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Supplementary Notes 

Comparison with other spatial domain identification methods 

We compared STAGATE with the non-spatial clustering method implemented by 

SCANPY1, and five recently developed spatial clustering approaches including Giotto2, 

BayesSpace3, stLearn4, SpaGCN5 and SEDR6. The parameter settings of these 

methods are as follows: 

 SCANPY: The data preprocessing of SCANPY is the same as those of STAGATE 

(log-normalized and selecting the top 3,000 HVGs). The first 30 PCs were 

calculated and then the nearest neighbor network was constructed using the 

scanpy.pp.neighbor() function with default parameters. Finally, SCANPY obtains 

the clustering assignments using the scanpy.tl.louvain() function. For the DLPFC 

dataset）, the resolution parameter was tuned manually to ensure the number of 

clustering is equal to the ground truth. 

 Giotto: The expressions was normalized according to parameter 

scalefactor=6000. The spatial network was first construct using the 

createSpatialNetwork() function with k=5 and maximum_distance_knn=1000. 

Then, the spatial domains were identified using doHMRF() function with parameter 

betas=c(0, 10, 20). 

 BayesSpace: BayesSpace was applied to the DLPFC dataset according to its 

recommended parameters in the package vignette. Specifically, the input is the 

top 15 PCs of the log-normalized expression of the top 2,000 HVGs. The nrep 

parameter was set as 50,000 and the gamma parameter was set as 3. We only 

ran it for 10x Visium data because its package did not support the calculation of 

Slide-seq data7, 8, and Stereo-seq data9 directly.  

 stLearn: We adopted stLearn on the DLPFC dataset using its recommended 

parameters in the package vignette. Specifically, the 

stLearn.SME.SME_normalized() function was performed on the raw counts of all 

genes with the parameter use_data=”raw” and weights=” physical_distance”. 

Then the first 30 PCs of the SME normalized matrix were used for further 

clustering and visualization. We only ran it for 10x Visium data because its 

package did not support the calculation of Slide-seq data and Stereo-seq data 

directly.  

 SpaGCN: SpaGCN was applied to the DLPFC dataset according to its 

recommended parameters in the package vignette.  

 SEDR: SEDR is the only method that can be applied to Slide-seq and Stereo-seq 

data among three existing spatial clustering methods. We ran SEDR for all 

experiments with its recommended parameters in the online tutorial 

(run_SEDR_DLPFC_all_data.py). Specifically, the parameter k is set as 10, and 

the epoch is set as 200. 

 

STAGATE imputes gene expressions while preserving spatial expression 

patterns 



We compared the imputation performance of STAGATE with four widely used single-

cell RNA-seq imputation algorithms: MAGIC10, DeepImpute11, scVI12, and DCA13 in 

terms of Spearman correlation coefficients in terms of genes and Pearson correlation 

coefficients of the imputation values to the reference data. We collected publicly 

available ST data from similar tissue to construct three datasets, and conducted 

downsampling experiments in each section (Supplementary Table S2. Notably, 

STAGATE achieved the overall best performance on the DLPFC dataset and the 

Hippocampus dataset, and ranked second only to DeepImpute in the MouseBrain 

dataset (Supplementary Fig. S14a, b). Furthermore, compared to other imputation 

methods designed for single-cell RNA-seq, the usage of spatial information enables 

STAGATE to preserve the spatial expression patterns. STAGATE significantly 

improved the Moran’s I values of spatially variable genes identified by SPARK-X 

compared to other approaches, which indicated that STAGATE enhanced their spatial 

expression signals (Supplementary Fig. S14c). We further calculated the z-score of 

the Moran’s I value of the identified spatially variable genes, and found that STAGATE 

and scVI are the two best methods for preserving spatial patterns (Supplementary 

Fig. S14d). Notably, DeepImpute ranked first in the MouseBrain dataset, which 

included seven sections from the whole mouse brain, but performed poorly in the other 

two datasets. This result indicated that the similarity-based on expressions alone is not 

