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I. RESULTS 

A. Conventional muscle synergy analysis did not reveal any 

salient age-related difference in muscle synergy during 

learning  

As mentioned in the main text, as a first step to reveal any 

potential age-related difference in how the muscle synergies are 

changed by bowling training, we performed a “conventional” 

muscle synergy analysis on preprocessed electromyographic 

data (EMGs; 11 muscles) that were normalized to the levels at 

maximum voluntary contraction of the muscles. We identified 

muscle synergies from the EMGs of whole sessions using the 

standard NMF algorithm [1,2]. The extracted synergies were 

then compared between sessions and groups, with similarity 

between synergy sets quantified by the average scalar product 

between matched muscle-synergy pairs [3]. 

In both age groups and both sessions, the EMGs could be 

explained at R2 ≈ 90% by ~5 muscle synergies, with no 

statistically significant inter-group or -session differences in 

this dimensionality (p>0.05; Fig. S1). Across age groups, the 

scalar-product similarity between every young adult-elderly 

subject pair did not significantly differ between sessions 1 and 

3 (p>0.05; Fig. S2A). Longitudinally, from session 1 to 3, both 

age groups showed the same degree of change in their muscle 

synergies as reflected by their similar across-session scalar-

product values (p>0.05; Fig. S2B). After the synergies of each 

session from all subjects of each group were k-means clustered 

(see Fig. S3A-B for the k-means silhouette values), a 

comparison of the session-1 cluster centroids with the session-

3 centroids in both groups revealed no obvious difference in 

how the synergies changed from session 1 to 3 between the two 

age groups (Fig. S3C-D). Indeed, even the session-1-specific 

clusters in both groups involved similar muscles, including 

deltoid (medial and posterior parts) and biceps brachii (Biceps) 

(Fig. S3C-D). The similarity between the elderly and young-

adult synergies persisted when synergies were extracted from 

the combined EMGs of sessions 1 and 3 (Fig. S4). Thus, 

conventional muscle synergy analysis did not reveal any salient 

age-related difference in the muscle synergies of either session, 

and how the synergies are changed by learning. 

 

II.   MATERIALS AND METHODS 

A. Subjects  

Two groups of 8 male right-handed subjects each 

participated in this study: the elderly group (age range of 68 to 

75 years old, mean age of 71.1 ± 2.4 [SD]), and the young adult 

group (age range of 22 to 26, mean age of 23.8 ± 1.7). By filling 

a questionnaire, all subjects verified, to the best of their 

knowledge, that they had no visual impairment and any medical 

condition that would influence their motor abilities, and had 

never received any regular bowling-related training prior to the 

study. The study’s protocol was reviewed and approved by the 

Joint Chinese University of Hong Kong – New Territories East 

Cluster Clinical Research Ethics Committee (protocol 
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Fig. S1.  Dimensionality of the EMGs from elderlies (A) and young adults 

(B). No statistically significant change (NS) in dimensionality from session 

1 to 3 was detected in either group (t-test, p > 0.05; group mean ± SE). 

 

 
 

Fig. S2.  Standard muscle synergy similarity analysis. A, In each age group, 
the session-1 and session-3 synergies of each subject were matched by 

maximum scalar product (SP). The average SP for elderlies did not 

significantly differ (NS) from that for young adults (t-test, p > 0.05, mean 
± SE). B, In each session, the synergies of every elderly-young adult 

subject pair were matched. The average SP for session 1 did not 

significantly differ (NS) from that for session 3 (t-test, p > 0.05, mean ± 
SE). 
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2016.203), and all subjects provided written informed consent 

before experimentation. 

