

Transporter-driven engineering of a genetic biosensor for the detection and production of short-branched chain fatty acids in *Saccharomyces cerevisiae*

Ryoma Miyake^{1,2,3,4}, Hua Ling^{1,2,3}, Jee Loon Foo^{1,2,3}, Nobutake Fugono⁴, Matthew Wook Chang^{1,2,3*}

¹NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National

University of Singapore, Singapore 117456, Singapore

² Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine,

National University of Singapore, Singapore 117456, Singapore

³ Department of Biochemistry, Yong Loo Lin School of Medicine, National University of

Singapore, Singapore 117597, Singapore

⁴ Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama-shi, Kanagawa

227-8502, Japan

* Correspondence:

Matthew Wook Chang, Tel: +65 6601 3687, E-mail: bchcmw@nus.edu.sg

Supplementary tables

Name	Sequence	Purposes
PDR12p-f	CGAAGAATTGTTAATTAAGAGCTGATATC	pPDR12
	TTTGTTTTGCATTTTAC	amplification
PDR12p-r	GAATAATTCTTCACCTTTAGACATTTTTTTA	
	TTAATAAGAACAATAAC	
yEGFP-f	ATGTCTAAAGGTGAAGAATTATTC	yEGFP gene
		amplification
yEGFP-r	GCCGCGGTACCAAGCTTACTCGAGTTATTT	
	GTACAATTCATCCATACCA	
PDR12-Del-f	GATTATGCTAATTCGGTACAATCCTACGCTG	PDR12 gene
	CCTCCGAAGGCCTGAAGCTTCGTACGCTG	deletion
PDR12-Del-r	ATCCCAAGAGTAGATGGAGGCATTCATTGCC	
	TGAGCTTCAACAGGCCACTAGTGGATCTG	
PDR12-CheGD-F	ATGTCTTCGACTGACGAACA	
PDR12-CheGD-R	CGTTCTAATGGCTTGGGCAA	
PDR12-pTEF1-F	CGTTAAGAGCCGATTCGCCGGAATTTCTCG	pPDR12
	ATTTTTTCCGTGCAGGTCGACAACCCTTA	replacement
PDR12-pTEF1-R	CGACGAAATGTCTTTCTCAATATGTTCGTCA	
	GTCGAAGACATTTTGTAATTAAAACTTAG	
TEF1p-UP-F	AGGTGATATCAGATCCACTAGT	
PDR12-	GCATAATCATCGTCATGGTTCG	
CheTEFp-r		

Supplementary Table 1. Sequences of primers used in this study

Supplementary Table 2. Chemical and physical properties of carboxylic acids tested in this

study

Carboxylic acids	рКа	LogP	PubChem CID**
Cinnamic acid	4.55^{*}	2.13	444539
Benzoic acid	4.19	1.87	243
Octanoic acid	4.89	3.05	379
Isovaleric acid	4.77	1.16	10430
2-methylbutyric acid	4.80^{*}	1.18	8314
Isobutyric acid	4.84	0.94	6590
Methacrylic acid	4.65	0.93	4093
Propionic acid	4.88	0.33	1032
Acetic acid	4.76	-0.17	176
Coumaric acid	4.58^{*}	1.79	637542
4-hydroxy benzoic acid	4.54	1.58	135
4-Hydroxyisovaleric acid	4.38^{*}	-0.35*	69362
4-Oxopentanoic acid	4.64	-0.49	11579
L-leucine	2.36	-1.52	6106
4-methyl 2-oxovaleric acid	2.65	0.9	70

* Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02.

**Data sources are available at https://pubchem.ncbi.nlm.nih.gov/. pKa, acid dissociation

constant, LogP, partition coefficient.

Supplementary Figure 1

Supplementary Figure 1. Genetic modifications of *S. cerevisiae* strains. *PDR12* gene was deleted through homologous recombination and Cre-LoxP-based recovery to create TDL01 and TDL02 (A) which were confirmed by PCR amplification of target genomic DNA fragments using primer p1 and p2 (B). *PDR12* gene was over-expressed by replacing its native promoter with TEF1 promoter through homologous recombination and Cre-LoxP-based recovery to create TOE01 (C) confirmed by PCR amplification of target genomic DNA fragments using primer p3 and p4 (D) and using p4 and p5 (E). M, a DNA ladder with band sizes indicated, lane 1-4, TDL-01 before and after removing a loxP cassette, TDL-01 before and after *URA3* marker rescue, TDL02; lane 5-6, BY4741, TOE01 after *URA3* maker rescue.

Supplementary Figure 2. Time-course fluorescence intensity of BY4741-S_{LCA} in response to IBA (A) and IVA (B), respectively in unbuffered (at pH4.5) and buffered (at pH6.5 and pH7.4) SCD medium. BY4741-S_{LCA} was cultivated in SCD medium fed with 1 mM IBA or IVA at 30 $^{\circ}$ C. The fluorescence was measured accordingly.

Supplementary Figure 3. Time-course cell density (A) and relative fluorescence (B) of BY4741-S_{LCA} cells in response to IBA supplied into the medium. BY4741-S_{LCA} cells were incubated in the buffered SCD medium (pH6.5) with IBA supply (at 0.5, 1, and 2 mM).

Supplementary Figure 4. Growth profiles of TDL01 and BY4741 in the buffered SCD medium (at pH6.5) with and without the supply of 15 mM IVA.

Supplementary Figure 5. Time-course background fluorescence of biosensor strains. The strains were cultivated in SCD medium without SBCFA supply. The fluorescence was measured and normalized to their cell density (OD_{600}). Values are the means of three independent experiments. An error bar represents a standard deviation of three independent experiments.

Supplementary Figure 6. Composition of SBCFAs in the engineered *S. cerevisiae* producing SBCFA. Values are the means of three independent experiments. An error bar represents a standard deviation of three independent experiments.