enough to perform accuracy imputation in the tissues with homogeneous cell types, 

such as the cortex and hippocampus. We also employed two examples to illustrate the 

ability of STAGATE to preserve spatial expression patterns. First, we visualized the 

raw expression and the imputed expression of the KRT17 gene, which is enriched in 

cortical layer 6, in the DLPFC section 151676 (Supplementary Fig. S14e). Only 

STAGATE well revealed its spatial expression pattern. By contrast, MAGIC and DCA 

incorrectly imputed missing values in the white matter region, and scVI imputed those 

in both layers 1 and 6. Moreover, the expression of Ociad2 showed strong specific 

expressions in the “cord-like” structure of the hippocampus in the raw data profiled by 

Slide-seqV2, and only STAGATE maintained its differential expression 

(Supplementary Fig. S14f). 

 

Generating reference and downsampled datasets 

For benchmarking imputation performance, we first selected highly expressed genes 

from the raw data of each section as reference expressions. We then performed 

synthetic downsampling simulations by randomly flip 30% non-zero entries of the 

reference to zeros. The specific criterion for gene filtering is to keep about 2,000 genes 

with the highest proportion of non-zero expressing cells. Imputation methods were 

implemented using default parameters on the raw data containing entire genes, and 

the measurements of imputation accuracy were calculated based on selected genes. 

 

Measuring spatial autocorrelation using Moran’s I statistic 

The Moran’s I statistic14 is a measure of spatial autocorrelation measure, and can be 

used to rank genes by their spatially informative rank15. For each individual gene i, the 

Moran’s I statistic is computed using the formula:  
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where 
iy   and jy   is the expression profiles of spot i and spot j, y   is the mean 

expression of gene, N is the number of spots, ijw  is the distance weight between spot 

i and spot j, and 
0S  is the sum of ijw . Obviously, the Moran’s I statistic is bounded 

between -1 (a chess board like pattern) to 1 (a clear spatial pattern). We used the 

implementation of Seurat package16, and ijw  is set as 1/distance. 

 

Selection of hyperparameter 𝜶 

To explore the influence of the weight of cell type-aware SNN, we calculated the 

clustering assignments and UMAP plots of STAGATE under different 𝛼  values 

(Supplementary Fig. S20). We found that the clustering assignments were consistent 

when 𝛼 =0.25 or 0.5. With the increase of 𝛼 , the separation of tissue structures in 

UMAP plots was improved. However, when 𝛼=0.75 or 1, the performance of spatial 

domain identifications was impaired. For example, STAGATE with 𝛼 =1 failed to 

identify the CA1sp domain within the hippocampus. Based on the above results, we 

guess that the results of STAGATE are robust under a small 𝛼 , and a big 𝛼  may 

reduce the flexibility of the graph attention mechanism. Thus, we set 𝛼=0.5 by default. 

  



Supplementary Figures 

Fig. S1. Comparison of spatial domains by clustering assignments via STAGATE, 

BayesSpace, SEDR, SCANPY, and manual annotation in the DLPFC dataset. 

Fig. S2. Comparison of clustering accuracy on the DLPFC dataset.  

Fig. S3. UMAP visualization and PAGA graphs generated by STAGATE, SEDR, stLearn, 

and SCANPY embeddings respectively.  

Fig. S4. Comparison of spatial domains by applying Louvain clustering with different 

resolutions to the SCANPY, SEDR, STAGATE embeddings respectively in the Slide-

seqV2 hippocampus data. 

Fig. S5. Comparison of the UMAP visualization of SCANPY, SEDR, and STAGATE in the 

Slide-seqV2 hippocampus data.  

Fig. S6. Visualizations of spatial domains identified by applying Louvain clustering to the 

STAGATE embedding and expressions of the corresponding marker genes in the Slide-

seqV2 data of the mouse hippocampus tissue. 

