate the performance of the NP-AFTree using

randomly generated nonlinear regression functions. To generate these random functions,

we use a similar approach to that used in Friedman (2001) to assess the performance of

gradient boosted regression trees. This approach allows us to test our approach on a wide

range of difficult nonlinear regression functions that have higher-order interactions. For

these simulations, we generated random regression functions m(A,x) via

m(A,xi) = F0(xi) + Aiθ(xi),

where the functions F0(x) and θ(x) are defined as

F0(xi) =
10∑
l=1

a1lg1l(z1l) and θ(xi) =
5∑
l=1

a2lg2l(z2l). (2)

The coefficients in (2) are generated as a1l ∼ Uniform(−1, 1) and a2l ∼ Uniform(−0.2, 0.3).

The vector zijl is a subset of xi of length njl where the randomly selected indices used

to construct the subset of xi are the same for each i. The subset sizes are generated as
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njl = min(brl + 1.5c, 10) where rjl ∼ Exponential(1/2).

gjl(zjl) = exp
{
− 1

2
(zjl − µjl)TVjl(zjl − µjl)

}
.

The elements µjlk of the vector µjl are generated as µjlk ∼ Normal(0, 1), and the ran-

dom matrix Vjl is generated as Vjl = UjlDjlU
T
jl, where Djl = diag{djl,1, . . . , djl,njl} with√

djl,k ∼ Uniform(0.1, 2) and where Ujl is a random orthogonal matrix. We generated the

covariate vectors xi = (xi,1, . . . , xi,20)
T of length 20 independently with xi,k ∼ Normal(0, 1).

Treatment assignments Ai were generated randomly with P (Ai = 1) = 1/2. These simu-

lation settings imply that θ(x) is positive for roughly 87% of individuals. The parameters

of the residual distributions were chosen so that the variances of each distribution were

approximately equal.

Figure S2 shows simulation results for NP-AFTree, SP-AFTree, and the parametric

AFT model. In this figure, we observe that root-mean squared error is broadly the same

for the NP-AFTree and SP-AFTree methods with each of the tree methods exhibiting

much better performance than Param-AFT. This similarity in RMSE of SP-AFTree and

NP-AFTree seems attributable to the difficulty of estimating these regression functions

which seems to overwhelm most of the advantages of more flexible modeling of the residual

distribution. Compared to SP-AFTree, NP-AFTree shows modestly better classification

performance, particularly for settings that have non-Gaussian residual distributions and

for settings with the larger (n = 1, 000) sample size. However, as in the simulations of

Section 4.1 of the main paper, there seems to be no advantage here of either NP-AFTree,

SP-AFTree, or Param-AFT over the naive treatment allocation approach when the sample

size is n = 200. These results suggest that fairly large sample sizes may be needed for there

to be any advantage over the naive approach which simply allocates individuals to the

treatment having the more beneficial overall treatment effect. For NP-AFTree the average

coverage is consistently a few percentage points below the desired 95% level suggesting that

modest under-coverage can occur in certain settings. Numerical values corresponding to

Figure S2 are shown in Table S3.
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D Choice of Prior over Splitting Values

As described in Chipman and others (1998) and Chipman and others (2010), the prior on

the splitting values c used at each internal node is uniform over the finite set of available

splitting values for the chosen splitting variable. In implementations of BART, the number

of possible available splitting values is typically truncated so that it cannot exceed a pre-

specified maximum value. The default setting used in the BayesTree package (Chipman

and McCulloch (2016)) has a maximum of 100 possible split points for each covariate, and

the default is to assign a uniform prior over potential split points that are equally spaced

over the range of the covariate. An alternative option offered in BayesTree is to, for each

covariate, assign a uniform prior over the observed quantiles of the covariate rather than

the uniform prior over the observed range of the covariate. Our default choice is to use the

uniform prior over covariate quantiles for the split point prior rather than the uniform prior

over equally spaced points. With this quantile-based prior, we found, in many simulations,

improved performance in terms of coverage.

E Approximate Distribution of the Residual Variance

As discussed in Section 2.4 of the main paper, the variance of the residual term may be

expressed as

Var(W |G, σ) = σ2 + σ2
τ

∞∑
h=1

πh
σ2
τ

(τ ∗h − µG∗)2 (3)

When assuming (as we do) that σ2
τ = κ, this becomes

Var(W |G, σ) = σ2
τ

[
σ2/κ+

∞∑
h=1

πh
σ2
τ

(τ ∗h − µG∗)2
]

(4)

Because we assume that G ∼ CDP (M,G0) with G0 as a Normal(0, σ2
τ ) distribution, the

term [(τ ∗h − µG∗)2]/σ2
τ has a standard normal distribution.

