Supplementary Figures

Glutathione-dependent redox balance characterizes the distinct metabolic

properties of follicular and marginal zone B cells

D. G. Franchina *et al*.

Supplementary Figure 1. Exemplary gating of the main strategies for flow cytometry and cell sorting.

⁰ 10³ 10⁴ **B220- PE-A**

-10³

MFI

Fig. or Supp.

Supplementary Figure 1. Exemplary gating of the main strategies for flow cytometry and sorting.

(a). General and representative flow cytometry gating strategy for gating of FoB, MZB, Tom20⁺ mitochondria, MZP, GC B cells, transitional B cells (TrB1, TrB2 and TrB3). For mean fluorescence intensity (MFI) measurements, signal from the MZB gate was size-corrected based on the FSC-A signal from FoB as shown (b). Flow cytometry back-gating strategy for sorting splenic B cells for scRNA-sequencing. Numbers in contour plots represent percentages of the cells gated.

Supplementary Figure 2. *Gclc* deletion led to ROS increase in splenic B cells and loss of MZB, which is *Cre*-independent.

Supplementary Figure 2. *Gclc* deletion led to ROS increase in splenic B cells and loss of MZB, which is *Cre*-independent.

(a-b) Representative histogram (left) and quantitation (right) of DCFDA staining for intracellular ROS and MitoSOX for mitochondrial ROS detection in total splenic CD19⁺ B cells from Gclc^{fl/fl} and Gclc^{fl/fl} *Mb1-Cre*⁺ mice (gated as in Supplementary Figure 1a) (n = 4 animals examined over 3 independent experiments). (c) Percentages (left) and absolute numbers (right) of viable splenic CD19⁺ cells from $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ mice (gated as in Supplementary Figure 1a) (n = 3-5 animals examined over 3 independent experiments). (d) Representative histogram (left) and quantitation (right) of BODIPY C11 staining for lipid ROS detection in splenic FoB cells from Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ mice (gated as in Supplementary Figure 1a) (n = 3 animals examined over 2 independent experiments). (e) Representative contour plots of the expression of the indicated MZB markers gated as indicated from total splenocytes of $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ mice. (f) Representative FACS contour plot (left) and quantitation (right) of splenic FoB and MZB from Gclc^{+/+} Mb1-Cre⁺, Gclc^{fl/+} Mb1-Cre⁺ and Gclc^{fl/fl} *Mb1-Cre*⁻ mice (gated as in Supplementary Figure 1a) (n = 3 animals examined over 2 independent experiments). (g) Representative contour plots of the indicated MZB markers expressed by total splenocytes of Gclc^{+/+} Mb1-Cre⁺, Gclc^{fl/+} Mb1-Cre⁺ and Gclc^{fl/fl} mice. In contour plots numbers represent percentages of the cells gated. Data are the mean \pm SD. Each dot represents one mouse. Significance (P) was calculated with unpaired t-test, except for (f) (one-way ANOVA). *: $P \le 0.5$; **: P ≤ 0.01 ; ***: P ≤ 0.001 ; ****: P ≤ 0.0001 .

Supplementary Figure 3. Loss of MZB content in *Gclc*-deficient mice is due to defective maturation of B cell precursors.

0

CD23-PE

TrB1

TrB2

TrB3

Supplementary Figure 3. Loss of MZB content in Gclc-deficient mice is due to defective

maturation of B cell precursors.

(a) Representative histogram (left) and MFI statistic of ICAM-1 and VCAM-1 staining in total live splenocytes from $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ mice (n = 4 animals examined over 3 independent experiments). (b) ELISA quantitation of CXCL13 and S1P from serum of Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ mice (n = 3-5 animals examined over 4 independent experiments; data are pooled from 3 experiments). (c) Representative immunofluorescence staining to detect MARCO⁺ metallophilic macrophages (purple) and Siglec-1⁺ marginal zone macrophages (green) in a single spleen follicle resected from one $Gclc^{fl/fl}$ and one Gclc^{fl/fl} Mb1-Cre⁺ mouse. Scale bars: 50 µm. (d-e) RT-qPCR of Gclc mRNA expression in resting total sorted CD93⁺ TrB from spleen of splenocytes from Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ mice (d) and from resting FoB (green), MZB (red) and TrB (orange) isolated from spleen of B6 mice (e) (n = 3)animals examined over 2 independent experiments). (f) Representative contour plot (left) and percentages (middle) statistic of Trb1-3 from Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ mice (gated as in Supplementary Figure 1a) (n = 3 animals examined over 3 independent experiments). (g) Mean fluorescence intensity (MFI) of MBB staining for detection of intracellular thiols from the cells gated in (f) from $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ mice (n = 3 animals examined over 2 independent experiments). In contour plots numbers represent percentages of the cells gated. Data are the mean \pm SD. Each dot represents one mouse. Significance (P) was calculated with unpaired t-test except for (e) (one-way ANOVA) and (f)-(g) (2way ANOVA). *: $P \le 0.5$; **: $P \le 0.01$; ***: $P \le 0.001$; ****: $P \le 0.001$.

