1 Supplement to:

2	"Impact of protocol-based physiotherapy on insulin sensitivity				
3	and peripheral glucose metabolism in critically ill patients"				
4					
5 6	Niklas M. Carbon (1), Lilian J. Engelhardt (1), Tobias Wollersheim (1,2), Julius J. Grunow (1,2), Claudia D. Spies (1), Sven Märdian (3), Knut Mai (4), Joachim Spranger (4), Steffen Weber-Carstens (1,2)				
7					
8 9 10	 (1) Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Augustenburger Platz 1, 13357 Berlin, Germany 				
11 12	(2) Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany				
13 14 15	(3) Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13357 Berlin, Germany				
16 17 18	 (4) Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Endocrinology and Metabolism; 10117 Berlin, Germany 				
19 20	corresponding author:				
21	Prof. Dr. Steffen Weber-Carstens				
22	Steffen.weber-carstens@charite.de				
23 24	181: UU49 3U 45U 651U55 Charitá – Universitätsmedizin Berlin, cornorate member of Freie Universität Parlin, Humboldt				
24 25	Universität zu Berlin and Berlin Institute of Health, Department of Anesthesiology and Operative				

26 Intensive Care Medicine (CCM/CVK), Augustenburger Platz 1, 13357 Berlin, Germany

2 **Figure S1:** Study enrollment scheme for observational and interventional trials

- 3 "HE-clamp": Hyperinsulinemic Euglycemic Clamp; "EMS": electrical muscle stimulation; "VT": whole
- 4 body vibration therapy; "sPT": standard physiotherapy; "pPT": protocol-based physiotherapy; "pPT+":
- 5 protocol-based physiotherapy with additional muscle activating measures; "IDDM": insulin dependent
- 6 diabetes mellitus; "SOFA-Score" sequential organ failure assessment score

- 1 Measurements
- 2 Hyperinsulinemic-Euglycemic Clamp (HE-Clamp)
- 3 According to de Fronzo et al. [10,11] the test is divided in three phases: 1) baseline, 2) titration and 3)
- 4 steady state. During baseline patients received a basal glucose infusion of 2 mg/kg/min for 12 hours.
- 5 Blood glucose level was kept in the target of 80-140 mg/dl by continuous insulin infusion due to local
- 6 ICU standard.
- 7 During the titration phase, patients received an insulin bolus of 180 mIU/m²BSA/min over 30 min,
- 8~ followed by a continuous insulin infusion of 125 mIU/m²BSA/min. The glucose infusion rate was
- 9 continuously adjusted until the blood glucose target (80-110 mg/dl) was stable for 30 min, without any
- 10 further adjustment of the glucose infusion rate. This point is defined as the steady state in which
- 11 glucose infusion corresponds to peripheral glucose uptake (DeFronzo 1979). Plasma insulin
- 12 concentration was measured by laboratory from blood samples retrieved during the steady state.
- Blood measurements were taken from arterial catheters. Glucose infusion was applied by central
 venous line. Catheters were established due to clinical indication in these severely ill ICU patients.
- 15

1

2 Figure S2: Principal Component Analysis

Principal Component Analysis including the following data: age, sex, weight, height, ICU stay before
 HE-Clamp, event leading to ICU admission, mean sedation level measured by Richmond Agitation and

5 Sedation Scale, SOFA Score on admission, APACHE 2 Score on admission, mean norepinephrine dose

6 before HE-Clamp, days in septic shock, mean dose of nutrition (kcal/kg PBW) before HE-Clamp, Mean

7 insulin dose and fraction of days before HE-Clamp, mean blood glucose level before HE-Clamp. Plot

8 shows good overlap of data, pooling of data is feasible.