In Section 2.4 of the main paper, it is stated that the prior distribution of Var(W |G, σ)

is approximated with the following distribution

σ2
τ

[
ν/χ2

ν + Normal(1, {2(M + 1)}−1)
]
. (5)

The above approximation relies on the fact that
∑∞

h=1
πh
σ2
τ
(τ ∗h − µG∗)2 has an approximate

Normal(0, {2(M + 1)}−1) distribution in the sense described by Yamato (1984). A his-
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togram of simulated values of
∑∞

h=1
πh
σ2
τ
(τ ∗h − µG∗)2 along with a plot of the approximating

Normal(0, {2(M + 1)}−1) density is shown in Figure S3. In this figure, histograms are

shown for the cases of M = 25 and M = 50.

In Figure S4, we display a quantile-quantile plot of simulated values from the distribu-

tion of Var(W |G, σ) vs. the approximate theoretical quantiles obtained from the approxi-

mate prior distribution stated in (5).

F Cross-Validation across Hyperparameter Settings

When fitting the NP-AFT model with the SOLVD data, we considered several settings

for the hyperparameters, and for each setting of the hyperparameters, we computed cross-

validation scores to evaluate performance in terms of predicting patient outcomes and in

terms of characterizing HTE. For evaluating predictions of patient outcomes, we utilize,

as in Tian and others (2014) and Tian and others (2007), a direct measure of absolute

prediction error. In particular, for the kth test set Dk, we compute the following cross-

validation score

CV abs
k =

1

nk

∑
i∈Dk

δi

V̂ (Yi|Ai,xi)

∣∣∣ log Yi − m̂−Dk(Ai,xi)
∣∣∣, (6)

where nk is the number of patients in Dk and m̂−Dk(A,x) is the regression function esti-

mated from the kth training set. The weights used in (6) V̂ (Yi|Ai,xi) are estimates of the

censoring probability V (t|A,x) = P (C > t|A,x). The total K-fold cross-validation error is

computed as K−1
∑K

k=1CV
abs
k .

Figure S5 shows results from applying cross-validation to the SOLVD trials with 36

different settings of the hyperparameters. The censoring probabilities V̂ (Yi|A,xi) used as

weights in (6) were estimated using a Cox model. The 36 hyperparameter settings were

generated by varying the hyperparameter q which determines the parameters of the base

distribution G0, the hyperparameter k that determines the prior variance of the node values,

and the number of trees J . We varied q across the four levels, q = 0.25, 0.5, 0.90, 0.99; k

across the three levels, k = 1, 2, 3; and the number of trees J across the three levels,

J = 50, 200, 400. Ten-fold cross-validation was used for each setting of the hyperparameters.

As shown in Figure S5, the hyperparameter q appears to play the most important role in

driving the differences in cross-validation performance while larger values of the shrinkage
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parameter k seem to have a modest beneficial effect in the q = 0.25 and q = 0.5 settings.

The settings with the very conservative choice of q = 0.99 exhibit poor performance giving

similar cross-validation scores as a parametric AFT model with an assumed linear model for

the regression function. The setting with the best cross-validation score was q = 0.5, k =

3, J = 400. This cross-validation score, however, was not notably different than many of

the settings with either q = 0.25 and q = 0.5. For this reason, we continued to use the

default setting of q = 0.5, k = 2, and J = 200 in our analysis of the SOLVD trials.

G Simulation Results

More detailed simulation results from the simulation study described in Section 4.1 are

shown in Table S1. Table S1 corresponds to Figure 1 in the main paper.

H Handling Missing Covariates

Currently, our software does not support analyses where missing values of the patient co-

variates are present. Nevertheless, a number of missing-data models could be directly incor-

porated into our nonparametric AFT model. We describe here two missing-data approaches

and how they would fit into our BART-based AFT model. Each of these approaches could

be directly integrated into our posterior sampling scheme described in Section A by adding

an additional step (or series of extra steps). In each case, one would need to include an

extra Gibbs step to sample (for each patient i that has missing covariate values) from the

conditional distribution xi,mis|xi,obs where xi,mis denotes the missing covariate values of

patient i and xi,obs denotes the set of observed covariate values for patient i. If there are

additional parameters (e.g., α) governing the missing-data model, these would be updated

after first sampling from xi,mis|xi,obs,α.