B. Virtual bowling game  

All subjects were trained to play, with their non-dominant 

left arm, a virtual reward-based bowling game constructed 

using a Kinect sensor (Microsoft Corp., Redmond, WA, USA), 

and a video game console (Xbox One; Microsoft, Redmond, 

WA, USA) connected to a widescreen liquid-crystal monitor 

(1080p). We purposefully assigned the bowling arm to the non-

dominant side to make the game more difficult to learn, and 

thus amplify the effects of training on the muscle synergies. The 

game environment was provided by Kinect Sports Rivals (Rare; 

Twycross, UK), which contains a readily usable environment 

for 10-pin bowling. The Kinect sensor, always placed at 89 cm 

above ground and 80 cm in front of the monitor, was calibrated 

before every game session to correctly track the body 

movement of each subject. A warning was given on the display 

when the sensor failed to capture the subject’s whole-body 

motion during the game because of dark clothing items or 

nearby obstructions.  

Just like the ordinary bowling games, the explicit goal for the 

subject was to knock over as many pins at the lane’s end as 

possible with the virtual ball. To start a trial, the subject first 

stood in front of the Kinect sensor, picked up a virtual ball using 

the left hand, and held it by making a fist. The subject was then 

instructed to line his hand up to the center triangle on the virtual 

bowling lane with the help of the Kinect sensor, which would 

then send the ball straight to the lane’s center. Then, an arm 

swing motion picked up by the sensor served to simulate the 

throwing of the ball whose virtual release was signified by the 

opening of the non-dominant hand together with an accelerated 

wrist flexion during mid-swing. After release, the ball would 

then run virtually along the lane on the display.  

The exact kinematic determination of the number of 

knocked-down pins in our Kinect game has not been published 

 
 
Fig. S3. Conventional muscle synergy analysis performed on the bowling EMGs. For each session, W’s from all subjects of the group were pooled and k-

means clustered.  A,B, The number of clusters was determined by finding the number at which the mean silhouette value plateaued (arrows indicating optimal 

number). In A, for session 1 the mean silhouette peaked at 14 clusters, but partition at this number was obviously too fragmented to be heuristically useful. 
Hence, we decided to select the first local peak (10 clusters). C,D, The cluster centroids from the 2 sessions were matched by maximum scalar product (SP).  
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or made available by the game company. But according to prior 

studies on the biomechanics of real ordinary bowling, the 

number of knocked-down pins would depend on the ball’s 

direction and speed [4], which in turn would likely depend on 

the speed of shoulder and elbow flexion [5], and to the timing 

[4] and speed of wrist flexion and internal rotation [5]. These 

biomechanical determinants of high scores appear consistent 

with the experiences of the players of our virtual bowling game 

reported in online gaming forums [6]. Importantly, since the 

ball’s trajectory would be affected by the position of the 

subject’s body relative to the lane’s center [7], in each trial the 

subject was instructed to always stand at the same position in 

front of the sensor marked on the floor, so that the distance 

between toe on the right side and the Kinect sensor was fixed at 

208 cm. Since it is natural for a bowler to control the ball’s 

direction by adjusting the position and direction of the foot 

contralateral to the bowling arm [8], by fixing the right-toe-to-

sensor distance the subject would be forced to knock down 

more pins by adjusting only shoulder and wrist motions. No 

explicit instruction was otherwise given to the subject regarding 

the ball speed and direction required for knocking down pins.  

Each subject was trained alone on the bowling game for 3 

sessions held on separate, consecutive days. In every session, 

the subject was required to bowl for ~30 trials (26.85 ± 4.11 

trials). Each trial consisted of 2 throws. If the first throw was 

not a strike (i.e., all 10 pins down), with the second throw the 

subject could aim to knock down the remaining pins. All 

behavioral, myoelectric and kinematic data (see below) were 

only collected from the first throw of each trial, however, so 

that the data of all trials should reflect the subjects’ aim to score 

from the initial 10 pins. After each throw, performance was fed 

back to the subject through a direct visual display of the 

stricken-down and remaining pins, and a verbal and visual 

report of the number of knocked-down pins from the game 

system.  

