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Supplementary Note 1: Software

Our software is written in the SWI-Prolog [4] programming environment
with calls to R via Real [1], and to Gobnilp and grapviz via system calls. The
core BN learning is via the Gobnilp software [2] which in turn depends on the
SCIP optimization suite [3]. R is used for statistical testing, such as Fisher’s
test, multiple hypothesis correction and for heatmap construction. Visualization
of networks is done via system calls to graphviz.

The overall control of the analysis is implemented in the package gbn which
can be easily installed from within SWI-Prolog .

?- pack_install(gbn).

The library is also availabe on github: https://github.com/nicos-angelopoulos/
gbn. Once the library has been loaded via:

?- library(gbn).

each BN described in this paper can be reconstructed by loading and executing
simple querries of the form:

?- [pack(’runs/gbns_in_cancer/aml’)].

?- aml.

*To whom correspondence should be addressed. Email: angelopoulosn@cardiff.ac.uk.
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The software includes functions (called predicates in Prolog) for running
multiple experiments and producing all the different type of networks and sta-
tistical plots in this paper. The full list of prepared queries is: aml, mpn, mye,
coa, gbm, ran as shown above.

Because of the large number of software dependencies, we also provide a
complete OS (operating system) image for the Raspberry pi 4 architecture:
https://stoics.org.uk/~nicos/sware/gbn/gbn_image.html. Once down-
loaded the image can be written into an SD card which can then used to boot a
Raspberry 4 computer into an environment that included all necessary depen-
dencies.

Supplementary Note 2: Parameter selection

Parameter µ controls the number of variables to be included in the network
learning step. The main objective is to remove events (variables) which are
infrequent in the dataset, as these are unlikely to play an important role in the
constructed networks. The user defines a simple threshold in the form of an
integer and any variable that corresponds to a genomic event that appears in
less than µ samples is removed. Figure 1, shows the effect of µ (x-axis) on the
number of variables that remain (y-axis) for the AML dataset (LHS), and the
effect of µ on network density (y-axis) for the same dataset and ε = 7 (RHS).
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Supplementary Figure 1: Effect of µ on learning Bayesian networks in the AML dataset.
(LHS) Varying µ (x-axis) against number of variables (y-axis) that will be included at that
value of µ. (RHS) µ versus number of edges of the learnt BN (ε = 7).
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Supplementary Figure 2: Effect of µ on the number of variables for the four other datasets.
From top left and travelling clockwise: MPN, myeloma, glioblastoma and colorectal.

Parameter ε is the Gobnilp parameter edge penalty and is a single integer
value typically in the range 1−20. The higher the value the sparser the networks
due to removal of the more weak edges. Although there is no formal guarantee
for monotonicity, it is almost always the case that the networks for higher ε are
subsets of those for lower values. This is certainly the case for all experiments we
have ran for these datasets. Figure 3 shows how the number of edges for dataset
AML varies (y-axis) as we change ε. Selecting the value for this parameter is
usually straightforward. For datasets with few variables smaller values of ε
might be more appropriate, whereas for larger number of variables greater ε
values will assist will keeping the number of edges to the more important ones.
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Supplementary Figure 3: Effect of ε on number of edges in the learnt BNs. For the AML
dataset with µ = 60 we ran 20 different learning experiments for varying ε and ploting this
against the number of edges of the learnt BN.

Supplementary Note 3: Robustness

To quantify robustness of the networks with respect to ε we ran Gobnilp
on each dataset ranging the value of ε from 1 to 10. These will create denser
networks for ε value of 1 and sparser networks for the value 10. For each of
the sparsest network of a dataset, we compare all other networks by counting
the number of edges of the base (sparse) network that are also present on the
denser ones. In all but one case all the edges were present (100%). Only in
the case of myeloma there was a single edge NRAS − del13q14 that present in
ε values 6 − 10 and absent in the rest. The robustness measure for myeloma
was thus 96.82%. In keeping with our removal of directionality of edges in BNs,
here we also ignore directionality in counting presence of a link. As in the
case of visualising the networks, our choice is justified by the fact that we do
not perforrm interventional experiments and thus cannot establish causaility or
direction. The overall measure of robustness was 99.36%. Please note that in
the case of the glioblastoma because the network at ε has no edges we used the
value of 5 as the base case.

