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INTRODUCTION 

The Supplementary Material section provides the following 

expansions of the main body topics: (1) more detailed 

description of the physiological motivation for the coordination 

model of Fig. 1 and Fig. 2; (2) more details of our standard low-

level feature extraction, as well as introducing other vocal 

source features such as harmonic-to-noise ratio, vocal creak,  

and glottal open quotient; (3) effect sizes of summary statistics 

of the low-level features across the pre- and post-COVID-19 

conditions as a comparative reference to the high-level feature 

effect sizes; (4) further description of the subject- and session-

dependent environmental conditions; (5) more detailed 

description of the correlation methodology; and (6) expanded 

algorithm descriptions and software references to expedite use 

by others in the field. 

I. MATERIALS AND METHODS  

A. Dataset Characterization 

As introduced in the main body, audio data for five subjects, 

pre-COVID-19 (before exposure) and post-COVID-19 (after 

positive but asymptomatic), was obtained from YouTube, 

Instagram, and Twitter sources.  The recordings were taken 

from press conferences, TV shows, and TV interviews all with 

celebrities or broadcast hosts, typically using high-quality 

recording facilities, but in varying environmental conditions. 

Generally, recordings occur in multiple environments within a 

pre- or post-stage. For each recording session, the data was 

segmented manually from the videos excluding secondary 

speakers such as interviewers or interviewees and other 

interferences. Table 1 provides for each of the five subjects the 

number of pre- and post-diagnosis segments and average 

segment durations, and approximate pre- and post-diagnosis 

recording times. Although the range of pre-diagnosis times 

(days-to-years) is much greater than post-diagnosis times 

(days), because the subjects are all young- to mid-aged adults, 

voice change due to development or aging is not a concern. 
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Nevertheless, there is always the possibility of a pathological 

state arising, e.g., nodules or polyps, over a long time stretch. 

 
Table 1: Segment statistics of pre- and post-COVID-19 YouTube, 

Twitter, and Instagram videos.  
 

 

 
Table 2: SNR statistics of mean and standard deviation (st.dev.) of 

segments across subjects pre- and post-COVID-19. 
 

 

Table 2 provides a characterization of environmental conditions 

with respect to signal-to-noise ratio (SNR). Here we 

approximated SNR as the average signal energy during pauses 

(non-speech) divided by the average energy during speech in 

decibels (dB). Non-speech versus speech intervals were 

obtained using a standard speech activity detector [1]. On 

average there is a consistency across pre- and post-conditions 

per subject (about 1 dB difference) while the range of SNR from 

roughly 18 dB to 10 dB is on the order of noise levels we have 

encountered in using coordination measures effectively in 

tracking a variety of neurocognitive conditions [2][3]. (We note 

that all videos were mp3 encoded.) A stronger environmental 

effect is that of reverberation.  Reverberation has proven more 

difficult to measure quantitatively, but the effect seems to stand 

out perceptually in some segments, for example, one involving 

a hall and a few others in home environments during quarantine. 

We return to the effect of reverberation in Section II.C. 
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It is also important to emphasize that due to the nature of the 

online video source (YouTube, Instagram, and Twitter), it is 

natural to consider the emotional context (e.g., the subjects’ 

mood or stress level) that could confound the results. The 

subjects considered, however, routinely appear at press 

conferences and TV shows and interviews, so elevated heart 

rate and other confounders should be normalized, e.g., this isn't 

their first time in front of a camera, thus it is probably a 

consistent response for them. Nevertheless, there is the 

possibility of mood change such as due to self-knowledge of the 

COVID-19 diagnosis in the post- versus the pre-state. This is a 

consideration inherent in any longitudinal speech data 

collection. 

B. Subsystem model  

In the main Letter body, we presented a speech signal 

processing model that was physiologically motivated (Repeated 

here in Fig. 1.) In this model, coordination can occur both 

between the respiratory and laryngeal subsystems, and between 

the laryngeal and articulatory systems. It is hypothesized that 

this coordination across subsystems can change in the presence 

of COVID-19 either due to physiological insult to the 

respiratory system or to impaired neurological control of these 

subsystems.   In this model, the ‘intensity’ of the airflow 

(velocity), that we referred to as respiratory intensity, governs 

time-varying loudness, and is coupled (coordinated) with 

phonation, i.e., the rate and nature of  vibration of the vocal 

folds (pitch), stability of phonation, and aspiration at the folds 

[4]. The estimation of low-level features associated with each 

subsystem, and used as a basis for the high-level coordination 

features, is discussed in next section.  

