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FlatNet: Towards Photorealistic Scene
Reconstruction from Lensless Measurements

—Supplementary—

Abstract—In this supplementary material, we provide some additional details. We provide details about the display captured setup, the
qualitative performance of FlatNet-gen-UC on both cropped and full measurements, the variation of performance of the deep networks
with respect to the number of parameters, additional detail on the trainable inversion stage, the performance of FlatNet-gen finetuned
on unconstrained cropped indoor captures and the performance of both FlatNet-sep and FlatNet-gen on scenes containing bright
objects.

Index Terms—lensless imaging, image reconstruction

F

1 DISPLAY CAPTURE SETUP

To capture a display-captured image using FlatCam [1] and
PhlatCam [2], the image is resized so as to occupy the
biggest central square on a 24-inch monitor using bicubic in-
terpolation. The monitor was placed at appropriate distance
so that the image occupied the field of view of the cameras.
For FlatCam, this was around 1 foot, while for PhlatCam,
this was around 16 inches. This setup is fixed for all image
captures such that the alignment of the monitor pixels to
the camera pixels is uniform throughout both training and
test. The white balance setting for FlatCam is fixed to be
the white balance setting obtained in the FlatCam’s (i.e.
PointGrey Flea3) automatic white balance mode when an
all-white image is displayed on the monitor. The exposure
time is set to PointGrey’s automatic mode, and the camera’s
gain is set to 0dB. For PhlatCam prototype using a Basler
ace camera, the white balance setting was estimated once
before the capture began by capturing a demo picture. The
exposure was set at 10000 microseconds. Figure 1 shows
the setup for FlatCam capture. The setup for PhlatCam is
similar.

2 QUALITATIVE COMPARISON FOR UNCALI-
BRATED PSF CASE

In Section 4.3.2 and 4.4.1 of the main paper, we provided the
quantitative comparison for FlatNet-gen with Le-ADMM
and Tikh+U-Net. In this section, we provide the visual re-
sults for the uncalibrated versions of the same. In particular,
we use PSF simulated using the method described in Section
3.1.2 and use this PSF for learning Le-ADMM, Tikh+U-
Net and FlatNet-gen. We provide the comparison for both
full measurement in Figure 2 and cropped measurement
in Figure 3. We can see clearly that the performance of
FlatNet-gen-UC is very close to its calibrated counterpart
i.e. FlatNet-gen-C. However, this is not the case with Le-
ADMM and Tikh+U-Net.

Fig. 1. The display capture setup for FlatCam. A similar setup was
used for PhatCam.

3 EFFECT OF PARAMETERS ON PERFORMANCE OF
FLATNET-GEN

In this section, we investigate how FlatNet-gen compares
against Le-ADMM and Tikh+U-Net in terms of perfor-
mance for different parameter count. In particular, we train
FlatNet-gen, Tikh+U-Net and Le-ADMM for different vari-
ants of U-Net, keeping the number of learnable parameters
constant in the trainable inversion stage for FlatNet-gen and
unrolled ADMM block for Le-ADMM. U-Net-N refers to
the variant of U-Net for which the number of filters in a
convolutional block increases from N to 8N and reduces
back to N. We perform this experiment for N = 32, 64 and
128. Table 1 provides the variation of the average PSNR and
LPIPS for Tikh+U-Net, Le-ADMM and FlatNet-gen against
the total number of learnable parameters. It is clear that
FlatNet-gen outperforms both Tikh+U-Net and Le-ADMM
for different parameter counts at the cost of slight increase
in the relative number of learnable parameters. In the main
text, we report the best model for each approach i.e. with
U-Net-128.
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Fig. 2. Comparison between uncalibrated and calibrated learning based approaches for full PhlatCam measurement. Tikh+U-Net and Le-
ADMM rely on accurate estimation of PSF while FlatNet-gen relies on PSF only for initialization and rather learns the inverse of the PhlatCam
forward model. FlatNet-gen higher quality reconstructions with finer details for both calibrated and uncalibrated case. This is not the case for
Le-ADMM or Tikh+U-Net.

Fig. 3. Comparison between uncalibrated and calibrated learning based approaches for cropped PhlatCam measurement. FlatNet-gen
provides higher quality reconstruction for both calibrated and uncalibrated case even when the measurement is extensively cropped. This indicates
that FlatNet-gen can be used for small sensor setup without accurately estimating the PSF.

4 DETAILS OF TRAINABLE CAMERA INVERSION

In this section, we provide some additional details regarding
the trainable camera inversion stage.

4.1 Initial weights in FlatNet-sep

The dimensions of W1 and W2 are 256× 500 and 620× 256,
given that the measurement dimensions are 500 × 620 × 4
and the reconstruction dimensions are 256 × 256. For cali-
brated initialization of FlatNet-sep, we use ΦT

L to initialize
W1 and ΦR to initialize W2. Similarly, for the uncalibrated
initialization, we first generate random toeplitz matrices
of slope that matches that of ΦL and ΦR. Once these
matrices are generated, they are used for initialization in

a way similar to the calibrated case i.e. the transpose of the
random toeplitz matrix corresponding to the ΦL is used to
initialize W1 and the random toeplitz matrix corresponding
to ΦR is used to initialize W2. Figure 4 presents a visual
representation of how the initialized weights W1 and W2

look for both calibrated and uncalibrated case.