Supplementary Note 4: Datasets

All datasets described in this paper are provided with our software (data/
gbns_in_cancer/) in a format ready to be used as inputs to our scripts. They
are also availabe on github: https://github.com/nicos-angelopoulos/gbn/
data/gbns\_in\_cancer. Figure 4 and Figure 5 show the distribution of ge-
nomic events in AML. On the x-axis are the driver events and the heights of the
bars show the number of patients in the cohort in which the specific event was
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detected. Bars are colour coded with the number of total events. Light blue
(labelled by 1 on the legend) shows the number of patients in which this event
was the only one detected (total = 1). Based on the single event colour it can
be seen that TET and DNMT3A are less likely to be a single event than their
neighbours (event complex should be discounted when comparing to TET as it
is a composite event).
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Supplementary Figure 4: Histogram of genomic driver events against patients in AML. This
plot shows all selected drivers: those that appear on 60 or more patients. Each bar shows
the number of patients for which the specific event (x-axis) was found by sequencing. Colours
code for the number of total events in each patient. For instance, light blue (1) codes for the
number of patients in which the specific event was the only driver event.
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Supplementary Figure 5: Histogram of genomic driver events against patients in AML. This
plot shows all removed drivers: those that appear on less than 60 patients. Each bar shows
the number of patients for which the specific event (x-axis) was found by sequencing. Colours
code for the number of total events in each patient. For instance, light blue (1) codes for the
number of patients in which the specific event was the only driver event.

Supplementary Note 5: Additional networks

Here we provide additional BN and gated BN figures to complement all
datasets analysed in this paper. For each dataset analysis its built BN and
corresponding gated BN networks appear in either the main paper or in the
supplement.
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Supplementary Figure 6: Gated BN for MPN dataset (µ = 5, ε = 3).
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Supplementary Figure 7: Gated BN for myeloma dataset. Ran with same parameters as the
non gated version (µ = 20, ε = 2).
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Supplementary Figure 8: Alternative myeloma gated BN. This is the minimum complexity
containing the most important links (µ = 20, ε = 12).
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Supplementary Figure 9: Gated BN for colon adenocarcinoma dataset from TCGA (µ =5, ε
=1).
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Supplementary Figure 10: BN for the glioblastoma dataset (µ = 5, ε = 1).
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Supplementary Figure 11: Gated BN for the glioblastoma dataset (µ =5, ε =1).

12



Supplementary Figure 12: Network for the AML dataset constructed by adding all edges for
which the Fischer exact test (R’s fisher.test() function) between the two connected vertices
returned a significant value (< 0.05).



Supplementary Figure 13: Network for the glioblastoma dataset constructed by adding all
edges for which the Fischer exact test (R’s fisher.test() function) between the two connected
vertices returned a significant value (< 0.05).

Supplementary Note 6: Familial heatmaps

For each of the datasets analysed and BN shown in main paper and the sup-
plement we present their familial heatmaps. Each plot is a multi-part heatmap
containing one element for each node in the network, with each heatmap showing
value variation for the node and its parents.

Supplementary Figure 14: Familial heatmaps for AML. Blue colour is used for non-events and
red for a driver event be present. X-axis plots patients while Y-axis plots driver events. The
events at each sub-plot correspond to a family in the corresponding Bayesian network.
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Supplementary Figure 15: Familial heatmaps for MPN. Blue colour is used for non-events and
red for a driver event be present. X-axis plots patients while Y-axis plots driver events. The
events at each sub-plot correspond to a family in the corresponding Bayesian network.
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Supplementary Figure 16: Familial heatmaps for myeloma. Blue colour is used for non-events
and red for a driver event be present. X-axis plots patients while Y-axis plots driver events.
The events at each sub-plot correspond to a family in the corresponding Bayesian network.
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Supplementary Figure 17: Familial heatmaps for TCGA/COAD. Blue colour is used for non-
events and red for a driver event be present. X-axis plots patients while Y-axis plots driver
events. The events at each sub-plot correspond to a family in the corresponding Bayesian
network.
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Supplementary Figure 18: Familial heatmaps for the glioblastoma dataset. Blue colour is
used for non-events and red for a driver event be present. X-axis plots patients while Y-axis
plots driver events. The events at each sub-plot correspond to a family in the corresponding
Bayesian network.
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