Fig. S7. Comparison of spatial domains by applying Louvain clustering with different 

resolutions to the SCANPY, SEDR, and STAGATE embeddings respectively in the Stereo-

seq mouse olfactory bulb tissue section. 

Fig. S8. Visualizations of spatial domains identified by applying Louvain clustering with 

resolution=0.8 to the STAGATE embedding and expressions of the corresponding marker 

genes in the Stereo-seq mouse olfactory bulb tissue section. 

Fig. S9. Comparison of spatial domains identified by applying Louvain clustering with 

different resolutions to the SCANPY, SEDR, and STAGATE embeddings respectively on 

the Slide-seqV2 data of mouse olfactory bulb tissue section. 

Fig. S10. Spatial trajectory inference in the Slide-seqV2 data mouse olfactory bulb tissues.  

Fig. S11. Comparison of spatial domains identified by different methods in the adult 

mouse brain section profiled by 10x Visium.  

Fig. S12. STAGATE reveals spatial domains in adult mouse posterior brain section 

profiled by 10x Visium.  

Fig. S13. Comparison of spatial expression patterns before and after STAGATE denoising. 

Fig. S14. Evaluation of imputation efficiency by downsampling the raw data. 

Fig. S15. Spatial domains identified by applying mclust clustering to the SCANPY 

embedding in the 3D hippocampus model.  

Fig. S16. Spatial domains detected in the mouse visual cortex STARmap data. 

Fig. S17. Running time and GPU memory usage.  

Fig. S18. Comparison of the spatial domain-specific expression patterns of STAGATE 

and SPARK-X.  

Fig. S19. Statistics of the number of neighbors per spot in SNNs. 

Fig. S20. Spatial domains and UMAP visualization generated by STAGATE under 

different α values. 

 

 

  



Supplementary Tables 

Table S1. Comparison between current bioinformatics methods for spatial domain 

identification of ST data. 

Table S2. Description of all ST datasets used in this study. 

Table S3. Description of Slide-seq data used to reconstruct the 3D hippocampus model. 

Table S4. Sample IDs and URLs of data downloaded from Allen Brain Atlas in this study. 
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Fig. S1. Comparison of spatial domains by clustering assignments via STAGATE, 

BayesSpace, SEDR, SCANPY, and manual annotation in all 12 sections of the 

DLPFC dataset.   

  



 

Fig. S2. Comparison of clustering accuracy on the DLPFC dataset. a, Boxplot of 

clustering accuracy in all the 12 sections of the DLPFC dataset in terms of normalized 

mutual information (NMI). b, Boxplot of clustering accuracy in all 12 sections of the 

DLPFC dataset in terms of homogeneity score (HS). c, The clustering accuracy of 

STAGATE with different hyperparameters in all 12 sections. The hyperparameters are 

selected by a grid search on three hyperparameters of the encoder layer number (2, 3 

or 4), the latent dimension (20, 30 or 50) and the number of epochs (500, 1000, 1500, 

2000). d, The clustering accuracy of STAGATE in all 12 sections under the default 

hyperparameters with different random seeds. e, The clustering accuracy for each 

section under the default hyperparameters with different random seeds (n=50 for each 

box). In all boxplots, the center line, box limits and whiskers denote the median, upper 

and lower quartiles and 1.5× interquartile range, respectively. 
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Fig. S3. UMAP visualization and PAGA graphs generated by STAGATE, SEDR, 

stLearn, and SCANPY embeddings respectively. Spots are colored by their 

manual annotations.     



 

Fig. S4. Comparison of spatial domains by applying Louvain clustering with 

different resolutions (0.1, 0.3, 0.5, 0.8, and 1) to the SCANPY, SEDR, STAGATE 

embeddings respectively in the Slide-seqV2 hippocampus data. 

  



 

Fig. S5. Comparison of the UMAP visualization of SCANPY, SEDR, and STAGATE 

in the Slide-seqV2 hippocampus data. a, UMAP visualization generated by SCANPY, 

SEDR, and STAGATE embeddings respectively. Spots are colored by their spatial 

domains identified by the corresponding approach. b, UMAP visualization colored by 

expressions of ITPKA, AMIGO2, HS3ST4, and LRRTM4 respectively.  

