
Supplemental material for: SIMPA: An Open-source Toolkit
for Simulation and Image Processing for Photonics and

Acoustics

Janek Gröhl1,†, now at 6,7, Kris K. Dreher1,2,*,†, Melanie Schellenberg1,3,4, Tom Rix1,3, Niklas
Holzwarth1, Patricia Vieten1,2, Leonardo Ayala1,5, Sarah E. Bohndiek6,7, Alexander Seitel1,‡,

and Lena Maier-Hein1,3,5,‡

1German Cancer Research Center, Computer Assisted Medical Interventions, Heidelberg,
Germany

2Heidelberg University, Faculty of Physics and Astronomy, Heidelberg, Germany
3Heidelberg University, Faculty of Mathematics and Computer Science, Heidelberg, Germany

4HIDSS4Health - Helmholtz Information and Data Science School for Health, Heidelberg,
Germany

5Heidelberg University, Medical Faculty, Heidelberg, Germany
6Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way,

Cambridge, CB2 0RE, U.K.
7Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE,

U.K.

ABSTRACT

This document contains materials and plots supplementing the paper: SIMPA: An open-source toolkit for
simulation and image processing for Photonics and Acoustics. The experiments conducted in this paper do
not require any external data. The latest release of the SIMPA code can be downloaded from GitHub (https:

//github.com/CAMI-DKFZ/simpa, last visited 14th December 2021). The code used to generate the results and
figures is available in a GitHub repository (https://github.com/CAMI-DKFZ/simpa_paper_experiments) and
via zenodo (made available upon publication).

*Send correspondence to K.K.D. k.dreher@dkfz-heidelberg.de
†These authors contributed equally
‡Shared last authorship

1

https://github.com/CAMI-DKFZ/simpa
https://github.com/CAMI-DKFZ/simpa
https://github.com/CAMI-DKFZ/simpa_paper_experiments


1. SIMPA MEMORY AND TIME SCALING

One major use case of SIMPA is to simulate large training datasets for machine learning algorithms. As such,
the computational costs for the SIMPA simulations is of special interest. All experiments in this section were
conducted using a workstation with an AMD(R) Ryzen 3900x 12-core central processing unit (CPU), 64GB of
RAM, and NVIDIA RTX 3090 GPU running Ubuntu 20.04.

Generally, a higher resolution in medical imaging is advantageous for a physician to be able to differentiate
between small structures maybe even in the submillimeter regime. For simulation of PA images, a finer com-
putational grid can simulate higher frequencies of the acoustic waves∗. Unfortunately, with a higher resolution,
the computational costs can be extreme, such that it is not possible even for advanced scientific computers to
simulate PA images arbitrarily highly resolved. The resolution of a SIMPA simulation is given by the isotropic
voxel size or spacing. A simulation pipeline with the same parameters as the default simulation in section 3.2 of
the main paper has been executed ten times each with decreasing spacing from 0.4mm to 0.1mm and the RAM
usage, as well as the run time, for each pipeline element has been recorded. These simulations indicate what
the SIMPA user can expect of the scaling of Random Access Memory (RAM) usage, as well as the run time of
an example simulation pipeline of SIMPA with decreasing spacing (Figure S1). It is important to note that the
absolute numbers of the run times of the simulation runs can vary vastly from device to device, however, the
scaling of both RAM usage and run time with decreasing spacing should be consistent.

(a) Scaling of peak RAM usage with spacing. (b) Scaling of simulation run time with spacing.

Figure S1: Analysis of the random access memory (RAM) and run time requirements of SIMPA. S1a shows the
scaling of the peak RAM usage and S1b shows the scaling of the simulation run time with decreasing spacing
from 0.4mm to 0.1mm. Both the peak RAM consumption in GigaBytes (GB) (S1a) and the run time scaling
in seconds (s) (S1b) for each of the pipeline elements are shown on a logarithmic scale. The pipeline elements
are colour-coded as follows: volume creation (red), optical modelling (purple), acoustic modelling (green), image
reconstruction (orange), and field of view cropping (pink).

