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1. Analysis of translational diffusion of nanodiscs by DOSY

The present analysis is related to the observation of the increase of the absolute signal
intensity of BLT2 inactive sub-states with pressure in both POPC/POPG and DPPC
nanodiscs (cf. Fig. 9 in the main text).

Diffusion ordered NMR spectroscopy (DOSY) allows measuring
translational diffusion coefficient of compounds, which reports on their molecular size.
In DOSY experiments, a pair of encoding/decoding gradients sandwiches a diffusion de-
lay ∆ and NMR signal intensity is recorded for increasing gradient strengths. In the
experiments presented herein, a Bipolar Pulse Pair Stimulated Echo NMR pulse sequence
was modified to allow water suppression by excitation sculpting and by addition of a 5 ms
delay to attenuate longitudinal eddy current effects as implemented previously [1]. The
diffusion delay ∆ was set to 300 ms. The coding/decoding gradients had a length δ of
1500 ms, and gradient intensity g was varied from 5 to 90% of the maximal value (50
G·cm−1). DOSY spectra were processed using Topspin and Dynamics Center software
(Bruker BioSpin) and analyzed with one or two-component Stejskal-Tanner equation [2]:

f(g) = I01e
−γ2g2δ2(∆−δ/3)×D1 + I02e

−γ2g2δ2(∆−δ/3)×D2

where I0i (i = 1,2) is the intensity at 0% gradient strength, γ the 1H gyromagnetic ratio, g
the gradient strength, δ the gradient length, ∆ the diffusion delay and Di the translational
diffusion coefficients (m2·s−1).

The DOSY curves extracted for CH2 and CH3 phospholipid signals are shown in Fig-
ure A at 1 and 2500 bar and could be fitted to single or double-component Stejskal-Tanner
equations to obtain the translational diffusion coefficients. Table A sums up the D coeffi-
cient measured for phospholipid CH2 and CH3 signals for different nanodisc compositions
(phospholipid/cholesterol mixtures, and presence or not of BLT2 and the agonist LTB4).
At 1 bar, cholesterol signals were weak and superimposed with CH2 and CH3 phospholipid
signals and accurate diffusion coefficients could not be obtained. At 2500 bar, cholesterol
signals were clearly visible in 1H dimension and analysis of their diffusion-encoded signals
revealed similar hydrodynamic properties for cholesterol and phospholipid signals (data
not shown), which confirmed that the NMR-visible cholesterol is embedded in nanodiscs.
Of note, DOSY experiments are dominated in the 0–2 ppm region by the strong signals of
phospholipids and cholesterol at natural 1H abundance and this region does not contain
detectable contributions from the highly deuterated BLT2 protein, for which we could not
measure diffusion properties.

Table A shows that the diffusion coefficients of phospholipid CH2 and CH3 were con-
stant in all tested samples at a value around 5·10−11 m2·s−1. This value is intermediate
between diffusion coefficients measured for small molecules (∼10−10 m2·s−1) and 100 nm
diameter liposomes (∼10−12 m2·s−1) and is therefore in agreement with the formation of
nanodiscs under all conditions. For several samples, a single component Stejskal-Tanner
equation was sufficient to fit experimental curves suggesting that all phospholipids were
collectively and homogenously part of nanodiscs and no free phospholipid was present
in these NMR samples. For other samples, a second component (∼10−10 m2·s−1) was
required to properly fit the data, suggesting that a fraction of phospholipids or LTB4 was
free in solution. Due to the very different transverse relaxation properties of rapidly and
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slowly diffusing species, it is not possible to directly convert the I% value from Table A
into the relative molar populations of rapidly and slowly diffusing species.
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Fig. A. DOSY experiments. The curves come from the integrals in the 1H regions of chain CH2

(∼1.2 ppm) and CH3 (∼0.8 ppm) groups from DPPC and POPC/POPC phospholipids in the respective

nanodiscs. DOSY data was collected at 25◦C and 950 MHz 1H frequency at 1 and 2500 bar for nanodiscs

without BLT2 (−BLT2) and in the presence of the receptor (+BLT2) and also in the absence or presence

of the LTB4 ligand. The continuous lines show the best-fit curve with single or double component

Stejskal-Tanner equations using the parameters summed up in Table A displayed on page 5. Source data

are provided as a Source Data file.