 

  



 

Fig. S6. Visualizations of spatial domains identified by applying Louvain 

clustering with resolution=0.3 to the STAGATE embedding and expressions of 

the corresponding marker genes in the Slide-seqV2 data of the mouse 

hippocampus tissue.  

  



 

Fig. S7. Comparison of spatial domains by applying Louvain clustering with 

different resolutions (0.3, 0.5, 0.8, 1, and 1.5) to the SCANPY, SEDR, and 

STAGATE embeddings respectively in the Stereo-seq mouse olfactory bulb 

tissue section. 

  



 
Fig. S8. Visualizations of spatial domains identified by applying Louvain 

clustering with resolution=0.8 to the STAGATE embedding and expressions of 

the corresponding marker genes in the Stereo-seq mouse olfactory bulb tissue 

section. b, Number of total UMIs per spot in the mouse olfactory bulb tissue sections 

generated by Slide-seqV2 (n=20,139 spots) and Stereo-seq (n=19,109 spots) 

respectively. In the boxplot, the center line, box limits and whiskers denote the median, 

upper and lower quartiles and 1.5× interquartile range, respectively. 

  



 

Fig. S9. Comparison of spatial domains identified by applying Louvain clustering 

with different resolutions (0.1, 0.3, 0.5, 0.8, and 1) to the SCANPY, SEDR, and 

STAGATE embeddings respectively on the Slide-seqV2 data of mouse olfactory 

bulb tissue section. 

  



 

Fig. S10. Spatial trajectory inference in the Slide-seqV2 data of mouse olfactory 

bulb tissues. a, Spatial domains identified by SCANPY embedding using Louvain 

clustering with resolution=0.5. b, UMAP visualization and PAGA graph generated 

based on the SCANPY embedding. c, Spatial domains identified by SEDR embedding 

using Louvain clustering with resolution=0.5. d, UMAP visualization and PAGA graph 

generated based on the STAGATE embedding. e, Spatial domains identified by SEDR 

embedding using Louvain clustering with resolution=0.5. f, UMAP visualization and 

PAGA graph generated based on the STAGATE embedding. 

  



 

Fig. S11. Comparison of spatial domains identified by different methods in the 

adult mouse brain section profiled by 10x Visium. a, Immunofluorescent imaging 

of the tissue section stained with DAPI and Anti-NeuN. b, Spatial domains identified 

by applying Louvain clustering with resolution 0.2 to the spatial gene expressions 

directly. c, Spatial domains identified by applying Louvain clustering with different 

resolutions (0.5, 0.8, 1, 1.5) to the SCANPY, SEDR, and STAGATE (α=0 and α=0.5) 

embeddings in the adult mouse brain section profiled by 10x Visium. 



 

Fig. S12. STAGATE reveals spatial domains in adult mouse posterior brain 

section profiled by 10x Visium. a, Histological image of the tissue section. b, Spatial 

domains generated by mclust clustering on the low-dimensional embeddings of 

SCANPY, SEDR, STAGATE, and STAGATE with the cell type-aware module. The α 

represents the weight of cell type-aware SNN (see Figure 1). c, Comparison of the 

thin spatial domain around the coronal structure identified by STAGATE without or with 

the cell type-aware module. d-f, Visualization of spatial domains identified by 

STAGATE using the cell type-aware module and the corresponding marker genes. g, 

Visualizations of the attention layer of STAGATE without or with the cell type-aware 

module. The nodes of the attention layer are arranged according to the spatial position 

of spots. The edges of the attention layer are colored by corresponding weights. 