Supplementary Figure 4. CITE-seq antibody-derived tag (ADT) signals identifies FoB and MZB from total splenic B cells.

Supplementary Figure 4. CITE-seq antibody-derived tag (ADT) signals identifies FoB and MZB from total splenic B cells.

(a) tSNE distribution of single cell transcriptomes of FACS sorted splenic B cells from of $Gclc^{fl/fl}$ and $Gclc^{fl/fl} Mb1-Cre^+$ mice (gated as in Supplementary Figure 1b). (b) Comparison of FACS (fluorescence) and CITE-seq signal (ADT) for the detection of MZB in $Gclc^{fl/fl}$ and $Gclc^{fl/fl} Mb1-Cre^+$ mice. (c) Top: tSNE plots comparing ADT signals for FoB (top) and MZB (bottom) markers among splenic B cells from $Gclc^{fl/fl}$ and $Gclc^{fl/fl} Mb1-Cre^+$ mice. (d) SCINA assignments of FoB (green) and MZB (red) from $Gclc^{fl/fl}$ and $Gclc^{fl/fl} Mb1-Cre^+$ mice. (d) SCINA assignments of FoB from $Gclc^{fl/fl}$ and $Gclc^{fl/fl} Mb1-Cre^+$ mice. (f) Number of detected gene transcripts per cell in $Gclc^{fl/fl}$ and $Gclc^{fl/fl} Mb1-Cre^+$ FoB. In contour plots numbers represent percentages of the cells gated. Data are pooled from 4 mice/genotype. Solid line, median; dashed lines, 1st and 3rd quartiles. Data are the mean \pm SD. Significance (P) was calculated with unpaired t-test. ****: P ≤ 0.0001 .

Supplementary Figure 5. Protein synthesis is enhanced in *Gclc*-deficient FoB, similarly to *Gclc*-sufficient MZB.

Supplementary Figure 5. Protein synthesis is enhanced in *Gclc*-deficient FoB, similarly to *Gclc*-sufficient MZB.

(a) Representative blot of p-mTOR, total mTOR and p-S6, total S6 proteins from total cell lysis of $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB is shown. (b-c) Representative histogram (left) and quantitation (right) of immunostaining to detect ER-tracker and Giantin (b) and p-eIF4E (c) in B6 FoB and MZB (gated as in Supplementary Figure 1a) (n = 3 animals examined over 3 independent experiments). (d) Volcano plot of genes differentially expressed in Gclc^{fl/fl} MZB and FoB determined as in Fig. 1i. Red dots indicate upregulated ribosomal-related transcripts. Data represent up- and downregulation of MZB vs. FoB transcripts among total transcripts pooled from 4 $Gclc^{fl/fl}$ mice. (e) Barcode plots showing transcripts from the GO:0006413, GO:0006414 and GO:0006415 gene lists that were enriched in Gclc^{fl/fl} MZB vs. FoB. (f) Protein quantitation from resting B6 0.5×10^6 cells FoB and MZB (left) and protein translation at the indicated times measured as puromycin MFI after puromycin pulse-chase of B6 FoB and MZB upon stimulation with anti-IgM, CD40 ligand and IL-4 or LPS (n = 3 animals examined over 3 independent experiments). (g-k) Same analyses as shown in (b-d) but comparing $Gclc^{fl/fl}$ versus $Gclc^{fl/fl}$ *Mb1-Cre*⁺ FoB. (g) and (h) (n = 3 animals examined over 3 independent experiments) show comparison of $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB, including $Gclc^{fl/fl}$ MZB as control (gated as in Supplementary Figure 1a). In (h) a representative blot of eIF4E, p- eIF4E, 4E-BP1 and p-4E-BP1 proteins from total cell lysis of $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB is shown. (j) Venn diagrams show the percentages and numbers of transcripts overlap (red) of total differentially expressed (DE) genes between the DE analysis $Gclc^{fl/fl}$ MZB vs. FoB (blue) and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB vs $Gclc^{fl/fl}$ FoB (yellow). Data are the mean \pm SD. Each dot represents one mouse in (b), (e), (g) and (h). one transcript (d) and (i), mean of duplicates from 3 mice in (f, right) and (k, right) (n = 3 animals examined over 3 independent experiments). Significance (P) was calculated with unpaired t-test or one-way ANOVA test in (g)-(h) and 2way ANOVA in (f)-(k). *: $P \le 0.05$; ***: $P \le 0.001$.

Supplementary Figure 6. Impaired mitochondrial metabolism increases basal glycolysis in GSH-deficient FoB.

Supplementary Figure 6. Impaired mitochondrial metabolism increases basal glycolysis in GSHdeficient FoB.