The diffusion coefficient values were only slightly perturbed (±10%) by pressure sug-
gesting that the hydrodynamic properties of nanodiscs were essentially preserved at 1 and
2500 bar. The diffusion coefficient D is related to solution viscosity η and particle radius
r via the Stokes Einstein law D=kT/6πηr (k is the Boltzmann constant). Pure water
viscosity slightly increases (+6%) from 890 µPa·s to 948 µPa·s when pressure increases
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from 1 bar to 2500 bar (see Figure B). Therefore, assuming unmodified particle size at
2500 bar, ∼6% slower diffusion would be expected at 2500 bar compared to 1 bar on
the basis of viscosity change. Hence, the DOSY-derived values suggest that pressure has
minimal impact on nanodisc apparent size.

We further interpreted the large (×3 to 5 in intensity, Fig. 9 in the main text, or ×2
in volume, Fig. S15C,E) signal intensity increase for BLT2 Ile and Met methyl groups
in 1H,13C SOFAST–HMQC spectra in light of nanodisc hydrodynamic properties. At
the high nanodisc concentrations used here, we could expect potential self-association
between nanodiscs, leading to line-broadening and slow translational diffusion. Since
pressure is known to reduce intermolecular interaction, we hypothesized that pressure
could reduce nanodisc self-association resulting in reduced tumbling correlation time (τc),
faster translational diffusion, and more favorable NMR methyl relaxation rates at 2500 bar
compared to 1 bar. To test this idea, and since rotational τc could not be directly measured
here due to low signal-to-noise ratio for 15N or methyl 1H relaxation experiments, we
exploited the following relationship between the translational (D) and rotational (Dr,
or correlation time τc=1/(6Dr)) diffusion coefficients: D×τc=2r2/9, based on the Stokes
Einstein Debye law: Dr=kT/(8πηr3) or τc=4ηπr3/(3kT). Assuming that the nanodisc
particle has constant shape upon pressure, the DOSY data indicates that the apparent
tumbling correlation time of nanodiscs is not highly perturbed (within ±10%) by pressure,
and that the dramatic methyl receptor and cholesterol signal increase observed from 1 to
2500 bar is not due to a change in tumbling time. We propose that changes in internal
dynamics within nanodisc particles or the receptor might be alternative explanations.
This reduced line-broadening could be due to pressure-induced changes in populations
and/or timescales of motion in the exchange processes. (see Fig. 9 and also 13CH3-δ1-Ile
signals in Fig. S12 & S13 and 13CH3-ε-Met signals in Fig. S9).

Pressure (bar)

Fig. B. Evolution of viscosity of pure water from 1 to 2500 bar at 25◦C. Values obtained from

CoolProp [3].

4



1 bar 2500 bar
chain CH2 Dnanodisc Dsecondary I% Dnanodisc Dsecondary I%

(10−10 m2·s−1) (10−10 m2·s−1) (10−10 m2·s−1) (10−10 m2·s−1)

DPPC −BLT2 0.54 ± 0.01 0.54 ± 0.02 9.5 ± 3.0 20
+BLT2/LTB4 0.50 ± 0.02 7.7 ± 2.9 16 0.46 ± 0.13 7.0 ± 2.5 63

POPC/POPG −BLT2 0.43 ± 0.02 0.54 ± 0.01
+BLT2 0.52 ± 0.01 0.53 ± 0.03 6.0 ± 3.7 12

+BLT2/LTB4 0.47 ± 0.01 4.2 ± 0.9 9 0.47 ± 0.03 8.1 ± 1.4 41

1 bar 2500 bar
CH3 Dnanodisc Dsecondary I% Dnanodisc Dsecondary I%

(10−10 m2·s−1) (10−10 m2·s−1) (10−10 m2·s−1) (10−10 m2·s−1)

DPPC −BLT2 0.56 ± 0.01 0.52 ± 0.02 8.5 ± 3.4 15
+BLT2/LTB4 0.53 ± 0.01 8.5 ± 2.0 15 0.44 ± 0.04 5.7 ± 1.8 33

POPC/POPG −BLT2 0.40 ± 0.01 0.54 ± 0.01
+BLT2 0.50 ± 0.02 0.47 ± 0.03 3.5 ± 1.4 18

+BLT2/LTB4 0.42 ± 0.02 3.4 ± 1.2 14 0.47 ± 0.03 6.8 ± 1.8 30

Table A. Translational diffusion coefficients Dnanodisc. Dnanodisc has been evaluated for the chain