C. Measures of performance 

We quantified the across-session bowling performance of 

every subject with two different measures. The first measure 

used was simply the average number of pins knocked down (a 

score out of 10) across all first throws of a session, one that the 

subject was explicitly aiming to maximize during the game. The 

second measure used was the release speed of the virtual ball, 

which should correlate directly with the maximum speed of 

wrist flexion attained during the throw. We estimated this speed 

by calculating the peak forward speed of a reflective marker 

placed on the left wrist (see below). Even though the ball release 

speed was presumed to contribute, together with other factors 

such as the ball trajectory, to the number of knocked-down pins, 

we did not observe any statistically significant correlation 

between the average ball release speed and the average bowling 

score across subjects in either group (elderly, Pearson’s r = 

0.32, p = 0.22; young adult, r = 0.19, p = 0.47) or in both groups 

(r = 0.26, p = 0.15). Thus, the ball release speed captures an 

aspect of kinematic changes that is at best only partially related 

to the explicit goal of the game.         

D. Kinematics and EMG recordings  

Kinematics and multi-channel electromyographic data 

(EMGs) were collected from each subject during all bowling 

trials in sessions 1 and 3. For kinematics, since the release speed 

of the virtual ball was presumably related to the velocity of 

wrist flexion (see above), we estimated the peak wrist flexion 

velocity by tracking the peak forward speed of the forearm 

endpoint. This was accomplished by monitoring the 3D position 

of a reflective marker on the left radial styloid process (marker 

LWRA in Vicon’s documentation) [9]. Its position during each 

trial was tracked and recorded, at 100 Hz, by 10 high-resolution 

infrared cameras (Vantage V5, Vicon; Centennial, CO, USA). 

The maximum speed attained by the marker in the forward (i.e., 

wrist flexion) direction was calculated in the Nexus software 

environment (Vicon, Centennial, CO, USA).   

For muscle activities, surface EMGs were recorded digitally 

from 11 upper-limb and back muscles on the non-dominant 

side, including infraspinatus (Infrasp); trapezius, upper part 

(TrapSup); rhomboid major and/or trapezius, lower part 

(RhombMaj); pectoralis major, clavicular head (PectClav); 

deltoid, anterior (DeltA), medial (DeltM) and posterior (DeltP) 

 
 

Fig. S4.  Conventional muscle synergy analysis performed on the combined session-1 and -3 EMGs. Muscle synergies were extracted from the combined 

EMGs. Synergies from all subjects were pooled together and k-means clustered. A, The number of clusters for each age group was determined by finding the 
number at which the mean silhouette value plateaued (arrows indicating optimal numbers). B, Cluster centroids from the two age groups were matched by 

maximum scalar product. Note that the centroids shown here were used to initialize NMF to extract session-fixed W in the first stage of variability analysis.   
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parts; biceps brachii (Biceps); pronator teres (PronTer); 

extensor carpi ulnaris (ExtCarUln); and flexor carpi ulnaris 

(FlexCarUln). All EMG electrodes were placed in accordance 

to the guidelines of the Surface Electromyography for the Non-

Invasive Assessment of Muscles – European Community 

Project (SENIAM; www.seniam.org) to the extent possible, and 

were attached to skin surface using double-sided tape and self-

adherent bandage wrap (3M CobanTM). All EMG signals were 

recorded using a wireless EMG system (Trigno, Delsys; Natick, 

MA, USA) at 2 kHz. Importantly, in both sessions 1 and 3, 

before the bowling trials, for every muscle the EMG elicited 

during maximum voluntary contraction (MVC) was recorded. 

E. EMG preprocessing and normalization 

Digital EMG data from both the MVC and bowling trials 

were read from the source data files (c3d format) using the 

open-source Biomechanical Toolkit (http://biomechanical-

toolkit.github.io/). All EMG signals were high-pass filtered at 

50 Hz (finite impulse response filter, or FIR; 50th order), 

rectified, and low-pass filtered at 20 Hz (FIR; 50th order) using 

custom Matlab routines [10]. Next, the EMGs of each muscle 

were time-averaged in 25-ms time bins [10]. For each session 

of each subject, the pre-processed bowling EMGs of each 

muscle were then normalized to either the maximum value 

recorded in the MVC trials or the maximum recorded in the 

bowling trials, whichever was higher. Note that the EMGs of 

each muscle were not normalized to unit variance, as in many 

previous studies [11,12], because the variance of synergy 

activations is itself a parameter of interest in this study (see 

below). No time normalization was performed on the EMGs. 