  



 

Fig. S13. Comparison of the spatial expression patterns before and after 

STAGATE denoising. a, Ground-truth segmentation of cortical layers and white matter 

(WM) in the DLPFC section 151507. b, Expression visualization of six layer-marker 

genes in the DLPFC section 151507. c and d, Violin plots of the raw expressions (c) 

and the STAGATE denoised expressions (d) of layer-marker genes in the DLPFC 

section 151507 respectively. The cortical layer corresponding to the layer-marker 

genes is marked with red boxes. 

  



 

Fig. S14. Evaluation of imputation efficiency by downsampling the raw data. a 

and b, Gene-wise Spearman correlation (a) and Pearson correlation (b) values of all 

downsampling pairs in each section of the DLPFC dataset (10x Visium platform, 12 

sections), the MouseBrain dataset (10x Visium platform, seven sections), and the 

Hippocampus dataset (Slide-seqV2 platform, three sections). c and d, Moran’s I values 

(c) and the normalized Moran’s I values (d) of the first 100 spatially variable genes 

identified by SPARK-X in the observed/imputed matrix (n=100 genes for each box). 

The outliers in the boxplot of (d) are ignored. e, Visualizations of KRT17 in the raw and 

imputed data in the DLPFC section 151676 respectively. f, Visualizations of OCIAD2 

in the raw and imputed data in Slide-seqV2 Hippocampus data respectively. In all 

boxplots, the center line, box limits and whiskers denote the median, upper and lower 

quartiles and 1.5× interquartile range, respectively. 

  



 

Fig. S15. Spatial domains identified by applying mclust clustering to the 

SCANPY embedding in the 3D hippocampus model. a, Cluster assignments 

generated using mclust clustering on the SCANPY embedding. b, UMAP visualization 

generated by SCANPY embedding colored by section IDs. c, UMAP visualization 

generated by SCANPY embedding colored by clustering labels. d, Mean expressions 

of marker genes across spatial domains identified by SCANPY, STAGATE-2D, and 

STAGATE-3D. The mean expressions were scaled according to columns. 

  



 

Fig. S16. Spatial domains detected in the mouse visual cortex STARmap data. a, 

Layer structure and cell type distribution of the tissue section from the original study. 

b, Spatial domains identified by STAGATE, SpaGCN, BayesSpace, SEDR, Giotto and 

SCANPY respectively. 

 

  



 

Fig. S17. Running time and GPU memory usage. a and b, Running time and GPU 

memory usage on the simulated datasets referring to the DLPFC dataset with different 

numbers of spots based on GeForce GTX 1080 GPU. The spots were arranged in the 

form of 10X Visium sections. c, Running time and GPU memory usage in the real 

datasets. The network architecture of all experiments is set as 3000-512-30. 

 

  



 
Fig. S18. Comparison of the spatial domain-specific expression patterns of 

STAGATE and SPARK-X. a, Boxplot of the coefficient of variation (CV) of genes 

across spatial domains in the Slide-seqV2 data of the mouse olfactory bulb tissue. b, 

Boxplot of Moran’s I values for spatially variable genes (SVGs) detected by STAGATE 

and SPARK-X respectively. The number of detected genes of STAGATE, SPARK-

X_top1000, SPARK-X and Random are 959, 1,000, 2,479 and 1,000 respectively. c, 

Venn diagram of SVGs identified by STAGATE and the first 1000 SVGs detected by 

SPARK-X. d, Visualizations of two specifically expressed genes of the MCL domain. 

In all boxplots, the center line, box limits and whiskers denote the median, upper and 

lower quartiles and 1.5× interquartile range, respectively. 

  



 
Fig. S19. Statistics of the number of neighbors per spot in SNNs. 



 

Fig. S20. Spatial domains and UMAP visualization generated by STAGATE under 

different 𝛂 values.  

  



Table S1. Comparison between current bioinformatics methods for spatial domain 

identification of ST data. 

 
 

Table S2. Description of all ST datasets used in this study. 

 



 

Table S3. Description of Slide-seq data used to reconstruct the 3D hippocampus 

model. 

 
 

Table S4. Sample IDs and URLs of data downloaded from the Allen Brain Atlas in this 

study. 
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