CH2 and CH3 groups of phospholipids measured in DPPC or POPC/POPG nanodiscs and in presence

or absence of BLT2 and LTB4 at 1 and 2500 bar. When two components were required for a proper

fit, the second diffusion coefficient value Dsecondary and the relative fraction I% of the rapidly diffusing

component (calculated as I02/(I01+I02)) are shown. The rapidly diffusing component likely corresponds

to isolated lipid molecules, smaller phospholipid entities, or, when present in the sample, the ligand

LTB4.
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2. Supplementary Figures
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Fig. S1. Illustration of the barotropic evolution of some lipoprotein and lipid NMR signals.

The NMR signals of lipoprotein MSP1D1 and lipids are displayed on the left and right, respectively, in

the absence of the receptor along the pressure ramp at 25◦C observed in one-dimensional 1H (950 MHz 1H

Larmor frequency) NMR spectra. (Top), (Middle) and (Bottom) are POPC/POPG, DPPC and DMPC

receptor-free nanodiscs, respectively.
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Fig. S2. Barotropic fluid-to-gel phase transition of DPPC molecules confined in MSP1D1

nanodiscs. Diagrams depict two superimposed ramps in pressure performed at 323 (in black) and 285K

(in red) for various protons based on 1D 1H NMR experiments (1H Larmor frequency = 600 MHz). β,

g1 and g3 protons are not represented because of a too low spectral resolution. As indicated by the two

double arrows colored in blue on the P/T phase diagram [4] on the right, only experiments performed at

323K can cause a phase transition. Source data are provided as a Source Data file.
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Fig. S3. Thermotropic gel-to-fluid phase transition of DPPC molecules confined in MSP1D1

nanodiscs. Diagrams depict superimposed ramps in temperature between 285 and 320K performed at

1 (in black) and 1000 bar (in red) for various protons based on 1D 1H NMR experiments (1H Larmor

frequency = 600 MHz). β, g1 and g3 protons are not represented because of a too low spectral resolution.

As indicated by the two double arrows colored in blue on the P/T phase diagram [4] on the right, only

experiments performed at 1 bar can cause a phase transition. In the γ diagram (upper left), the signal at

1 bar becomes doubled at temperature > 298K (represented by two grey curves in addition to the black

curve that represents the sum of the two signals). In the H4-H15 and H16 diagrams, the blue curves

that represent the thermotropic gel-to-fluid transitions at 1 bar of these protons in ∼100 nm liposomal

vesicles observed by solution-state NMR (from ref [5]) have been added for the sake of comparison. Note

that NMR peak intensities decreased at temperatures >315 K. This corresponded to a slight irreversible

sample precipitation at these high temperatures. This was not visible at 1000 bar, suggesting that DPPC

nanodiscs in the fluid phase may tend to aggregate at such temperatures. Source data are provided as a

Source Data file.
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Fig. S4. One-dimensional 1H NMR signals of lipid in nanodiscs. (a) Lipid primary structures.

(b) 1H NMR assignments at 25◦C of DMPC (green), DPPC (red) and POPC/ POPG (in blue) heads

and tails based on the literature (e.g. ref. [6]). The g1 and g3
1H signals of DPPC are not visible due to

the signal of α protons which is broader than equivalent protons in POPC and POPG. (c) Illustration of

the evolution of 1H NMR signals of the lipid heads upon pressurization: (left) DMPC, (center) DPPC,

and (right) POPC/POPG (example in the g2 to α chemical shift region).
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Fig. S5. One-dimensional 31P NMR (243 MHz). (a) Proportion of POPC vs. POPG based on

signal integration in the case of receptor-free (left) or BLT2-containing (right) nanodiscs. The integrals

indicate ratio close to the original ratio used at the time of the reconstitution process (3/2 POPC/POPG

mol/mol). (b) Barotropic evolution of 31P signals of DPPC (Top) and POPC/POPG (Bottom) receptor-

free (left) and BLT2-containing (right) nanodiscs. (c) Comparisons at 1 (Top) and 2500 (Bottom)

bar between receptor-free (in blue) and BLT2-containing (in red) POPC/POPG (left) and DPPC (right)

nanodiscs. (d) Comparisons between 1 (in blue) and 2500 (in red) bar for DPPC (left) and POPC/POPG

(right) receptor-free nanodiscs. (e) Comparisons at 1 (left) and 2500 (right) bar between DPPC (red)

and POPC/POPG (blue) receptor-free nanodiscs. (f) Same as d but in the presence of apo BLT2. (g)

Same as e but in the presence of apo BLT2. (h) Barotropic evolutions of 31P signals of DMPC in the

presence of OmpX at 25 (left) and 40◦C (right).