It should be noted that the first initialisation of any tensor on the GPU using PyTorch takes a lot longer
(around two seconds) than the actual reconstruction algorithm. Because of this, the image reconstruction time
including tensor initialisation is constantly around two seconds. As the actual reconstruction algorithm only
takes about 20 ms, a reconstruction frame rate of 50 Hz can be achieved if the user initialises the PyTorch
framework prior to executing the reconstruction algorithm.

∗http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf, last visited 14th December 2021

2

http://www.k-wave.org/manual/k-wave_user_manual_1.1.pdf


2. CUSTOMISING SIMULATION PARAMETERS - RUN TIMES

In section 3.2 of the main paper, a simulation pipeline has been customised with various hyperparameters with
the aim of reaching the most similar reconstruction result compared to the underlying initial pressure. In Tables
S1, S2, S3, and S4 the run times for different parameter combinations can be found. The reconstructions in the
different pipelines were performed with the default settings (delay-and-sum), with an applied bandpass filter,
with a ”differential mode” (delay-and-sum of the first derivative of the time signal), and finally, a customised set
of hyperparameters. These times are reported for the spacings 0.15mm, 0.35mm, 0.55mm.

Spacing [mm] Optical modelling time [s] Acoustic modelling time [s] Image reconstruction time [s]
0.55 1.16 7.92 2.16
0.35 2.77 8.47 2.20
0.15 27.89 11.64 2.20

Table S1: Run times of the optical and acoustic forward modules and image reconstruction for the default
simulation pipeline in seconds (s). The times are reported for three different spacings: 0.15mm, 0.35mm,
0.55mm.

Spacing [mm] Optical modelling time [s] Acoustic modelling time [s] Image reconstruction time [s]
0.55 1.17 7.91 2.28
0.35 2.77 8.15 2.20
0.15 28.05 11.70 2.25

Table S2: Run times of the optical and acoustic forward modules and image reconstruction in seconds (s) for
a simulation pipeline with an applied bandpass filter (Tukey window with an alpha value of 0.5 and 1 kHz as
high-pass and 8MHz as low-pass frequencies). The times are reported for three different spacings: 0.15mm,
0.35mm, 0.55mm.

Spacing [mm] Optical modelling time [s] Acoustic modelling time [s] Image reconstruction time [s]
0.55 1.19 7.99 2.18
0.35 2.80 8.24 2.21
0.15 27.87 11.63 2.21

Table S3: Run times of the optical and acoustic forward modules and image reconstruction in seconds (s) for
a simulation pipeline with delay-and-sum reconstruction with the first derivative of the time-series data . The
times are reported for three different spacings: 0.15mm, 0.35mm, 0.55mm.

Spacing [mm] Optical modelling time [s] Acoustic modelling time [s] Image reconstruction time [s]
0.55 1.15 7.89 2.25
0.35 2.86 8.27 2.24
0.15 27.27 11.51 2.23

Table S4: Run times of the optical and acoustic forward modules and image reconstruction in seconds (s) for
a simulation pipeline with delay-and-sum reconstruction with a bandpass filter (Tukey window with an alpha
value of 0.5 and 1 kHz as high-pass and 8MHz as low-pass frequencies), the first derivative of the time-series
data and envelope detection. The times are reported for three different spacings: 0.15mm, 0.35mm, 0.55mm.

3



3. INVESTIGATION OF ADVERSE PROGRAMMING EFFECTS

To simulate a large data set consisting of multiple photoacoustic images such as in section 3.6 of the main paper,
the simulation of each image should run as fast as possible without influencing the simulation of a succeeding
image of the dataset. This is relevant because the existence of dependencies within sequential runs would
potentially lead to unusable or heavily biased data. The risk that this happens is high, as such dependencies
could be introduced by minor software bugs (e.g. naming conventions are not kept, file access is not handled
properly, instance variables are not reset properly, etc). It is therefore important to examine the behaviour of
the toolkit in subsequent executions.

(a) Simulation run time differences. (b) Simulation result differences.

Figure S2: Analysis of the independence of subsequently executed simulations. Simulation run times of 100
sequential simulation executions are shown, where the pipeline was newly initialised every run. S2a shows the
difference of the run times for each simulation in seconds (s). S2b shows the absolute differences between the
simulation results, in this case the reconstructed images, where each image has been normalised between 0 and
1 in arbitrary units (a.u.). The dashed purple lines denote the 2σ interval around the mean and the red line
denotes the mean difference.