F. Conventional muscle synergy analysis 

To have a first assessment of how the upper-limb muscle 

synergies may differ between groups and sessions, we 

performed a standard muscle synergy analysis on the EMGs of 

each subject from each session. As in many previous studies 

(e.g., [10-16]), multi-muscle EMGs were modeled to be 

generated by the linear combination of time-invariant muscle 

synergies, 

D = WC + ε ,   (1) 

where D is the EMG time series for the recorded muscles (as 

row vectors), W is the matrix comprising the synergies (as 

column vectors), C is the matrix denoting the time series of 

activation coefficients for the synergies (as row vectors), and ε 

is the residual unexplained by the model. The W and C matrices 

were identified from the preprocessed and normalized EMGs 

using the standard non-negative matrix factorization algorithm 

(NMF) [1] that assumes Gaussian noise in the data [2]. 

To determine the number of muscle synergies needed for data 

reconstruction (i.e., the EMG dimensionality), NMF was 

applied to successively extract 1, 2, …, 11 synergies from the 

EMGs of each session. The number of muscle synergies 

deemed adequate was determined to be the minimum number 

required for an EMG-reconstruction R2 of ≥90%. The 90% 

threshold here differs from the usual 80% threshold used in 

previous studies (e.g., [12]). Since the EMG here was 

normalized to the muscle’s MVC magnitude instead of to unit 

variance, a higher threshold was necessary to capture the 

structure embedded in the muscles with lower magnitudes in 

the bowling trials after data normalization. To prevent the 

extracted W and C from representing a suboptimal solution at a 

local minimum on the error (ε) surface, each extraction run was 

repeated 20 times, each time with W and C initiated with 

different uniformly distributed random values between 0 and 

the maximum EMG value. The solution yielding the highest R2 

was selected for downstream analysis. For every extraction run, 

the NMF update rules were terminated when a between-

iteration change of EMG-reconstruction R2 <0.001% was 

observed in 20 consecutive iterations [10]. Every muscle 

synergy was normalized to unit vector, and the synergy’s 

activation multiplied by the original synergy-vector magnitude, 

so that all C’s represented activation drives of unit vectors.     

To facilitate between-group and between-session 

comparisons of the muscle synergies, for each of the elderly and 

young adult groups the synergies identified from all subjects in 

each session were classified into clusters by k-means 

implemented on Matlab (kmeans.m, options of squared 

Euclidean distance and 5,000 replicates). Clustering was also 

implemented on the pooled session-1 and session-3 synergies 

of each age group. For every k-means run, clustering was 

performed with 2, 3, … 15 clusters; the optimal number of 

clusters was determined by finding the number of clusters at 

which the average silhouette value plateaued [17]. The cluster 

centroids were normalized to unit vectors for downstream 

analyses.        

For every subject, the magnitude-normalized synergies for 

session 1 were matched to those for session 3 by maximizing 

the total scalar product values (SP) between the synergy pairs 

[3]. The overall similarity between the two synergy sets was 

thus quantified by the average SP across the synergies. SP’s 

were also computed between the synergy sets of each session 

of every elderly-young-adult subject pair (8 x 8 = 64 pairs), and 

for each subject group, between the synergy cluster centroids of 

session 1 and those of session 3.        