One approach is to use the parametric class of covariate models described in Ibrahim

and others (1999). Here, the joint distribution of the covariate vector for patient i, xi =

(xi1, . . . , xip), is factored as

p(xi1, . . . , xip|α) = p(xip|xi,p−1, . . . , xi1,αp)p(xip−1|xi,p−2, . . . , xi1,αp−1) · · · p(xi2|xi1,α1),

(7)
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where α = (αT
1 , . . . ,α

T
p )T . Each one of the above p conditional distributions could be

modeled using a regression model with the form of the regression depending on the type

of covariate (i.e., continuous, binary, or categorical). For example, if xij is a continuous

covariate, one could assume that xij|xi,j−1, . . . , xi1,αj ∼ Normal(α0j +
∑j−1

k=1 αkjxik, σ
2
α,j)

where is αj is the vector of parameters αj = (α0j, . . . , αjj, σ
2
α,j)

T . Similarly, if xij is a

binary covariate, one could assume that xij|xi,j−1, . . . , xi1,αj ∼ Bernoulli
(
logit−1(α0j +∑j−1

k=1 αkjxik)
)

where in this case αj would be the parameter vector αj = (α0j, . . . , αjj)
T .

See Ibrahim and others (2001) for further discussion of posterior computation and choice

of prior distributions for the parameters α governing the covariate distribution (7).

Another class of missing-data models is the nonparametric sequential model described

in Xu and others (2016). With this approach, the conditional distribution of each covariate

xij given the remaining covariates is modeled with BART. For example, if xij is continuous,

it is assumed that the distribution of xij given the remaining covariates is Gaussian with

mean function µj(·) and variance σ2
j . This mean function µj(·) is then modeled using BART.

Likewise, if xij is binary, one instead assumes that xij has a Bernoulli distribution with

success probability hj(·) where hj(·) is again modeled using BART. With this approach,

the imputed covariate values are sampled one covariate at-a-time and then the BART

parameters (for the missing data model) are updated directly after imputing the missing

covariate values. This missing-data model would fit quite naturally into our posterior

sampling scheme as it is based on a collection of BART models. However, because it

involves updating the parameters of p separate BART models within each Gibbs iteration,

this approach may be very computationally intensive for even moderately large values of

p.
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Figure S1: Estimates of individual-specific survival curves for selected patients from the
SOLVD treatment trial. For each patient, the posterior mean of the survival functions
P{T > t|A,x,m,GH , σ} as defined in (1) are plotted. The solid black and red survival
curves are the average by treatment group of these estimated individual-specific surves.
The dashed survival curves are the Kaplan-Meier estimates for each treatment group.
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Figure S2: Simulations for AFT models with randomly generated regression functions.
Results are based on 50 simulation replications. Root mean-squared error, misclassification
proportion, and empirical coverage are shown for each method. Performance measures are
shown for the non-parametric tree-based AFT (NP-AFTree) method, the semi-parametric
tree-based AFT (SP-AFTree), and the parametric, linear regression - based AFT (Param-
AFT) approach. Four different choices of the residual distribution were chosen: a Gaussian
distribution, a Gumbel distribution with mean zero, a “standardized” Gamma distribution
with mean zero, and a mixture of three t-distributions with 3 degrees of freedom for each
mixture component.
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Figure S5: Ten-fold cross-validation for the SOLVD-T and SOLVD-P trials using the mean
absolute deviation estimate defined in (6). Twenty seven settings of the hyperparameters
are considered. The cross-validation score for the default setting of the hyperparameters
is marked with an ×. The horizontal red line denotes the ten-fold cross-validation score
of a parametric AFT model with log-normal errors where a linear regression model with
treatment-covariate interactions was assumed.
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Figure S6: Smoothed partial dependence plots for ejection fraction and creatinine levels,
and posterior distributions of treatment effect for men vs. women and for those with a
history of myorcardial infarction vs. those with no history of myocardial infarction (HIMI
vs. No HIMI).

