Supporting Information

Promising lipophilic PyTri extractant for selective trivalent actinide separation from High Active Raffinate

Annalisa Ossola¹, Eros Mossini¹, Elena Macerata^{1*}, Walter Panzeri², Andrea Mele^{2,3}, Mario Mariani¹

¹ Department of Energy, Politecnico di Milano, Piazza L. da Vinci 32, I-20133 Milano, Italy;

Tel: +39.02.23996385;

² C.N.R. – Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimiche "G. Natta" (SCITEC), Sezione "U.O.S. Milano Politecnico", Milan, Italy

³ Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy

* Corresponding author:

Tel.: +39 02 2399 6358; fax: +39 02 2399 3863.

e-mail address: <u>elena.macerata@polimi.it</u>.

Table of Contents

1. Selectivity towards Ln	3
2. Resistance towards hydrolysis and radiolysis	3
2. By-products identification	4

1. Selectivity towards Ln

Table S1 Separation factors of ²⁴¹Am over trivalent ¹⁵²Eu, Y and lighter Ln (La-Gd) as a function of the nitric acid concentration of the aqueous phase. Organic phase: 0.2 M PTEH in kerosene + 10 vol.% 1-octanol mixture. Aqueous phase: HNO₃ solutions loaded with Y and lighter Ln (La-Gd), besides trivalent ²⁴¹Am and ¹⁵²Eu as radiotracers

	SF(Am ³⁺ /M ³⁺)			
	1 M	2 M	3 M	
Y	524 ± 74	321 ± 45	213 ± 30	
La	> 1000	300 ± 42	128 ± 18	
Ce	724 ± 102	330 ± 46	165 ± 23	
Pr	378 ± 53	375 ± 53	237 ± 33	
Nd	239 ± 33	378 ± 53	340 ± 48	
Sm	132 ± 18	196 ± 27	210 ± 29	
Eu	99 ± 14	110 ± 15	102 ± 14	
Gd	91 ± 12	76 ± 10	66 ± 9	
¹⁵² Eu	82 ± 11	86 ± 12	79 ± 11	

2. Resistance towards hydrolysis and radiolysis

100 kGy, (v) irradiated at 200 kGy, (vi) irradiated at 300 kGy, (vii) irradiated at 100 kGy in contact with 3 M nitric acid and (viii) irradiated at 200 kGy in contact with 3 M nitric acid

2. By-products identification

The ESI-MS² spectrum of the protonated adduct of the by-product with molar mass 563.6 g·mol⁻¹ and identification attempts of some fragments are reported in Figure S2 and in Table S2, respectively. It was hypothesized to be the outcome of 1-octanal radical addition on the lateral chain. 1-octanal is supposed to be produced by secondary reaction of 1-octanol by-product. The ESI-tandem mass spectrometry attested that the proposed structure for by-product with molar mass 563.6 g·mol⁻¹ is reasonable.

Figure S2 HPLC coupled with ESI-MS² spectrum of protonated adduct of PTEH by-product with molar mass 563.6 g·mol⁻¹

Table S2 Attempt of identification of some fragments in the MS² spectrum of PTEH by-product with molar mass 563.6 g·mol1

The MS² spectrum of the protonated adduct of the by-product with molar mass 599.5 g·mol⁻¹ and identification attempts of some fragments are reported in Figure S3 and in Table S3, respectively. It was hypothesized that a kerosene carbon-centered radical is added on the lateral chain. As in the previous case, the ESI-tandem mass spectrometry attested that the proposed structure for by-product with molar mass 599.5 g·mol⁻¹ is reasonable.

Figure S3 HPLC coupled with ESI-MS² spectrum of protonated adduct of PTEH by-product with molar mass 599.5 g·mol⁻¹

Table S3 Attempt of identification of some fragments in the MS² spectrum of PTEH by-product with molar mass 599.5 g·mol⁻¹

Finally, the MS^2 spectrum of the protonated adduct of the by-product with molar mass 580.5 g·mol⁻¹ and identification attempts of some fragments are reported in Figure S4 and in Table S4, respectively. In this case, the addition of C₆ and nitric acid radicals produced an adduct on the lateral chain. Once again, the ESI-tandem mass spectrometry proved that the proposed structure for by-product with molar mass 580.5 g·mol⁻¹ is realistic.

Figure S4 HPLC coupled with ESI-MS² spectrum of protonated adduct of PTEH by-product with molar mass 580.5 g·mol⁻¹

Table S4 Attempt of identification of some fragments in the MS² spectrum of PTEH by-product with molar mass 580.5 g·mol⁻¹