9

10

1 Table S1: Baseline characteristics

	sPT	рРТ	pPT+	р		
	n=22	n=8	n=20			
Diagnosis						
ARDS/Sepsis	15	4	11			
Polytrauma	5	3	5			
Neuro/others	2	1	4			
Sex						
male	19	3	14			
female	3	5	6			
age (years)	52 (36-69)	52.5 (33-64.5)	64 (51-69.5)	0.070		
weight (kg)	83 (78-96)	80 (65-85)	84 (70-96)	0.218		
height (m)	1.77 (1.72-	1.74 (1.68-1.75)	1.76 (1.68-1.80)	0.469		
	1.85)					
liness severity scoring at ICO admission						
SOFA	12 (10-14)	14 (11-18)	13 (11-14)	0.438		
SAPS2	39.5	55.5	59,5	0 784		
	(35.0-52.0)	(40.0-70,0)	(52.0-67.0)	01/01		
APACHE II	18.5 (15.0-	27.5	(21.5 20.0)	0.940		
ICU admission to UE Clamp	25.0)	(18.5-32.0)	(21.5-30.0)			
ICU admission to HE-Clamp						
ICU stay before HE-Clamp (days)	16(13-18)	17(15.5-24.5)	20.5(15.5-22.5)	0.940		
	, , , , , , , , , , , , , , , , , , ,	. ,				
	14 8 (10 0-					
Fraction Days with septic shock (%)	35.7)	41 (32.5-56.4)	20.9 (0.65-58.8)	0.087		
median blood glucose before HE-Clamp	125(117-132)	133(108-139)	133(125-141)	0.566		
	21.5	20.3	17.4	0.700		
Caloric intake* (kcal/kg PBW)	(17.8-24.5)	(13.0-28.5)	(1.0-25.2)	0.709		
Insulin* (IU/d)	45.7	38.7 (14 4-56 9)	33.8 (18 6-61 5)	0 576		
	(30.4-64.6)	23.7 (11.1.30.5)	23.0 (10.0 01.3)	0.070		
fraction of days receiving Insulin before HE-Clamp	0.90	0.91	0.95(0.54-1.00)	0.746		
	(0.79-1.00)	(0.32-1.00)	. ,			
Norepinephrine* (µg/kg/min)	(0.007 (0.000-0.072)	(0.005-0.043)	0.012	0.897		
	(0.000 0.072)	(0.003-0.043)	(0.003-0.000)			

2

3 Table showing baseline characteristics in the three therapeutic groups; categorical variables are

4 presented as count (percentage), metric variables are presented as median (25th/75th percentile);

5 *mean daily dose before HE-clamp; Shown baseline characteristics show no significant differences

6 between observational and interventional trial;

7 Categorical variables are presented as count (percentage), metric variables are presented as median

8 (25th-75th percentile); *mean daily dose before HE-Clamp;

9 BSA: body surface area; PBW: predicted body weight; p-value determined by Kruskal Wallis

1 Table S2: Hyperinsulinemic Euglycemic Clamp Setup

		SPT	рРТ	рРТ+	
		n=22	n=8	n=20	р
Plasma Insulin	hacolino	24.6	18,4	21.4	0 0 4 0
concentration (mU/l)	Daseime	(11.8-32.0)	(9,5; 32,6)	(10.9-35.6)	0.040
	staadu stata	158.8	215	200.6	0.214
	steady state	(120.7-211.8)	(149/ 237,5)	(169.0-230.0)	0.214
Glucose					
infusion rate	baseline	2 (2-2) 2 (2/ 2	2 (2/ 2)	2 (2-2)	0.636
(mg/kg/min)					
	staady state	5.3	6,4	$6 4 (4 9_{-} 7 2)$	0 747
	sleady state	(4.4-7.7)	(3,9/ 6,8)	0.4 (4.3-7.2)	0.747
Blood Glucose	baseline	124	138	129	0.001
concentration		(116-145)	(109/ 161)	(123-158)	0.691
(mg/dl)		85	99	93	0.070
	steady state	(81-96)	(90/ 102)	(87-98)	0.078
Blood Lactate	1 1	0.8	1.1	1.0	0.444
concentration (mg/dl)	baseline	(0.6-1.6)	(0.9-1.7)	(0.8-1.5)	0.414
	steady state	0.9	1.2	1.3	0 195
	steady state	(0.8-1.2)	(1.0-2.0)	(0.9-1.5)	0.100
		(0.0 1.2)	(1.0 2.0)	(0.5 1.5)	