To investigate a possible existence of adverse effects from subsequent simulations runs, 100 simulations with
the same parameters are sequentially executed (with a spacing of 1mm). The simulation run times are highly
comparable (Figure S2); the simulation of the largest outlier took 0.17 s longer which is about 2% of the mean
simulation time (≈ 7.95 s). As for the resulting simulated PA images, the difference between the mean image
and largest outlier is about 1.5e-7 a.u. which is negligible since the images are normalized between 0 and 1 a.u.

4



4. PHOTOACOUSTIC IMAGE PROCESSING

Currently, there are two widely used image processing algorithms implemented in SIMPA and are demonstrated
below.

4.1 Iterative quantitative photoacoustic imaging

The qPAI method introduced by Cox et al. 2006 uses a simple iterative scheme to recover optical absorption
coefficients of a known initial pressure distribution by repeatedly simulating the optical fluence based on previous
assumptions of the absorption coefficients and updating them accordingly until the algorithm converges. In
comparison to the 2D method presented in the original paper, in SIMPA, a slightly advanced 3D method was
implemented with MCX as the optical forward model. To reproduce the results obtained by Cox et al., one of
the example volumes was recreated and the optical model was simulated. The initial pressure and the optical
scattering were then used as input for the iterative qPAI algorithm. The ground truth and estimated absorption
coefficient distributions, a difference image and the estimated fluence are shown in figure S3 where the same
colour map has been chosen to make a comparison to the original paper easier. The results are surprisingly
similar to the original paper even though we use a different optical forward model.

(a) Ground truth absorption
[cm−1]

(b) Recovered absorption
[cm−1]

(c) Difference of ground
truth and recovered absorp-
tion [cm−1]

(d) Recovered fluence [a.u.]

Figure S3: Recreation of the Cox et al. 2006 quantitative PA imaging experiment within SIMPA. From left
to right, the panels show S3a the ground truth absorption coefficients in cm−1; S3b the absorption coefficients
recovered by the algorithm in cm−1; S3c the absolute difference of S3a and S3b; and S3d the recovered light
fluence of the last iteration step normalised between 0 and 1 in arbitrary units (a.u.). It has to be noted that
while the original study was conducted using a 2D photon propagation model, a 3D model (MCX) was used in
this case.

4.2 Linear unmixing

“Spectral unmixing is the decomposition of a mixed pixel into a collection of distinct spectra, or endmembers,
and a set of fractional abundances that indicate the proportion of each endmember.” (Keshava et al., 2002) Linear
spectral unmixing (the word spectral is often omitted) assumes that the pixel spectrum is a linear combination
of the spectra of the endmembers. A version of linear spectral unmixing using singular value decomposition to
reduce computational cost is implemented in SIMPA. To show the capabilities of this processing component, an
example simulation was performed including linear unmixing using the wavelengths 750 nm, 800 nm, and 850 nm
to provide an estimation of blood oxygen saturation (Figure S4). Notably, the errors of the estimated blood
oxygen saturation are comparably low within the two ellipses especially in the upper area of the ellipses. The
error is higher in the background because the signal of the highly absorbing structures dominates the spectrum
of the reconstructed image.

5



(a) Reconstructed image at
750 nm [a.u.]

(b) Ground truth blood oxy-
gen saturation at 750 nm [%]

(c) Estimated blood oxygen
saturation [%]

(d) Absolute error [%]

Figure S4: An example application of linear unmixing on the reconstructed images within SIMPA. From left
to right, the panels show: S4a the normalised reconstructed PA image at a wavelength of 750 nm which serves
as input for the algorithm; S4b the ground truth blood oxygenation, where the background has 0%, the left
structure 50%, and the right structure 100% oxygen saturation; S4c the estimated blood oxygenation after linear
unmixing using 750 nm, 800 nm and 850 nm; and S4d the absolute error of the estimation when comparing S4b
and S4c.

6


	SIMPA memory and time scaling
	Customising simulation parameters - run times
	Investigation of adverse programming effects
	Photoacoustic image processing
	Iterative quantitative photoacoustic imaging
	Linear unmixing


