Supplementary Information

A Benzodiazepine Activator Locks K_v7.1 Channels Open by Electro-Mechanical Uncoupling

Running title: RL3 Binding and Activation

Julian A. Schreiber^{1,2,*}, Melina Möller^{1,*}, Mark Zaydman³, Lu Zhao³, Zachary Beller³, Sebastian Becker¹, Nadine Ritter^{1,4}, Panpan Hou³, Jingyi Shi³, Jon Silva³, Eva Wrobel¹, Nathalie Strutz-Seebohm¹, Niels Decher⁵, Nicole Schmitt⁶, Sven G. Meuth⁷,

Martina Düfer^{2,4}, Bernhard Wünsch^{2,4}, Jianmin Cui³ and Guiscard Seebohm^{1,4,π}

¹Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, D-48149 Münster, Germany.

²Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, Münster, D-48149, Germany.

³Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, Cardiac Bioelectricity and Arrhythmia Center, Washington University, St. Louis, MO 63130, United States of America.

⁴Chembion, University of Münster, D-48149 Münster, Germany.

⁵Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstr. 1-2, 35037 Marburg, Germany.

⁶Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.

⁷Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany.

* These authors contributed equally.

Corresponding author:
Prof. Dr. Guiscard Seebohm
email: guiscard.seebohm@ukmuenster.de

SI Figure 1 Fast deactivation component of Kv7.1 in high K⁺. (a) and high Rb⁺ (b) in absence (black) and presence (gray) of (*R*)-L3. Time constants $\tau_{\text{fast deact}}$ were determined by two-component exponential fit for each oocyte and voltage step and are given as mean ± SEM from n=15-18 oocytes. Significance of mean differences were evaluated by one-way ANOVA and posthoc mean comparison Tukey test. However, no significant differences were observed.

SI Figure 2 Sample traces and normalized currents for K_v7.1 WT, Kv7.1 M238C, K_v7.1 I274C and K_v7.1 M238C/I274C in absence/presence of (*R*)-L3 and CoCl₂. a-h sample traces for wildtype, single and double mutants in presence (gray) and absence (black) of (*R*)-L3 as well as presence/absence of CoCl₂. i Normalized currents of single mutants Kv7.1 M238C and K_v7.1 I274C. currents were normalized to the current of the same mutant in absence of (*R*)-L3 and CoCl₂. Significance of mean differences were evaluated by one-way ANOVA and posthoc mean comparison Tukey test (ns for p > 0.05).

SI Figure 3 Sample traces and kinetic parameters of W248 mutants. a-d. Sample traces for K_v7.1 M238A, W248A, W248F and W248R and kinetic parameters of W248 mutants. e-h. Time constants for fast and slow activation and deactivation. Time constants were determined by two-component exponential fit. Significance of mean differences were evaluated by one-way ANOVA and posthoc mean comparison Tukey test (ns for p > 0.05; *** for p < 0.001).

SI Figure 4 VCF results for K_v7.1_{VCF} V241A. a-b Current sample traces for K_v7.1_{VCF} V241A expressing oocytes in absence (a) and presence (b) of (*R*)-L3. c G/G_{max} relationship for K_v7.1 V241A expressing oocytes in absence (black) and presence (red) of (*R*)-L3. Normalized currents were fitted by Boltzmann equation. d-e Fluorescence sample traces for K_v7.1_{VCF} V241A expressing oocytes in absence (d) and presence (e) of (*R*)-L3. f dF/F relationship for K_v7.1_{VCF} V241A expressing oocytes in absence (black) and presence (a) of K_v7.1_{VCF} V241A expressing oocytes in absence (black) and presence (ce) of (*R*)-L3. Normalized fluorescence data were fitted by Boltzmann equation.

SI Figure 5 DCCM matrices. **a-b** Dynamic cross correlation matrix (DCCM) for S5 (Mol A, green) and S4S5 linker (Mol B, orange) in absence (**a**) and presence (**b**) of (*R*)-L3 from -1 (fully anticorrelated) over 0 (not correlated) to 1 (fully correlated). **c** Increase (positive values, red) and decrease (negative values, blue) of correlation between S5 and S4S5 linker residues depending on presence of (*R*)-L3. **d-e** DCCM for S6 (Mol A, blue) and S5 (Mol A, green) in absence (**d**) / presence (**e**) of (*R*)-L3. **f** Increase (positive values, red) and decrease (negative values, blue) of correlation between S6 and S5 (Mol A, green) in absence (**d**) / presence (**e**) of (*R*)-L3. **f** Increase (positive values, red) and decrease (negative values, blue) of correlation between S6 and S5 residues depending on presence of (*R*)-L3. **g-h** DCCM for S6 (Mol A, blue) and S4S5 linker (Mol B, orange) in absence (**g**) / presence (**h**) of (*R*)-L3. **i** Increase (positive values, red) and decrease (negative values, blue) of correlation between S6 and S4S5 linker residues depending on presence of (*R*)-L3. **i** Increase (positive values, red) and decrease (negative values, blue) of correlation between S6 and S4S5 linker residues depending on presence of (*R*)-L3.

SI Figure 6 Uncropped and unedited blot image for main Figure 5e.

Figure	(<i>R</i>)-L3	WT	1235A	L236A	R237A	M238A	L239A	H240A	V241A
4f	without	11	18	13	-	14	11	14	13
	with	11	17	16	-	14	11	13	14
4g	without	10	14	13	15	14	12	11	19
	with	10	16	10	13	14	12	12	15
4h	without	8	17	13	-	12	9	14	18
	with	8	17	13	-	12	9	12	18
4i	without	8	18	15	11	14	11	14	17
	with	8	15	11	12	14	11	11	17

SI Table 1 number of independent oocytes (n) expressing $hK_v7.1$ variants for kinetic measurements in Figure 4 in absence/presence of (*R*)-L3.

SI Table 2 number of independent oocytes (n) expressing hK_v7.1 variants for Co²⁺ crosslinking measurements in Figure 5 and SI Figure 2 in absence/presence of (*R*)-L3 and Co²⁺.

(<i>R</i>)-L3	Co ²⁺	WT	M238C	I274C	M238C / I274C
without (ctrl)	without	14	4	6	19
with	without	17	8	7	19
without (ctrl)	with	14	4	10	24
with	with	14	4	5	23

SI Table 3 Parameters of MD Simulations.

Used structures		Homology models published by Kuenze			
	et al. ^{[1}	1]			
Box size	AO	125.87 x 88.84 x 125.87 Å			
	AC	131.26 x 96.67 x 131.26 Å			
	RC	118.27 x 91.30 x 118.27 Å			
Total number of atoms	AO	138,130 atoms + 51 for (<i>R</i>)-L3			
	AC	161,741 atoms + 51 for (<i>R</i>)-L3			
	RC	125,166 atoms + 51 for (<i>R</i>)-L3			
Number of water molecules	AO	27,073 molecules			
	AC	33,426 molecules			
	RC	25,232 molecules			
Water model	AO	TIP3P			
	AC	TIP3P			
	RC	TIP3P			
Salt concentration	AO	0.9 % NaCl			
	AC	0.9 % NaCl			
	RC	0.9 % NaCl			
Number of ions	AO	182 (Na⁺, Cl⁻)			
	AC	233 (Na⁺, Cl⁻)			
	RC	166 (Na⁺, Cl⁻)			

Supplementary References

G. Kuenze, A. M. Duran, H. Woods, K. R. Brewer, E. F. McDonald, C. G. Vanoye, A. L. George, C. R. Sanders, J. Meiler, *PLoS One* 2019, *14*, e0220415.