 

Fig. 1: Fundamental speech-production subsystem model and two of 

the potential points of coordination (dashed blue). 

 

Stepping back momentarily for a deeper look into the model 

components, we see that respiratory intensity is modeled as an 

envelope that amplitude-modulates the airflow (induced by 

pressure in the lungs) that occurs at the vocal folds within the 

larynx. The airflow at the folds is either quasi-periodic or 

aspirated due to turbulence at the folds, amplitude-modulated 

by the respiratory envelope and is further modified by the vocal 

tract. Our assumption is that we can estimate the respiratory 

intensity as the envelope of the speech signal measured at the 

lip output..  

C. Low-level feature extraction 

We have found in previous work that the speech envelope is 

dominated by the respiratory intensity, but also contains a 

secondary resonance-harmonic interaction component that can 

occur as harmonics scan vocal tract resonances with time-

varying pitch [5][6]. Nevertheless, the manner in which we 

extract the speech envelope yields a signal that approximately 

follows the speech signal’s time-varying loudness [5][6] and is 

used as a proxy for respiration. Specifcially, the envelope was 

extracted using a custom MATLAB script that provides a 

smooth contour of amplitude peaks based on an iterative time-

domain signal envelope estimation [5][6].  

 

For the laryngeal subsystem, we compute fundamental 

frequency (‘pitch’) of the vocal fold vibration with an 

autocorrelation-based approach [7][8]. In addition, we compute 

many standard low-level features used in the speech community 

that characterize the nature of the vocal source. One such 

feature, cepstral peak prominence (CPP), captures the stability 

of periodicity in the vocal-fold vibration. The CPP is defined as 

the difference in dB between the magnitude of the highest peak 

and the noise floor in the power cepstrum which is the result of 

taking the inverse Fourier transform of the logarithm of the 

estimated spectrum of a signal [9]. Empirically, the CPP has 

been found to be robust in being used as an important measure 

of voice pathology and has been used effectively in 

neurocognitive applications [9][10][11]. Because the 

respiratory and laryngeal systems are coupled, the CPP can 

potentially capture changes in the degree of aperiodicity and 

aspiration at the vocal folds, that can change with insult to the 

respiratory system by COVID19. 

 

Although possibly a less robust measure in the presence of a 

noise background, another more direct approach to getting at 

aspiration is through the harmonics-to-noise (HNR) ratio which 

is the ratio, in decibels (dB), of the power of the harmonic 

(periodic) signal from vocal-fold vibration and the power of the 

speech noise signal at the vocal folds created by turbulence as 

air rushes past the vocal folds from the lungs [12]. HNR is 

thought to reflect breathiness in a voice.  Yet another vocal 

source measure is termed vocal creak, corresponding to what is 

often referred to as a ‘creaky voice’, which reflects large 

irregularity in pitch periods (typically with low average pitch) 

and high peakiness of airflow pulses that excite the vocal tract 

[13][14]. The value here is given as a creak probability. We 

have also have begun to explore the Glottal Open Quotient 

(GOQ) which is the ratio of the time duration over which the 

folds are open relative to the full glottal cycle. A larger GOQ 

often results in more turbulent airflow at the folds. Our 

fundamental frequency [8], CPP [15], and HNR [8] measures 

are obtained from the open source software package Praat [7] 

and the GOQ with the open source tool VOICEBOX [16].  

 

Finally, our low-level features also aim to reflect the temporal 

dynamics of the articulatory component. As a proxy for 

articulation, a primary feature set is comprised of the vocal tract 

resonances, specifically the formant center frequencies, 

estimated by a Kalman filter technique, tracking the first three 

formant frequencies while also smoothly coasting through 

nonspeech regions. Here we use the open-source software 

package KARMA [1] to compute the first three formant 

frequencies (F1, F2, F3). Because of the embedded Kalman 

filtering, this method has proven robust in many applications 
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and compares well against other methods of formant estimation 

[17]. 