←−
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Fig. S6. 2D 1H,15N NMR spectra of OmpX and assesment of the quality of the purification

and of the NMR sample by SDS-PAGE electrophoresis. OmpX 1H,15N correlation spectra

collected at 40◦C (panels a and b) and 25◦C (panel c). 15N BEST–TROSY [7] (panel a) and 15N

SOFAST–HMQC [8] (panels b and c) experiments were used. At 40◦C, the SOFAST-HMQC performed

well for well resolved signals but showed poor resolution for cross-peaks in the center of the spectrum.

This is likely due to the fast 1HN–solvent exchange for the flexible residues in OmpX loops at the

high temperature used (40°C) at pH 7.3. The peak assignment was obtained from the assignment data

available for OmpX in nanodisc (BMRB Code 18796, [9]). The assignment transfer from 25◦C to 40◦C

was facilitated by a series of experiments collected at intermediate temperatures (from 25 to 40◦C every

5◦C). In grey are residues that could not be unambiguously assigned and have been discarded in the

analysis. Indole 1H of Trp residues were also excluded. In panel c, red rectangles indicate residues that

present splitted signals at 25◦C but not at 40◦C. By contrast, the splitted signal of R131 is present at both

temperature and is framed in blue. (d) Assesment of the purity and degree of folding of urea-solubilized

OmpX inclusion bodies (IBs) and NMR sample by acrylamide gel (12%) electrophoresis.
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Fig. S7. Barotropic evolution of 1HN ,15N backbone (Top) and 13CH3 (Bottom) NMR signals

of OmpX in DMPC nanodiscs at 25 and 40◦C.
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Fig. S8. Localization of the three trans-membrane 13CH3 NMR reporters in human BLT2

receptors. (a) Snake diagram of the receptor generated with GPCRdb web tools [10]. The unique

isoleucine I2296.40 and the two transmembrane methionines M1053.35 and M1975.54 are indicated in red

and green, respectively. The three extramembrane Met residues (M1, not shown, and M325 and M349

colored in grey in the Cter region) were mutated to alanine residues to ease the observation of M105 and

M197 NMR signals. (b) Three superimposed GPCRdb BLT2 receptor homology models (inactive in ma-

genta, intermediate in cyan and active in green conformations). Roman letters indicate transmembrane

helices (in black those visible on this side of the receptor and in grey the helices locaded on the other

side).
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Fig. S9. 13CH3 NMR assignment of the two trans-membrane Met residues of BLT2. Com-

parison of ε-13CH3-Methionine NMR signals between the wild-type BLT2 (in blue) and M197L-BLT2

(in red) receptors in POPC/POPG nanodiscs observed in two superimposed two-dimensional 1H,13C–

SOFAST–HMQC (950 MHz 1H Larmor frequency) NMR spectra at 25◦C. These experiments allow the

assignment of the two transmembrane methionine signals. The barometric behavior of I2296.40, M1053.35

and M1975.54 13CH3 sub-states have been studied from 500 to 2500 and 750 to 2500 bar, respectively

(see Fig. 7), because at pressures ≤500 bar there are too many sub-states (indicated by a red asterisk

at 1 bar) and/or the signal-to-noise ratio is too low which complicates the evaluation of the populations

observed all along the pressure ramp at 750 bar and above.
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Fig. S10. Comparison of I229 lowly-populated NMR signals between the apo and holo

states of BLT2 (+LTB4 at a no saturating concentration, see Methods section). (a) Close-up in the

δ1-13CH3-I2296.40 region in two superimposed two-dimensional 1H,13C–SOFAST–HMQC (950 MHz 1H

