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Optimization Techniques

Levenberg-Marquardt Algorithm (LM)

The most common tool used to optimize the weight and bias of multilayer perceptron and cascade 

forward is the Levenberg-Marquardt (LM) algorithm, also known as the damped least-squares 

method 1. This algorithm is used to solve nonlinear least-squares problems that find local 

minimums. This method does not require to calculate of the Hessian matrix and the gradient is 

calculated from the following equation 2:

𝐻 = 𝐽𝑇𝐽 (1)

𝑔 = 𝐽𝑇𝑒 (2)

where  stands a vector of network errors, and  expresses a Jacobian matrix. In the following e J

relation of updating the LM algorithm, the mentioned approximation with the Hessian matrix is 

used:

𝑥𝑘 + 1 = 𝑥𝑘 ― (𝐽𝑇𝐽 ― 𝜂𝐼) ―1𝐽𝑇𝑒 (3)

 is a constant, and  denotes connection weights.  increases when an experimental step enlarges η x η

the efficiency function.

Bayesian Regularization Algorithm (BR)

The Bayesian Regularization (BR) training algorithm, according to Levenberg-Marquardt 

optimization, updates weights and biases by minimizing a combination of squared errors and 

weights 3. Afterward, BR calculates the right combination to develop a network with superior 

generalization 4. Network weights are expressed as a training cost function by the BR algorithm 

using the following equation:
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𝐹(𝜔) = 𝛼𝐸𝜔 + 𝛽𝐸𝐷 (4)

In which  and  are the sum of the network errors and the sum of the squared network weights, ED Eω

respectively,  denotes the objective function. In the BR optimizer, the network weights are F(ω)

random variables in which the network weights and the training sets have a Gaussian distribution. 

α and β Factors are objective function parameters that are clarified based on Bayes’ theorem.

Scaled Conjugate Gradient Algorithm (SCG)

One of the basic features of the backpropagation algorithm is to reach the most negative gradient, 

and it uses the adjustment of weights in the steepest descending direction 5. Along such a direction 

a decrease in function performance is observed faster but does not cause faster convergence. In this 

direction, a search for the conjugate gradient (CG) method leads to faster convergence than the 

steepest descending direction and the error minimization is maintained in the previous steps 6.

𝑃0 = ― 𝑔0 (5)

P is search direction, and  denotes the steepest descent direction in the first iteration. This ― g0

direction is called conjugate direction, commonly used by conjugate gradient algorithms with the 

search line 7. To evaluate the optimal distance to move in the current search direction, the step size 

is determined by a line search technique 6, which is shown by the following equation:

𝑥𝑘 + 1 = 𝑥𝑘 + 𝛼𝑘𝑔𝑘 (6)

In other words, the proper search direction is calculated in a way that conjugates with the previous 

search direction.

𝑃𝑘 = ― 𝑔𝑘 + 𝛽𝑘𝑃𝑘 ― 1 (7)

Different versions of the conjugate algorithm are distinguished in the way that  is calculated 8.β
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Resilient Backpropagation Algorithm (RB)

The most widely used transfer functions in multilayer perceptron neural networks are Sigmoid and 

Tansig, which compress an infinite input range into a finite output. When using the steepest descent 

to train the network using these activation functions, the slope is small when an extensive input 

enters the function, leading to slight changes in weights and biases. The Resilient backpropagation 

method is used to remove the adverse effect of the partial derivatives, which is specified by the 

derivatives only for the direction of updating weights 9.
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