D. High-level feature extraction 

Our high-level features, derived from low-level features, are 

designed to capture coordination of the temporal dynamics of 

speech production subsystems at different time scales for the 

two coordination points illustrated in the model of Fig. 1. This 

approach has been used for characterization of psychomotor 

slowing in depression, cognitive load and fatigue, and a variety 

of other neuromotor conditions [2][3].  

 

Multivariate auto- and cross-correlations are computed within 

and across the underlying speech subsystems. We refer to this 

as correlation structure. Specifically, time-delay embedding is 

used to expand the dimensionality of the feature time series, 

resulting in a correlation matrix comprising auto- and cross-

correlation patterns that represents coupling strengths across 

feature channels at multiple time delays.  The eigenspectrum of 

the correlation matrix quantifies and summarizes the frequency 

properties of the set of feature trajectories. Higher complexity 

across multiple channels is reflected in a more uniform 

distribution of eigenvalues, with lower complexity reflected in 

a larger proportion of the overall signal variability being 

concentrated in a small number of eigenvalues, often with the 

high-rank eigenvalues being lower in amplitude.  

 

For each speech segment, correlation matrices are calculated 

from various combinations of feature trajectories from the 

different speech subsystems. Each matrix contains the 

correlation coefficients between the time-series at specific time 

delays to create the embedding space. Each matrix is computed 

at a specific delay scale, i.e., time-sampling interval (e.g., 10, 

30, 70, or 150 ms), with 15 time-delays used per scale. The 

delay scales allow for characterization of coupling of signals at 

different temporal resolutions. In the current work, eigenspectra 

were computed with a 10 ms delay scale and thus a relatively 

fine time resolution. Each matrix comparing n signals has a 

dimension of (n*15 x n*15). For all correlations, an automatic 

masking technique was used to include only speech within a 

segment, i.e., no pauses. The pipeline for the methodology is 

illustrated in Fig. 2 with the example of the generation of a 

formant frequency track correlation matrix based on the first 3 

formants. Further mathematical details of this approach can be 

found in [2][3]. 

 

 

 

Fig. 2: Signal processing and feature extraction pipeline for 

eigenspectrum feature calculation. A caricature of effect sizes for three 

different states is shown: “healthy” or baseline (x-axis), high 

complexity (excessive mode independence or “erratic”), and low 

complexity (too little mode independence or “overly coupled”).  

 

E. Effect size calculation 
 
In understanding the relative importance of a feature set, we 

compute the Cohen’s d effect size as the difference of the pre- 

and post-condition feature means normalized by the average of 

the standard deviations: 

 

           𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 =  (𝑀𝑝𝑜𝑠𝑡  –  𝑀𝑝𝑟𝑒) 𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑⁄       (1) 
 

where: 
 

           M is the mean of each group 

           𝑆𝐷𝑝𝑜𝑜𝑙𝑒𝑑 =  √(𝑆𝐷𝑝𝑟𝑒
2 +  𝑆𝐷𝑝𝑜𝑠𝑡

2 ) 2⁄        

 

The right-bottom panel of Fig. 2 provides a caricature of 

eigenspectral effect sizes for three different states: ‘healthy’ or 

baseline (x-axis), high complexity (excessive mode 

independence or ‘erratic’), and low complexity (too little mode 

independence or ‘overly coupled’).  

 

For the five subjects, independently and combined, the Cohen’s 

d effect sizes pre- versus post-COVID-19 were computed based 

on auto- and cross-correlation for a variety of vocal features. 

These measures are obtained from low-level respiration 

intensity, fundamental frequency, cepstral peak prominence, 

and formant center frequencies. Eigenvalues were computed for 

each audio segment. The effect sizes are then compared 

between the pre-segments and the post-segments, and the total 

number of segments depends on the comparison being 

made. The group level, i.e., combined subjects, averages out 

differences within an individual and reveals trends at a higher 

level that is likely more robust than for any one subject. There 

are obviously individual differences depending on recording 

and also day-to-day variance, but the group comparison aims to 

get at a higher-level pattern. 