4.2 Generation of random toeplitz matrices for FlatNet-
sep
For this subsection, please refer to Figure 5 which provides
a 1-D version of the geometry we are considering. Let us
assume that a scene of dimension H ×W fills up the entire
FoV of the camera and the the scene is discretized into h ×
w dimensional pixels. The corresponding scene maps to a
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TABLE 1
Variation of performance against the total number of learnable

parameters. FlatNet-gen outperforms both Le-ADMM and Tikh+U-Net
under all parameter counts.

Methods PSNR (in dB) LPIPS Learnable Parameters
Tikh+U-Net

U-Net-32 18.74 0.384 2.4M
U-Net-64 19.83 0.341 12.9M
U-Net-128 20.60 0.298 51.5M
Le-ADMM
U-Net-32 15.72 0.448 2.4M
U-Net-64 17.20 0.407 12.9M
U-Net-128 20.29 0.333 51.5M

FlatNet-gen
U-Net-32 18.83 0.379 4.2M
U-Net-64 19.92 0.336 14.7M

U-Net-128 20.94 0.296 53.3M

(c) W1

(d) W2

(a) W1

(b) W2

Uncalibrated Initialization Calibrated Initialization

Fig. 4. Initialized trainable inversion weights for FlatNet-sep. (a)
Initialized W1 for uncalibrated case. (b) Initialized W2 for uncalibrated
case. (c) Initialized W1 for calibrated case. (d) Initialized W2 for cali-
brated case.

region of dimension M × N in the sensor and the sensor
has a pixel pitch of p. The slope of the calibration matrix ΦL

is then defined as follows,

mL =
H/h

M/p
(1)

This slope measures the ratio of the number of pixels (row)
in the scene to the number of pixels (rows) in its projection
at the sensor or in other words, how many row pixels in the
scene correspond to a row pixel at the sensor.

If we assume our monitor for calibration or data capture
is at z distance from the camera and the mask to sensor
distance is d, then,

M = Hd/z (2)

Plugging 2 into 1, and assuming a scene of dimension P ×Q
pixels (i.e. (H/h)× (W/w)), the slope for ΦL becomes

mL =
P

Hd/(pz)
(3)

Similarly, the slope for ΦR can be shown to be,

mR =
Q

Wd/(pz)
(4)

For the FlatCam prototype we use in the experiments,
p = 10.6µm (this pixel pitch is for each channel and

is therefore twice the actual pixel pitch of the sensor)
and d = 1.5mm. We placed the monitor at a distance
z = 31.75cm and projected on the screen, a scene of
dimension H ×W = 29cm× 29cm. If we assume our scene
reconstruction to be of size P ×Q = 256× 256 pixels, then
mL = mR ≈ 2.

To generate toeplitz matrix of shape S×P where P < S
and with a slope that matches that of ΦL, we first gen-
erate a random vector of length S and form a circulant
matrix of dimension S × S corresponding to it. Then, us-
ing bilinear/nearest-neighbor interpolation, we resize this
circulant matrix to S × mLS. We then arbitrarily crop a
submatrix of size S×P from the resized matrix to match the
dimension of ΦL. Similar process is followed for generating
a toeplitz matrix that matches the dimension and slope ΦR

as well. Figure 6 shows an example toeplitz matrix along
with the calibrated ΦL matrix and the generated slope-
matched random toeplitz matrix after estimating the slope
using 3.

4.3 Evolution of the parameters
Figure 7 shows the evolution of trainable inversion pa-
rameters for both FlatNet-sep and FlatNet-gen. Specifically,
we plot the product W1ΦL for FlatNet-sep and the con-
volution output F−1(F(W ) � H) for FlatNet-gen. Here,
H is the Fourier transform of the PSF. For, FlatNet-sep
the product is an identity matrix while the convolution
output for FlatNet-gen is close to an impulse, indicating
that the trainable camera inversion has learned to invert the
forward process. The effect of learning is more prominent
in FlatNet-sep compared to FlatNet-gen for two reasons:
(a) the weights W1 and W2 were initialized with adjoint
of ΦL and ΦR as compared to the pseudo-inverse of the
PSF in case of FlatNet-gen, (b) owing to the superior mask
properties of PhlatCam, the pseudo-inverse of the PSF is
of high quality already. Similarly, the effect of learning is
more prominent in case of uncalibrated initialization for
FlatNet-gen compared to the calibrated counterpart. This is
again due to the fact that pseudo-inverse of the calibrated
PSF accurately inverts the forward model while the pseudo-
inverse of the simulated PSF is unable to capture some of the
non-idealities of the capturing process. As a result, it gets
refined through learning to accurately invert the forward
model. The prominence of the inversion stage learning in
FlatNet-gen, however, is evident in the case of cropped
measurements (main text section 4.4.2), as shown in Figure
8. It can be seen that learning gets rid of majority of the
artifact making it easier for the perceptual enhancement to
extract meaningful features that help with higher quality
final reconstruction.