15



1.0 1.5 2.0 2.5 3.0

0.40

0.45

0.50

0.55

0.60

Creatinine

D
if
fe

re
n

c
e

 i
n

 e
x
p

e
c
te

d
 l
o

g
 s

u
rv

iv
a

l

SOLVD−T: Male

SOLVD−T: Female

Figure S7: Estimated partial dependence function for baseline creatinine - separated by
gender. These were estimated only using data from the SOLVD-T trial. The gender-
subsetted partial dependence functions are defined by only averaging over those pa-
tients with a specific gender rather than averaging over all the patients in the study.
Specifically, the male partial dependence function (for the lth covariate) is defined as
ρmalel (z) = 1

nmale

∑n
i=1 ai,maleθ(z,xi,−l), where ai,male = 1 if patient i is male, ai,male = 0

otherwise, and nmale =
∑n

i=1 ai,male. Similarly, the female partial dependence function is

defined as ρfemalel (z) = 1
nfemale

∑n
i=1 ai,femaleθ(z,xi,−l).
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Table S1: Simulation Results for the regression functions based on the SOLVD trial data.
Root mean-squared error (RMSE), mis-classification proportion (MCprop), and empirical
coverage are shown for each of the methods. Performance measures are shown for the non-
parametric tree-based AFT (NP-AFTree) method, the semi-parametric tree-based AFT
(SP-AFTree), and the parametric, linear regression - based AFT (Param-AFT) approach.
Four different choices of the residual distribution were chosen: a Gaussian distribution,
a Gumbel distribution with mean zero, a “standardized” Gamma distribution with mean
zero, and a mixture of three t-distributions with 3 degrees of freedom for each mixture
component.

NP-AFTree SP-AFTree Param-AFT Naive

Distribution n Censoring RMSE MCprop Cover RMSE MCprop Cover RMSE MCprop Cover MCProp

Normal

200 none 0.053 0.144 0.995 0.060 0.155 0.986 0.148 0.294 0.898 0.115
200 light 0.054 0.129 0.998 0.059 0.138 0.986 0.151 0.290 0.904 0.115
200 heavy 0.058 0.142 1.000 0.068 0.163 0.994 0.186 0.338 0.897 0.115

1000 none 0.013 0.014 0.951 0.013 0.014 0.925 0.034 0.036 0.919 0.559
1000 light 0.013 0.016 0.965 0.014 0.017 0.924 0.036 0.044 0.921 0.559
1000 heavy 0.016 0.019 0.974 0.018 0.023 0.914 0.044 0.077 0.937 0.559

Gumbel

200 none 0.055 0.132 0.996 0.061 0.140 0.988 0.147 0.282 0.901 0.115
200 light 0.055 0.137 0.998 0.061 0.142 0.992 0.157 0.298 0.909 0.115
200 heavy 0.063 0.182 1.000 0.075 0.208 0.995 0.198 0.376 0.877 0.115

1000 none 0.013 0.015 0.959 0.013 0.015 0.925 0.034 0.038 0.917 0.559
1000 light 0.014 0.016 0.955 0.014 0.017 0.908 0.036 0.043 0.924 0.559
1000 heavy 0.017 0.018 0.977 0.018 0.021 0.910 0.044 0.078 0.937 0.559

Std-Gamma

200 none 0.050 0.138 0.997 0.054 0.143 0.997 0.146 0.289 0.904 0.115
200 light 0.051 0.134 1.000 0.057 0.148 0.996 0.165 0.308 0.919 0.115
200 heavy 0.058 0.145 0.999 0.070 0.165 0.990 0.363 0.334 0.892 0.115

1000 none 0.013 0.014 0.947 0.013 0.015 0.918 0.034 0.038 0.911 0.559
1000 light 0.014 0.016 0.952 0.014 0.016 0.906 0.036 0.044 0.915 0.559
1000 heavy 0.016 0.018 0.977 0.018 0.022 0.912 0.043 0.074 0.943 0.559

T-mixture

200 none 0.040 0.107 0.999 0.048 0.117 0.990 0.123 0.256 0.909 0.115
200 light 0.045 0.122 0.999 0.052 0.135 0.991 0.133 0.275 0.909 0.115
200 heavy 0.050 0.122 1.000 0.060 0.149 0.989 0.186 0.311 0.895 0.115

1000 none 0.025 0.038 0.977 0.025 0.039 0.973 0.044 0.072 0.934 0.559
1000 light 0.026 0.033 0.982 0.027 0.033 0.980 0.047 0.079 0.937 0.559
1000 heavy 0.031 0.046 0.979 0.032 0.048 0.974 0.059 0.113 0.938 0.559
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Table S2: Simulation results for AFT models with randomly generated regression functions.
Root mean-squared error (RMSE), mis-classification proportion (MCprop), and empirical
coverage are shown for each of the methods. Performance measures are shown for the non-
parametric tree-based AFT (NP-AFTree) method, the semi-parametric tree-based AFT
(SP-AFTree), and the parametric, linear regression - based AFT (Param-AFT) approach.

