
Appendix 1:  Random Coefficient Model (RCM a.k.a. Growth Curves) 

For the ith person, i=1, 2, ..., N, measured at Ti personal time points t=1, 2, . . ., Ti (note, the time 

points are personal in that each person may have a different number of time points, they may be at 

differing intervals between them, and they may occur at completely different times from those of 

other participants).  Then 𝑇 ൌ ∑ 𝑇௜
ே
௜ୀଵ  is the total number of phenotypic measurements across all 

subjects and time points.  Let Yi,t and  Agei,t denote the phenotypes and the corresponding Ages of 

the ith person at their personal time of measurement t.  We call the first time point for each person 

their “baseline.”  Denote the time after baseline as Ti,t = (Agei,t -Agei,1). Let Xi,t denote a set of k 

relevant covariates for the ith person measured at time t, that may be used to predict the phenotype 

(such as Baseline Age=Agei,1, sex, race, exposures, etc. as well as any higher order interactions 

between these).  A linear Growth Curve is a mixed linear model Y = X + Z in which we have a 

set of k fixed effect covariates Xi,t as well as two random effects, one for random intercepts and 

one for time after baseline, Ti,t.  This model assumes that every subject, i, has their own personal 

linear trajectory, with a personal intercept and slope, i and i , respectively), with independent 

errors, i,t .  For unrelated (independent) subjects, for each i, t 

Yi,t =Xi,t + [i + i Ti,t ] + i,t 

The random effects part of the model makes the additional assumption that 
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where  and  are the fixed effect intercept and slope (over time after baseline), respectively, 

𝜎ఈ
ଶ and 𝜎ఉ

ଶ are the variances of the personal (random) intercepts and slopes, respectively, and  is 



the correlation between personal (random) slopes and intercepts for the same subject. The model 

is fit using maximum likelihood.   

For longitudinal pedigree data, such as LLFS, the kinship matrix can be added as an additional 

random effect to account for the non-independence within pedigrees.  Alternatively, the family 

bootstrap method1 can be used on the above mixed model for independent subjects to achieve the 

same goal, with asymptotically equivalent results. 

 

Appendix 2: Clusters of Multiple Rare variants can produce Linkage without GWAS 

association 

 We hypothesize that multiple rare causal variants for complex traits may cluster in a single gene 

(or region), much as they often do for monogenic traits (e.g. BRCA1, CFTR, DMD, etc.)  If this 

happens, the multiple rare variants may be individually too small in effect size or too low in LD 

with GWAS SNPs to be found in a GWAS screen since common variants are poor tags for rare 

ones2, but they may combine sufficiently strongly to produce a strong linkage peak.  This would 

explain our and many others’ findings of discordance between linkage and GWAS associations.  

To verify whether this is possible, we simulated data using software we developed for the Genetic 

Analysis Workshop 163, using real GWAS data, and real pedigree structures from the FHS, but 

simulated complex trait phenotypes from multiple causal variants that we selected throughout the 

genome.  We simulated traits with heritabilities in the 40-60% range, caused by hundreds to 

thousands of polygenic SNPs throughout the genome, each explaining fractions of a percent of the 

variance.  We specifically selected clusters of 9 causative mutations to be in a single gene, and 

examined the net effect on linkage as well as to GWAS analysis.  In Appendix 2 Figure 1 we 

show the linkage and GWAS results from one such simulation scenario, in which, for each of the 



9 largest pedigrees, we chose a different SNP to be causative for that lineage.  To make the 9 

causative variants “rare”, we recoded those 9 SNPs to be homozygous to the common allele in all 

other families.  We then removed the 9 causative SNPs from the GWAS analysis since variants on 

GWAS chips tend to be tags.  We simulated a trait with locus-specific heritabilities of 2% at each 

of these 9 variants, for 18% total explained by this super-locus.  The 5 solid lines show the linkage 

analyses for the first 5 replicates (typical of the 100 replicates).  A partial GWAS Manhattan plot 

association of the non-causative SNPs from the 1st replicate (-log P > 2 only) is overlaid.  In 100 

replicates, the median LOD score in the region was 2.43 (s.d. 1.04, max 6.86, min 0.511), while 

the –log p value for GWAS markers within 10MB of the true causal variants was < 6, which is 

well below the 10-8 GW significance level.  This signal is just detectable by linkage, but well below 

the GWAS threshold.  Most importantly, the very rare family specific causal mutations themselves 

were significant between P=10-10 and P=10-40 using our proposed family mixed model association 

test.  Thus, when we actually sequence such rare variants, we have excellent power to detect 

association.  Only because we used family data with multiple members segregating the rare 

mutation, were we able to detect them through linkage in the first place.  These results demonstrate 

the importance of family data and suggest that family-based association tests will be very useful 

in identifying rare mutations in sequence data.  They also show that if multiple rare variants cluster 

in the genome they may produce a strong linkage peak but be missed by GWAS.  

  



Appendix 2 Figure 1.  Simulation of Linkage Peak caused by  

Mulitple Rare Variant Loci Clustered in a Single Gene Region 

 

Legend: 

Mb=Mega-base position on chromosome 

Shaded area at 120 Mb = Cluster of rare causal variants for the simulated phenotype 

left y axis LOD=LOD score (significance of linkage).   LOD scores at each bp location are 

given by the solid connected lines (each line represents a different simulation using the 

same cluster of rare variants, and show the variability in linkage evidence possible in 

producing phenotypes).  LOD> 3 is traditionally genome-wide linkage significance. 

right y-axis -log(p)=- minus log base 10 of the association p-value in GWAS.  GWAS results 

are shown as Manhattan plot solid dots (unimpressive –log10(p) values < 2 are suppressed 

to avoid overcrowding.  A –log10(p)>8 is traditionally genome-wide association significance 
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