Larmor frequency) NMR spectra of BLT2 in POPC/POPG nanodiscs in the apo (contour plot in red)

and holo (in blue) states. The colored dotted lines indicate 13C frequencies at which rows along the 1H

dimension have been extracted and compared in b. In this example, the experiments have been performed

at 750 bar. Numbers refer to the high-populated sub-states described in Fig. 7 of the main text. (b)

Comparison of the intensities of rows extracted at the most intense signals of highly populated states (in

blue and black in the apo and holo states, respectively) with rows that correspond to the lowly populated

states (in orange and green, in the apo and holo states, respectively). (c) Illustration of the decrease of

the lowly-populated states along the pressure ramp in the presence of the agonist LTB4. This has to be

compared with the ×3 to 5 increase in signal intensity (Fig. 9 of the main text) or the ×2 increase in

signal volume (Fig. S15) for the inactive states at 2500 bar.
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Fig. S11. I229 Pre-Active (PA) sub-states in DPPC nanodiscs. (a) Close-ups in the 13CH3-

δ1-I2296.40 region of two superimposed 1H,13C SOFAST–HMQC experiments recorded at atmospheric

pressure (in blue) and 250 bar (in red) with apo (left) and holo (right) BLT2 in DPPC nanodiscs. (b)

Extracted 1H rows at the 13C frequency of PA peaks from 2D 1H,13C SOFAST–HMQC experiments

recorded with BLT2 in POPC/POPG (in blue) or DPPC (in red) in the apo (left) or holo (right) states.
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Fig. S12. Comparison between the apo and the holo states of the evolution of I229 high-

populated sub-state NMR signals along the pressure ramp of the receptor in POPC/POPG

nanodiscs. Numbers 1 to 5 referred to the populations displayed in Fig. 7 in the main text. The

population 2 observed with DPPC nanodiscs in both the apo and holo states of the receptor (see Fig. S13),

but also with POPC/POPG nanodiscs with BLT2 in the apo state, disappears in the presence of the

agonist, whatever the pressure.
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Fig. S14. Comparison of M105 and M197 13CH3–ε signals between apo BLT2 in POPC/POPG

(in blue) and DPPC (in red) nanodiscs. The 2D superimposed spectra represent 1H,13C SOFAST–

HMQC experiments. 1D spectra represented on the right of each 2D experiments correspond to rows

extracted along the 1H dimension at the 13C frequency indicated by a horizontal dotted grey line. The

vertical dotted line separates the resonances of M105 and M197 in the 1H dimension. The two 1D spectra

have been normalized respectively to the highest M105 resonance. Only experiments recorded at pres-

sures greater than 500 bar are compared because at pressures ≤500 bar there are too many sub-states

and/or the signal-to-noise ratio is too low to properly compare the two sets of data.
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Fig. S15. Barotropic evolution of cholesterol NMR signals in the absence or presence of the

receptor. (a) Lipid primary structures. The colored numbers are reproduced in the spectra in b and

in the labels of graphs displayed in c to f. (b) Barotropic evolution at 25°C of the NMR signals of the

cholesterol (indicated by the letter C) and 13CH2 and 13CH3 moieties of DPPC (Left) and POPC/POPG

(Right) acyl chains in receptor-free nanodiscs (Top) or in the presence of BLT2 (Bottom) observed in 2D
1H,13C–SOFAST–HMQC (950 MHz 1H Larmor frequency) spectra. (c to f) Comparison of the evolution

of one 13CH3 cholesterol NMR signal (green arrow in b) in lipid discs with POPC/POPG (Top: c and d)

and DPPC (Bottom: e and f) acyl chain NMR signals in the absence (left : c and e) or in the presence

(right : d and f) of BLT2 receptor along the pressure ramp at 25◦C from 2D 1H,13C–SOFAST–HMQC

(950 MHz 1H Larmor frequency) NMR spectra. In c to f, the evolution of the NMR signal of one methyl

group of the cholesterol is indicated in red (at 0.82/22.4 1H/13C ppm at 1 bar in receptor-free nanodiscs).

In d and f, in blue and green are also represented the evolution of the global volumes of ε-13CH3-[M1053.35

+ M1975.54] and δ1-13CH3-I2296.40 (only I229 highly populated states, see Fig. 7A in the main text), re-

spectively. The volume of reference for each signal has been taken at atmospheric pressure. Source data

are provided as a Source Data file.

←−
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