4.4 Additional intermediate reconstructions
In this subsection, we present more intermediate results
for Le-ADMM, FlatNet-gen and FlatNet-sep. In Figure 9,
we show the intermediate outputs for three scenes by
Le-ADMM, FlatNet-gen and FlatNet-sep. The intermediate
output for Le-ADMM corresponds to the output of the
unrolled ADMM block while that for FlatNet corresponds
to the output of the trainable inversion block. For the non-
separable models (Le-ADMM and FlatNet-gen), we show
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Fig. 5. Geometry considered for the generation of random toeplitz matrices. 1-D representation of the geometry considered for the generation
of matrices for uncalibrated FlatNet-sep.

(a) Toeplitz Matrix (b) Calibrated Matrix (c) Slope-matched

Fig. 6. Generation of slope-matched random toeplitz matrices. (a)
Shows a conventional random toeplitz matrix. (b) Shows the calibrated
matrix ΦL. (c) Shows the slope-matched random toeplitz matrix. The
slope in (c) matches to that in (b).

the intermediates for both cropped and full measurement.
We can clearly see that learning has significant impact on the
intermediates especially for FlatNet-gen trained on cropped
measurements.

5 RECONSTRUCTION OF UNCONSTRAINED IN-
DOOR SCENES FOR SMALL SENSOR

It is interesting to observe the effectiveness of the finetuned
FlatNet for cropped unconstrained indoor scenes. In Figure
10, we provide visual comparison for the reconstructions
from cropped measurement and full measurement along
with the webcam capture. We show result for crop sizes
of 990 × 1254. It should be noted that in an unconstrained
setup, there may be large signals (due to bright objects)
outside the field of view described by the CRA which would
result in strong line artifacts in the reconstructions produced
by model without finetuning.

6 EFFECT OF BRIGHT OBJECT

For a highly multiplexed lensless imager, every pixel re-
ceives light from every point in the scene. Hence, if there
is any really bright object (like a highly reflective object or a
lamp) in the scene, the light from the object can dominate the
pixel intensities and result in severe reconstruction artifacts
on the dimmer objects. We show that, using FlatNet, the

artifacts are minimized resulting in a higher quality recon-
struction of the scene.

We show the bright object problem by introducing an
LED into the scene. Figure 11 shows the reconstruction
for FlatCam [1] and PhlatCam [2]. We can observe that
FlatNet-sep and FlatNet-gen reconstructions have signifi-
cantly fewer artifacts than other traditional and learning
based approaches.
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Fig. 7. Evolution of trainable camera inversion stage. Left: W1ΦL is shown as an image for both uncalibrated and calibrated scenario for the
inversion layer of FlatNet-sep. Eventually, the product becomes an identity matrix, indicating that the learning has led to an inversion of the forward
model for FlatNet-sep. Right: F−1(F(W ) � H) is shown for the inversion stage of both uncalibrated and uncalibrated scenario for the inversion
layer of FlatNet-gen. Here H is the Fourier transform of the PSF. Learning helps W in inverting the PSF resulting in the impulse shown in the top
figures. The bottom row shows a horizontal slice from the impulse image. The effect of learning is more prominent in the case for uncalibrated
FlatNet-gen compared to the calibrated counter part due to the superior nature of the mask and the resulting Wiener filter for the calibrated case.

(a) Before (b) After (c) Groundtruth

Fig. 8. Evolution of trainable inversion output of FlatNet-gen for
cropped measurement.The effect of learning of trainable inversion is
more prominent for cropped measurement as can be seen here. In (a)
we show the trainable inversion output at the beginning of training and
in (b) we show the trainable inversion output at the end of training. It can
be observed that learning has removed a majority of the artifacts. (c)
Groundtruth is also shown for reference.
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(f) Groundtruth(a) Le-ADMM (b) FlatNet-gen (d) FlatNet-gen(c) Le-ADMM (e) FlatNet-sep

Cropped Measurement Full Measurement
Non-separable

Fig. 9. Intermediate outputs before perceptual enhancement block. (a) Intermediate output of Le-ADMM for cropped measurement. (b) Trainable
inversion output of FlatNet-gen for cropped measurement. (c) Intermediate output of Le-ADMM for full measurement. (d) Trainable inversion output
of FlatNet-gen for full measurement. (e) Trainable inversion out of FlatNet-sep. (f) Groundtruth for reference.

Fig. 10. Cropped measurements for Unconstrained Indoor Scenes. We can observe that FlatNet-gen finetuned on unconstrained scenes
provides reasonable reconstruction quality even for cropped measurements
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Fig. 11. Reconstruction of scenes with bright objects (LED) using FlatCam and PhlatCam. Artifacts occuring in Tikhonov reconstructions are
amplified by Tikh+U-Net reconstruction. While Le-ADMM performs slightly better than Tikh+U-Net for PhlatCam, it is outperformed by FlatNet-gen