G. Correlating variability of muscle-synergy activations 

with performance measures 

In this study, we ask whether the initial (i.e., session 1) and 

change (i.e., from session 1 to 3) of across-trial variability of W 

and/or C may correlate with the change in bowling performance 

from session 1 to 3, in both elderlies and young adults. In our 

first stage of variability analysis, we focused on finding 

statistically significant correlations with covariates that denote 

the initial or change in C variability in either activation 

magnitude or activation timing, assuming that W is fixed across 

all trials of a session, and that the numbers of synergies for both 

sessions for all subjects are the same (= 9; see below). In this 

regard, after identifying W and C of each session (the procedure 

for identifying them will be described below), we quantified the 

C-magnitude variability of every synergy by calculating the 

variance of the trial-maximum magnitude of C (Cmax), across all 

trials of each session. We then proceeded to examine whether 

the following correlations were statistically significant across 

all elderly or young-adult subjects: 

(1) The average (across each subject’s synergies) initial 

(session 1) Cmax variance vs. the change in bowling 

score or change in ball release speed; 
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(2) The maximum (across each subject’s synergies) initial 

Cmax variance vs. the change in bowling score or 

change in ball release speed; 

(3) The average (across each subject’s synergies) change 

(from session 1 to 3) of Cmax variance vs. the change in 

bowling score or change in ball release speed; 

(4) The maximum (across each subject’s synergies) 

change of Cmax variance vs. the change in bowling 

score or change in ball release speed. 

Thus, for each subject group, a total of 4 (covariates) x 2 

(bowling score or ball speed) = 8 correlations were performed. 

The strength and statistical significance of all correlations were 

quantified by the Pearson’s correlation coefficient (r).  

In addition, we correlated the variability of activation timing 

of C with the change in performance measures. For every 

synergy, the time point within the trial at which Cmax occurred 

(TCmax) was noted. Timing variability was quantified by the 

variance of the time interval between the TCmax’s of any 2 

synergies within the synergy set. Thus, for 9 synergies, there 

were 9C2 = 36 time-interval variance values from each subject. 

As in the C-magnitude variability analysis, for every of the 36 

time-interval variances, both the initial (session 1) and the 

change (from session 1 to 3) of variance were correlated with 

either the change in bowling score or ball release speed. Thus, 

a total of 36 (time-interval variances) x 2 (initial or change of 

variance) x 2 (bowling score or ball speed) = 144 correlations 

were performed for the elderly and young-adult groups, 

respectively. 

The above-described C-variability analysis assumes a W that 

is fixed within a session. Since our synergy clustering analysis 

indicated that the W’s for both sessions for both subject groups 

could be grouped into 9 clusters (Fig. S4), for this C-variability 

analysis we enforced 9 muscle synergies to be extracted from 

the EMGs of each session of each subject. Also, as we studied 

the change of C variability of a synergy from session 1 to 3, 

there was the necessary assumption that the C’s of both sessions 

represented the activations of the same coordinative entity, W, 

from session 1 to 3, even though this session-fixed W may itself 

be modified across sessions. To identify the session-1 and 

session-3 W’s so that the synergy vectors in the former would 

suitably correspond to those of the latter, for both sessions we 

initialized the NMF update rule for W with the same matrix. 

This initial matrix we used was composed of the 9 W-cluster 

centroids derived by applying k-means to the W’s extracted 

from the combined EMGs of both sessions 1 and 3, and 

collected from all subjects of either group. This way, when 

extracting the subject- and session-specific W, the NMF was 

armed with prior knowledge of a generalized W based on its 

average representation across all subjects and sessions; 

extraction of W would therefore amount to suitably updating 

this “W prior” to accommodate any data features peculiar to the 

session and subject concerned (see below).                    

H. Modeling EMG variability by trial-specific muscle 

synergies 

In the first stage of analysis described above, we modeled the 

across-trial variability of EMGs to originate from the 

spatiotemporal variability of C that activates a session-fixed W. 

In the second stage of analysis, we further explored a model that 

allows both W and C to be variable across trials, and examined 

whether the initial and change of W or C variability may 

correlate with the change of performance measures across 

subjects. In conventional muscle synergy analysis, W is always 

regarded as an invariant structure that accounts for EMG 

variability. To identify W, NMF or another algorithm is used to 

discover features embedded within the EMG variability. Here, 

on the other hand, we intend to examine muscle synergy as an 

entity that itself exhibits trial-to-trial variability. A new 

computational procedure is needed to identify this variation of 

W from trial-specific muscle synergies. Importantly, the 

averages of trial-specific synergies across trials should still 

globally explain the data by spanning most of the EMG 

subspace, so that a trial-specific W should represent a variant of 

a “true global W” rather than just a fit to the data peculiarities 

and noise of the trial.       