2

3 Table showing hyperinsulinemic euglycemic Clamp setup in critically ill patients in the three

4 therapeutic groups. No group difference could be observed. Setup and execution of the

5 hyperinsulinemic euglycemic Clamp is consistent over all three patient groups of the two included

6 studies; variables are presented as median (25th/75th percentile); p-value determined by Kruskal

7 Wallis

8

9 When comparing the results of the ICU measurements to healthy controls the modification of the 10 standard HE-clamp led to similar steady state glucose infusion rates or M values (median M value in pooled ICU patients 5.72 (4.37/7.20) mg/k1g/min vs all healthy controls 6.0 (5.07/6.35) mg/kg/min 11 12 p=n.s.), representing a similar net glucose uptake into the insulin dependent tissue. On the other hand, 13 the modification of the HE-clamp led to a higher baseline and steady state plasma insulin concentration 14 (median baseline plasma insulin concentration in pooled ICU patients 21.08 (11.71/ 34.34) mU/l vs 15 healthy controls 3.71 (3.39/ 4.55) p=0.002 and median steady state plasma insulin concentration in 16 pooled ICU patients 192.08 (143.47/ 233.21) vs. all healthy controls 57.70 (54.67/ 63.92) mU/I 17 p<0.001). The two distinct levels of relatively low and high insulin plasma concentrations could be 18 achieved in all three ICU patient groups (baseline versus steady state: sPT p<0.001; pPT p=0.012; pPT+ 19 p<0.001).