II. RESULTS 

In this section, effect sizes are computed first for low-level 

(univariate) features as a comparative reference for the high-
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level coordination-based (multivariate) features.  Low-level 

features include fundamental frequency, CPP, HNR, GOQ, and 

formant center frequencies. We then proceed to expand on 

coordination results of the main Letter, investigating (1) effect 

sizes associated with the (auto)correlation structure of 

respiratory intensity (via the speech envelope) and (2) a glimpse 

into environmental effects by looking at signal-to-noise ratio 

(SNR) for a subset of subjects. 

A. Univariate feature summary statistics 

Tables 3 and 4 provide mean and standard deviation summary 

statistics of the conventional univariate low-level features 

associated with phonatory and articulatory vocal subsystems. 

Statistics are shown for differences across the pre- and post-

COVID-19 state and are denoted by ** for p values less than 

0.05.  

 
Table 3: Mean and standard deviation statistics for univariate vocal 

features. Statistics are shown for differences across the pre- and post- 

COVID-19.  
 

 
 

Table 4: Cohen’s d effect sizes for univariate vocal features for 

statistics of Table 3. Effect size values are shown for differences across 

the pre- and post-COVID-19 state. Features with p < 0.05 are marked 

with **.  
 

 

 

For the laryngeal-based variables, we see a lowering of average 

pitch perhaps consistent with heavier, less pliant vocal folds due 

to inflammation, while the smaller CPP and larger creak 

probability with the post-condition may be associated with a 

more erratic vocal-fold vibration. A lower HNR may be 

associated with increased aspiration in the speech signal due 

perhaps to atypical closing of the folds.   However, the glottal 

open quotient (GOQ) (notoriously most difficult to measure 

especially with background noise), is not consistent with an 

atypical closing of the folds and barely changes, not showing 

significance (p>0.05). The changes in F1 and F2 mean and 

standard deviation have no intuitive interpretation. 

B. Correlation structure of respiration 

As with correlation structure across vocal subsystems, we can 

explore the (auto)correlation structure within a single 

component trajectory of a subsystem. Given the importance of 

respiration in the COVID-19 context, Fig. 3 provides the 

eigenspectral-based effect size associated with respiratory 

intensity for the group and individual subjects with high-rank 

eigenvalues tending lower for the post-COVID-19 cases, 

indicating perhaps less independence of movement. 

 

 
 
Fig. 3: Influence of COVID-19 on coordination of respiratory intensity 

(as measured through the speech envelope). Effect sizes greater in 

magnitude than 0.37 in the comparison across all subjects have 

corresponding p < 0.05. 

 

C. Subject-dependent correlation structure 

Regarding signal quality, due to the nature of the online video 

sources,we have noted there is a variety of inter- and intra- 

subject recording variability.  Given that background noise 

levels are typically low in the given cases, the most perceptually 

notable effect is reverberation, possibly modifying the true 

effect sizes, over- or underestimating their importance. 

 

 
          
Fig. 4: Effect size comparison for eigenspectra of full group (N=5) 

versus two subjects combined with perceptually similar reverberant 

conditions. Clockwise from upper left: (A) respiratory intensity (as 

measured through the speech envelope) and pitch (fundamental 

frequency) ( #eigenvalues = 30 = 2 features x 15 delays); (B) 

respiratory intensity and CPP ( #eigenvalues = 30 = 2 features x 15 

delays); (C) pitch (fundamental frequency) and articulation (3 formant 

center frequencies) ( #eigenvalues = 60 = 4 features x 15 delays) ; (D) 

respiration intensity ( #eigenvalues = 15 = 1 feature x 15 delays). 

Effect sizes greater in magnitude than 0.37 have corresponding p < 

0.05. 

 

An example isolating two of the subjects with more consistent, 

least reverberant environments (as determined perceptually), 

shown in Fig. 4, enhances the combined effect sizes relative to 

Laryngeal Articulatory

F0 HNR CPP Creak GOQ F1 F2

Pre-COVID-19 
(mean/st. dev.)

129.81/
29.86

-15.73/
67.42

19.19/
3.63

0.05/
0.10

0.701/
0.01

462.06/
176.01

1746.02/
369.29

Post-COVID-19 
(mean/st. dev.)