To accomplish our computational goals, we exploited the fact 

that the NMF update rules are iterative steps for estimating the 

W and C by maximizing the likelihood of observing the EMGs 

given any initial estimates of W and C, which correspond to 

prior knowledge of how the muscle synergies and their 

activations should be structured [2,3,18]. It follows that trial-

specific W and C can be suitably estimated from the EMG of 

each trial by initiating the NMF with the global W and C 

extracted from the entire EMG data set comprising all trials, 

which should represent a priori knowledge of what the trial-

specific W and C should be close to. To identify trial-specific 

muscle synergies, we implemented, for every subject and 

session, the following steps: 

(1) We applied NMF to EMGs of all trials of both sessions with 

randomized W and C as initial estimates, as described above, 

and extracted the global W and C with specifications identical 

to those used in conventional muscle synergy analysis (see 

above). 

(2) For every trial, we applied NMF again to the EMGs of that 

trial, this time initiating the algorithm with the global W and C 

from (1), so that the “W prior” and “C prior” were updated by 

the algorithm to account for any trial-specific EMG variations.    

If the above steps did return trial-specific W’s that reflect 

genuine muscle-synergy fluctuations across trials given the W 

prior (instead of just any W’s that maximize the EMG variance 

explained), in each trial, every trial-specific synergy should be 

reasonably similar to its own W prior from whose updating it 

was derived by NMF. We evaluated to what extent this was the 

case by matching every set of trial-specific W’s to the W prior 

synergies that initialized the NMF by maximizing the total 

scalar-product values (see above). For every W-prior synergy, 

we then calculated the percentage of trials whose trial-specific 

synergies derived from the same W-prior synergy were matched 
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back to the W-prior synergy itself. A high percentage for all W-

prior synergies would indicate that the NMF, when applied to 

the trial EMG with the W and C prior, did not return drastically 

different synergies. 

In some trials, we noted that a W-prior synergy was updated 

by NMF to result into a trial-specific synergy that was best 

matched to another W-prior synergy (for instance, prior 

synergies 1 and 2, after NMF updating, became trial-specific 

synergies closest to prior 2 and 1, respectively). If this 

happened, we reassigned the trial-specific synergies to their 

closest prior synergies, so that subsequent calculations of the W 

variability would be based on the variance of a group of trial-

specific synergies that were all closest to the same prior. We 

found that this reassignment step did increase the Pearson’s r 

slightly when W variability was correlated with behavioral 

performance measures, but did not result in any qualitative 

change in study’s main conclusions.     

For each session of every subject, W variability (WV) was 

quantified by the total across-trial variance of the trial-specific 

synergies: 

𝑊𝑉 = ∑ 𝑉𝑎𝑟([𝑊𝑖1, 𝑊𝑖2 … , 𝑊𝑖𝑁]) ,11
𝑖=1     (2) 

where N is the number of trials, and i is an index for the 11 

muscles. All trial-specific W’s were normalized to unit vectors 

before WV calculations. As in the Cmax variability analysis 

described above, both the initial (session 1) and change (from 

session 1 to 3) of mean and maximum WV (across the synergies 

of a subject) were correlated with the change in average 

bowling score and ball release speed, across either the elderly 

or young adult subjects. Variability and correlation analyses for 

Cmax – this time derived from C’s that activate trial-specific W’s 

– were likewise conducted in steps identical to those described 

above for C’s that activate session-fixed W’s.  
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TABLE S1.  Correlating variability of C activation magnitude with 

performance measures (with session-fixed W) 
Pearson’s r values for all correlations are listed. Their corresponding p 

values are shown in parentheses. Statistically significant values are 

shown in bold. 