1 Table S3: Microdialysis of the m. vastus lateralis during HE-Clamp

		Kruskal-Wallis			healthy	
		sPT	рРТ	pPT+	(sPT, pPT, pPT+)	controls
		n=17	n=8	n=20	р	n=4
Glucose	baseline	4.67	3.6	3.22	0.079	3.19
(mmol/l)		(3.8/5.52)	(2.52/4.52)	(2.06/4.03)	0.075	(3.06/3.4)
	steady state	2.68	2.06	1.71	0.010*	2.8
		(2.16/2.95)	(1.66/2.63)	(1.17/2.1)	0.019	(1.88/3.22)
	relative	-0.43	-0.4	-0.45	0.501	-0.13
	change	(-0.48/-0.28)	(-0.45/-0.24)	(-0.57/-0.22)	0.591	(-0.41/-0.01)
	recovery	0.73	0.77	0.68		
	rate	(0.52/0.92)	(0.6/0.82)	(0.62/0.84)	0.981	-
	steady state	3,75	3,31	2,74		
	(corrected)	(2,99/4,81)	(2,64/4,11)	(1,77/3,48)	0.037*	-
Lactate	haseline	2 35	2 05	2 25		1 75
(mmol/l)	buschine	(1.8/2.98)	(1.35/3.04)	(1.45/3.23)	0.864	(1.41/2.05)
(stoody stato	(,, -)	2.24	2 20		2 02
	sleady state	(2.02/2.51)	(1 62/2 81)	(1 88/3 69)	0.737	(1 89/2 /5)
		(2.02/2.31)	(1.02/2.01)	(1.00/ 5.05)		(1.05/2.45)
	relative	0.07			0.669	0.26
	change	(-0.15/0.51)	(-0.22/0.59)	(-0.05/0.59)		(0.14/0.4)
	recovery	0.93	0.82	0.82	0.53	-
	rate	(0.78/1)	(0.///1.16)	(0.73/1.09)		
	steady state	2.57	2.77	3.29	0 303	-
	(corrected)	(2.27/3.22)	(1.73/3.38)	(2.21/4.36)	0.000	
Pyruvate	baseline	65.4	78	65.2	0 5 2 2	47
(µmol/l)		(57.7/115.5)	(56.8/127.3)	(45.7/101.5)	0.332	(41.5/54.5)
	steady state	67.8	81.5	82.3	0.024	117
		(51.6/113.9)	(48.6/119.2)	(56.2/113.7)	0.924	(95/154.5)
	relative	0.05	-0.06	0.06		1.84
	change	(-0.18/0.17)	(-0.36/0.09)	(-0.17/0.61)	0.371	(1.05/2.15)
	recovery	0.85	0,77	0.82		
	rate	(0.67/1.02)	(0,74/1,37)	(0.62/1)	0.964	-
	steady state	100.9	64.2	102.7		
	(corrected)	(71.8/110)	(45.4/161.2)	(69.6/139)	0.814	-
Lactate/	haseline	30	25.1	33.1		35.2
Pyruvate	baseline	(22.8/36.4)	(23.2/33.2)	(22 6/49 1)	0.693	(33 8/37 8)
Ratio	stoody stoto	(22.0, 50.4)	(23.2, 33.2)	22.0/ 43.1/		16 1
	sleady state	52.5 (21 5/42)	(22.9	(22 2/46 7)	0.755	10.1
		(21.3/43)	(22.0/30.8)	(23.3/40.7)		(13.3/21.8)
	relative	(0.09)	0.07	-0.06	0.729	-0.52
	change	(-0.13/0.27)	(-0.16/0.31)	(-0.19/0.16)		(-0.56/-0.42)
Glycerol	baseline	122	64.7	55.2	0 145	98
(µmol/l)		(28.6/172.8)	(37.3/120.3)	(35.4/76.1)	0.115	(72/141)
	steady state	34.7	57.1	42.6	0 0 2 2	25
		(25/70)	(22/109.7)	(29.8/51.5)	0.822	(18.5/30)
	relative	-0.39	-0.21	-0.21	0.257	-0.74
	change	(-0.8/-0.12)	(-0.33/0.07)	(-0.44/-0.03)	0.257	(-0.87/-0.58)
	recovery	0 92		0.87		
	rate	(0,61/1.12)	0.85 (0.68/1.08)	(0.74/0.95)	0.991	-
	steady state	54	73.1	48		
	(corrected)	(32.1/76.8)	(34.5/118.3)	(30:3/65:8)	0.564	-
	· · ·		· · · · · ·			

2 Table showing dialysate concentrations at baseline and steady state of the hyperinsulinemic

3 euglycemic Clamp in critically ill patients divided by the three therapeutic groups. "sPT": standard

4 physiotherapy; "pPT": protocol-based physiotherapy; "pPT+": protocol-based physiotherapy with

5 additional muscle activating measures. Variables are presented as median (25th/75th percentile); p-

6 value determined by Kruskal Wallis between sPT pPT and pPT+, results of four healthy individuals are

7 shown as reference.

- **1 Table S4:** Impact of predictors on Strength measured by MRC Score at discharge Results
- 2 of the linear Regression Analysis

	Unstandardized Regression	Standar	Standardized Coefficient		Signifi
Predictor	Coefficient	d Error	Beta	t	cance
Constant	2.862	1.207	-	2.371	0.025
Age	-0.002	0.009	-0.04	-0.224	0.824
BMI	0.006	0.033	0.031	0.177	0.861
Sex	0.281	0.393	-0.132	-0.714	0.481
SOFA Score on admission	-0.012	0.048	-0.045	-0.247	0.807
Insulin Sensitivity Index	18.671	8.368	0.484	2.231	0.034*

3 *Results of the linear regression. Dependent Variable: MRC at discharge.* * *indicates p<0.05. While all*

4 input variables correlate with muscle weakness measured by MRC Score at discharge, only Insulin

5 sensitivity index has an independent impact.

6