NP-AFTree SP-AFTree Param-AFT Naive

Distribution n Censoring RMSE MCprop Cover RMSE MCprop Cover RMSE MCprop Cover MCProp

Normal

200 none 0.170 0.163 0.902 0.169 0.157 0.902 0.429 0.234 0.884 0.101
200 light 0.196 0.142 0.868 0.195 0.141 0.867 0.439 0.244 0.862 0.151
200 heavy 0.213 0.129 0.883 0.212 0.126 0.882 0.583 0.240 0.849 0.108

1000 none 0.116 0.084 0.872 0.115 0.089 0.877 0.221 0.171 0.825 0.126
1000 light 0.114 0.094 0.876 0.114 0.096 0.882 0.237 0.171 0.793 0.116
1000 heavy 0.146 0.096 0.863 0.146 0.097 0.862 0.283 0.194 0.815 0.154

Gumbel

200 none 0.199 0.130 0.885 0.198 0.130 0.884 0.408 0.280 0.890 0.155
200 light 0.188 0.164 0.889 0.187 0.160 0.888 0.759 0.224 0.857 0.122
200 heavy 0.210 0.183 0.865 0.206 0.169 0.855 2.509 0.269 0.788 0.124

1000 none 0.110 0.060 0.886 0.113 0.061 0.881 0.228 0.140 0.791 0.114
1000 light 0.127 0.066 0.877 0.126 0.069 0.874 0.235 0.198 0.797 0.149
1000 heavy 0.176 0.109 0.830 0.177 0.115 0.830 0.289 0.183 0.795 0.118

Std-Gamma

200 none 0.182 0.112 0.871 0.181 0.114 0.873 0.386 0.235 0.886 0.091
200 light 0.207 0.145 0.873 0.206 0.151 0.867 0.443 0.276 0.863 0.134
200 heavy 0.200 0.145 0.888 0.198 0.145 0.886 2.848 0.281 0.869 0.160

1000 none 0.013 0.014 0.947 0.013 0.015 0.918 0.034 0.038 0.911 0.559
1000 light 0.014 0.016 0.952 0.014 0.016 0.906 0.036 0.044 0.915 0.559
1000 heavy 0.016 0.018 0.977 0.018 0.022 0.912 0.043 0.074 0.943 0.559

T-mixture

200 none 0.195 0.116 0.882 0.195 0.117 0.884 0.395 0.285 0.887 0.211
200 light 0.189 0.111 0.886 0.188 0.116 0.886 0.419 0.210 0.855 0.112
200 heavy 0.214 0.144 0.866 0.212 0.150 0.857 0.807 0.267 0.831 0.138

1000 none 0.025 0.038 0.977 0.025 0.039 0.973 0.044 0.072 0.934 0.559
1000 light 0.026 0.033 0.982 0.027 0.033 0.980 0.047 0.079 0.937 0.559
1000 heavy 0.031 0.046 0.979 0.032 0.048 0.974 0.059 0.113 0.938 0.559
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Table S3: Simulation results for AFT models with randomly generated regression functions.
Comparison of two different approaches for treatment inclusion. Root mean-squared error
(RMSE), mis-classification proportion (MCprop), and empirical coverage are shown for each
of the methods. Performance measures are shown for two approaches: (1) the original non-
parametric tree-based AFT (NP-AFTree) method and (2) the non-parametric tree-based
AFT model applied to the two treatment arms separately (NP-AFTree Split Sample). With
the second approach, we split the sample by treatment group, apply BART to each, then
use the two models to generate an ITE estimate (and uncertainty estimate) for each patient.

NP-AFTree NP-AFTree (Split Sample)

Distribution n Censoring RMSE MCprop Cover RMSE MCprop Cover

Normal

200 none 0.185 0.127 0.863 0.246 0.158 0.998
200 light 0.180 0.116 0.895 0.244 0.203 0.994
200 heavy 0.203 0.159 0.860 0.276 0.258 0.993
1000 none 0.116 0.072 0.868 0.223 0.156 0.983
1000 light 0.144 0.071 0.862 0.233 0.140 0.973
1000 heavy 0.157 0.062 0.844 0.284 0.172 0.954

Gumbel

200 none 0.195 0.098 0.856 0.255 0.130 0.996
200 light 0.191 0.126 0.869 0.257 0.186 0.987
200 heavy 0.212 0.123 0.866 0.329 0.245 0.937
1000 none 0.130 0.066 0.850 0.248 0.134 0.980
1000 light 0.140 0.080 0.867 0.260 0.165 0.963
1000 heavy 0.151 0.104 0.834 0.281 0.250 0.944
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