ELDERLY 

 
Predictor 

Response variable 

Ses.1-3 Change of 

Average Score 

Ses.1-3 Change 

of Ball Speed 

Mean Ses. 1 Cmax Var.  0.20 (0.63) -0.74 (0.03) 

Max. Ses. 1 Cmax Var. 0.32 (0.44) -0.61 (0.11) 

Mean Ses. 1-3 Change 
of Cmax Var. 

0.03 (0.95) 0.43 (0.29) 

Max. Ses. 1-3 Change 

of Cmax Var. 

-0.05 (0.91) 0.01 (0.97) 

YOUNG ADULT 

 
Predictor 

Response variable 

Ses.1-3 Change of 

Average Score 

Ses.1-3 Change 

of Ball Speed 

Mean Ses. 1 Cmax Var. 0.01 (0.98) -0.17 (0.69) 

Max. Ses. 1 Cmax Var. 0.02 (0.96) -0.14 (0.74) 

Mean Ses. 1-3 Change 
of Cmax Var. 

0.48 (0.23) -0.03 (0.94) 

Max. Ses. 1-3 Change 

of Cmax Var. 

0.93 (0.0007) -0.07 (0.87) 

 

 

TABLE S2.  Correlating variability of W with performance measures 

(with trial-variable W and C) 
Pearson’s r values for all correlations are listed. Their corresponding p 

values are shown in parentheses. Statistically significant values are 

shown in bold. 

ELDERLY 

 
Predictor 

Response variable 

Ses.1-3 Change 

of Average 

Score 

Ses.1-3 Change 

of Ball Speed 

Mean Ses. 1 W Total Var. 0.50 (0.20) 0.31 (0.46) 

Max. Ses. 1 W Total Var. 0.17 (0.69) 0.13 (0.76) 

Mean Ses. 1-3 Change of 

W Total Var. 

-0.23 (0.59) -0.09 (0.84) 

Max. Ses. 1-3 Change of 
W Total Var. 

0.14 (0.74) -0.34 (0.41) 

YOUNG ADULT 

 

Predictor 

Response variable 

Ses.1-3 Change 

of Average 

Score 

Ses.1-3 Change 

of Ball Speed 

Mean Ses. 1 W Total Var. -0.59 (0.13) 0.11 (0.80) 

Max. Ses. 1 W Total Var. -0.54 (0.16) 0.07 (0.88) 

Mean Ses. 1-3 Change of 

W Total Var. 

0.78 (0.02) -0.25 (0.56) 

Max. Ses. 1-3 Change of 

W Total Var. 

0.80 (0.02) -0.51 (0.19) 

 

 TABLE S3.  Correlating variability of C activation magnitude with 

performance measures (with trial-variable W and C) 

Pearson’s r values for all correlations are listed. Their corresponding p 
values are shown in parentheses. Statistically significant values are 

shown in bold. 

ELDERLY 

 

Predictor 

Response variable 

Ses.1-3 Change of 

Average Score 

Ses.1-3 Change of 

Ball Speed 

Mean Ses. 1 Cmax Var. -0.08 (0.85) -0.65 (0.08) 

Max. Ses. 1 Cmax Var. 0.10 (0.81) -0.09 (0.83) 

Mean Ses. 1-3 Change 

of Cmax Var. 

-0.04 (0.93) 0.59 (0.12) 

Max. Ses. 1-3 Change 

of Cmax Var. 

-0.29 (0.48) 0.15 (0.72) 

YOUNG ADULT 

 

Predictor 

Response variable 

Ses.1-3 Change of 

Average Score 

Ses.1-3 Change of 

Ball Speed 

Mean Ses. 1 Cmax Var. -0.21 (0.61) 0.26 (0.51) 

Max. Ses. 1 Cmax Var. -0.40 (0.33) 0.50 (0.21) 

Mean Ses. 1-3 Change 

of Cmax Var. 

0.77 (0.03) -0.39 (0.34) 

Max. Ses. 1-3 Change 
of Cmax Var. 

0.34 (0.41) -0.34 (0.41) 
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