116.28/
21.48

-29.33/
77.75

18.14/
3.11

0.08/
0.12

0.701/
0.01

417.36/
221.13

1814.56/
392.72

Effect Size Laryngeal Articulatory

Post vs Pre F0 HNR CPP Creak GOQ F1 F2

Mean -0.50** -0.85** -0.63** 0.48** -0.22 -0.51** 0.44**

St. Dev. -0.75** 0.64** -0.81** 0.24 -0.30 0.73** 0.29
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the N=5 case. Specifically, for the combined two selected 

subjects, coordination measures involving respiratory intensity 

show a stronger reduction in complexity of coordination, while 

coordination of fundamental frequency with articulation shows 

an increased variability relative to the full N=5 case. 

III. DISCUSSION AND CONCLUSIONS 

This exploratory study has provided a framework to investigate 

coordination-based vocal biomarkers for early warning and 

tracking of COVID-19. Our univariate summary statistics show 

generally small but  interpretable effect sizes for mean and/or 

standard deviation that may be consistent with the pre- versus 

post-COVID-19 conditions. Such features could be used in 

conjunction with coordination-based features.  
 
Our effect sizes associated with coordination of respiratory 

intensity (as measured through the speech envelope) with 

laryngeal activitiy indicate lower complexity and thus a 

breathing pattern and laryngeal coordination with less 

variability than typical during speaking. On the other hand, 

coordination of laryngeal and articulatory activity revealed the 

opposite effect with apparently larger variability. Although 

interpretations of some of these differences may be consistent 

with the effect of inflammation in COVID-19 and reported 

neurological motor deficits, it is too early to draw conclusions 

given the limited sample size and lack of physiological ground 

truth. It is interesting to note, however, that at a group level 

reduced complexity in coordination based on similar 

correlation-structure features has been observed within various 

vocal subsystems for neuromotor conditions of Parkinson’s 

disease, ALS, dementia, and TBI [2] while greater variability 

of complexity has been observed in conditions of cognitive 

fatigue [18] and hypoxia [19].  
 
At a fundmental level, there needs to be a physiological 

interpretation and meaning attached to our features. It’s 

important to stress that we are using formant center frequencies 

as a proxy for articulation and loudness as a proxy for 

respiratory intensity and so it will be important in future work 

to connect with these motor functions more explicitly. For 

example, we are currrently using a method  of waveform-to-

articulatory inversion developed in the context of Major 

Depressive Disorder (MDD) to measure coordination of 

articulatory trajectiories (key points of movement of the tongue, 

lips, and jaw). Here, we are finding similar but enhanced effect 

size morphologies relative to formant coordination [20]. Note 

that GOQ, albeit a sensitive measure, is also a means to get at 

the physiological level, e.g., glottal airflow patterns, through 

inverse filtering methods. Nevertheless, ideally, we seek 

independent physiological measures of, for example, breathing 

patterns, lung capacity, and nasal obstruction that provide 

ground truth against which the analysis data can be compared.  
 
Regarding signal quality, due to the nature of the online video 

sources, in addition to the subject’s mood and stress levels 

alluded to earlier, other effects such as the acoustic environment 

and other forms of room changes, can clearly influence results, 

over- or underestimating the effect size importance. For 

example, given the quarantine requirement after testing positive 

and multiple pre- and post-interviews per subject, there is a 

variety of inter- and intra-subject recording variability, 

including mood change due to self-knowledge of the COVID-

19 diagnosis. Because the recordings were typically made with 

high-quality microphones, noise levels in the recordings were 

fairly well controlled. As noted, the more noticeable effect, 

however, is occasional reverberation. As we discussed earlier, 

isolating two of the subjects with more consistent, least 

reverberant environments enhances the combined effect sizes 

relative to the N=5 case. 
 

This short note has clearly raised more questions than answers 

but, in facing the above challenges, the authors hope the 

proposed framework and exploratory results motivate others to 

investigate these questions with larger and more controlled 

datasets toward vocal biomarkers for early warning and 

tracking of COVID-19. An approach to biomarkers based on 

speech lends itself to nonintrusive widespread use through 

mobile devices and thus longitudinal tracking in naturalistic 

environments through pre- and post-diagnosis of COVID-19. If 

in addition to being sensitive in asymptomatic stages of the 

virus, the vocal biomarkers are also proven specific, especially 

with other nonintrusive sensing, the approach would help 

provide a key capability for early warning to interrupt and treat 

the disease before its rapid spread. 
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