(a) Seahorse quantitation of glycolysis-derived ATP in resting B6 FoB and MZB (n = 3 animals examined over 2 independent experiments). (b) Representative histogram (left) and quantitation (right) of immunostaining to detect Hexokinase-1 of Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ FoB, including Gclc^{fl/fl} MZB as control (gated as in Supplementary Figure 1a) (n = 4 animals examined over 3 independent experiments). (c-d) Quantitation of intracellular glucose-6P (c) and Pyruvate (d) level measured by LC-MS in resting $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB (n = 3 animals examined over 2 independent experiments). (e) Mass isotopomeric distribution (MID) of M3-lactate (left) and M2-Citrate (right) in Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ FoB that were incubated with ¹³C-glucose and assayed at 5h postactivation with anti-IgM, CD40 ligand and IL-4 (n = 3 animals examined over 2 independent experiments). (f) Seahorse quantification of mitochondrial-derived ATP in resting B6 FoB and MZB (n = 3 animals examined over 2 independent experiments). (g) Flow-cytometry-based quantitation of monobromobimane (MBB) for the detection of GSH in purified Tom20⁺ mitochondria from Gclc^{fl/fl} and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB (gated as in Supplementary Figure 1a) (n = 3 animals examined over 2 independent experiments). (h) Mitochondrial mass quantitation [ratio between mitochondrial cytochrome c oxidase subunit I (CO I) and nuclear 18S ribosomal RNA] as determined by RT-qPCR of DNA from B6 FoB and MZB (n = 3-4 animals examined over 3 independent experiments). (i, j) Normalized ATP levels (RLU) (i) and percentage of Annexin V-expressing cells (j), in Gclc^{fl/fl} and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB after 5h incubation with the indicated concentrations of galactose (n = 3 animals examined over 2 independent experiments). (k) MID of M2-succinate in $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB at 5h post-activation determined as in Fig. 5e (n = 3 animals examined over 2 independent experiments). (I) Ratio of M2-Fumarate/M2-succinate in Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ FoB that were incubated with ¹³C-glucose and assayed at 5h post-activation (n = 3 animals examined over 2 independent experiments). (m) Complex I and II (CI and CII) reactions (red arrows) contribute to the enzymatic series of the TCA cycle within the mitochondria. (**n-p**) Quantitation of the OCR data in Fig. 6b at baseline (n) and upon treatment with oligomycin A (o) or FCCP (p) (n = 3-4 animals examined over 5 independent experiments). (**q**) Seahorse quantitation of OCR of Gclc^{fl/fl} and Gclc^{fl/fl} Mb1-Cre⁺ FoB activated for 6h with anti-IgM, CD40 ligand and IL-4 and treated with 5mM GSH (n = 3-4 animals examined over 2 independent experiments).

Supplementary Figure 7. *In vivo* MZB-dependent antibody response and *in vitro* FoB activation properties are defective in *Gclc*-depleted mice.

Antibody-mediated immunity

Supplementary Figure 7. *In vivo* MZB-dependent antibody response and *in vitro* FoB activation properties are defective in *Gclc*-depleted mice.

(a) Representative histogram of TNP capture by $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ MZB and FoB (gated as in Fig. 2e) as measured by FACS (gated as in Supplementary Figure 1a) (n = 3 animals examined over 3 independent experiments). (b) Representative immunofluorescence staining to detect IgD (green) and TNP-Ficoll (yellow) in spleen follicles resected from one Gclc^{fl/fl} and one Gclc^{fl/fl} Mb1-Cre⁺ mouse at 30min after *i.v.* injection of TNP-Ficoll. Scale bars, 50 μ m (n = 3 animals examined over 3 independent experiments). (c) Titers of anti-TNP IgM as measured by ELISA in serum of Gclc^{fl/fl} and Gclc^{fl/fl} Mb1- Cre^+ mice at the indicated time points after *i.p.* injection of TNP-Ficol (n = 4 animals examined over 3) independent experiments). (d-e) Flow cytometry expression (MFI) of surface markers after 24h activation (d) (n = 3 animals examined over 2 independent experiments) and 3H-thymidine incorporation after 72h (e) of $Gclc^{fl/fl}$ and $Gclc^{fl/fl}$ Mb1-Cre⁺ FoB with anti-IgM, CD40 ligand and IL-4 (n = 3 animals examined over 2 independent experiments). (f) Control of mitochondrial reactive oxygen species by the antioxidant glutathione (GSH) has a subset-specific role in murine B cells. GSH is identified as nonredundant antioxidant for the correct function of the electron transport chain, and it is required for antibody-mediated humoral immunity. Data are the mean \pm SD. Each dot represents one mouse except for (c) (mean of duplicates from 4 mice). Data shown are representative of >3 independent experiments with 3-4 mice/group. Significance (P) was calculated with 2way ANOVA. **: $P \le 0.01$; ***: $P \le 0.0001$.