Ceramide kinase regulates acute wound healing by suppressing 5-oxo-ETE biosynthesis and signaling via its receptor OXER1.

Kenneth D. Maus¹, Daniel J. Stephenson¹, Anika N. Ali¹, H. Patrick MacKnight¹, Huey-Jing Huang², Jordi Serrats², Minjung Kim¹, Robert F. Diegelmann³, and Charles E. Chalfant^{1,4-9}

¹Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620

²Neuroscience Drug Discovery Unit, Takeda California, San Diego, CA, USA (J.S.), Present address: Engrail Therapeutics, San Diego, CA, USA (JS), Present address: ADARx Pharmaceuticals, San Diego, CA 92121 (H-JH)

³Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-School of Medicine, Richmond, VA 23298-0614

⁴Cancer Biology and Evolution Program, The Moffitt Cancer Center, Tampa, FL 33620

⁵Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612

⁶Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, 22903 ⁷Department of Cell Biology, University of Virginia, Charlottesville, VA, 22903

⁸Program in Cancer Biology, University of Virginia Cancer Center, Charlottesville, VA, 22903

⁹Research Service, Hunter Holmes McGuire Veterans Administration Medical Center, Richmond VA, 23298

Supplemental Material

Table S1. SYR382141 compound *in vitro* and intracellular cytotoxicity studies. Recombinant human and mouse ceramide kinase were assayed in the presence and absence of various concentrations of SYR382141 as previously described by others⁷²⁻⁷⁴ using the ADP-Glo[™] Kinase Assay (Promega Corporation), The closely related lipid kinases, sphingosine kinase 1 and 2 (SPHK1, SPHK2), phosphatidylinositol 4-kinase beta (PIK4B), phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2 alpha (PI3KC2A), and phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), were also analyzed in the presence and absence of various concentrations of SYR382141 also using the ADP-Glo[™] Kinase Assay (Promega Corporation). The effect of SYR382141 on a Global kinase panel⁷⁵ was also assessed. Lastly, cytotoxicity of SYR382141 was assessed in HepG2 cells via MTT assay as previously described⁷⁶⁻⁸⁰. Data are courtesy of Takeda Corporation.

Compound	SYR382141
Hm Enz IC ₅₀ (nM)	5
Ms Enz IC ₅₀ (nM)	9
SPHK1/SPHK2/PI4KB/PI3KC2A/PIK3C3	
IC ₅₀ (μM)	>100
Global Kinase panel $\leq 1 \ \mu M$	Negative
Cytotox 72h IC ₅₀ (µM)	30.3

Table S2. Pharmacokinetics of SYR382141 in mice. The concentration of SYR38214 was analyzed in the plasma of mice retention in mouse plasma over the indicated time using UPLC-ESI-MS/MS following oral gavage of the compound at the indicated concentration. Data are courtesy of Takeda Corporation.

SYR382141 (15 mg/kg)

Time (hr)	Mean Plasma Conc.	Mean Plasma Conc.	Mean Plasma Conc.						
	(ng/mL) Total	(nM) Total	(nM) Free						
0.5	5114	12247	73						
1	4771	11426	69						
4	586	1403	8						
$f_{u,plasma} = 0.006$									

Table S3. Retention of SYR382141 in kidney. SYR382141 compound present in mouse kidney tissue after 10 days PO

b.i.d.

	Untreated			Sham		60 mg/kg			
	SYR382141 conc.		SD	SYR382141 conc.		SD	SYR382141 conc.		SD
Kidney (ng/g)	0.000	±	0.000	0.000	±	0.000	38.780	±	12.968

Figure S1. Strategy and design of the novel *CERK* **KO mice.** (A) A schematic representation of the inserted flanked loxP sites ("Floxed") and their associated BamH I sites at the beginning of endogenous introns 5 and 6 used to generate the *CERK* knockout (*CERK*-KO) mice used in this study. Mice possessing a floxed *CERK* allele were bred to mice expressing Cre recombinase in the germline (EIIa-*cre* homozygotes, JAX stock #003724). Offspring were screened for the KO allele and confirmed by DNA sequencing. Cre-mediated deletion of *CERK* exon 6 (encoding amino acids 191-238) results in a translational frame-shift with termination in exon 8. Mice carrying the KO allele were subsequently bred to C57BL/6J mice, and Cre-negative offspring were selected to establish the *CERK* -KO line. (**B**) RNA from WT and *CERK* -KO primary dermal fibroblasts was converted to cDNA and used for quantitative PCR analysis using primers specific to the mouse *CERK* gene. Samples were compared using paired t-test (n=4, **p < 0.01). (**C**) Genotypic analysis of WT, Floxed, and *CERK*-KO alleles was performed using genomic DNA, analyzed via end point multiplex PCR using the following primers: 1ntron 5 forward primer: 5'-CTGAGATGGCCGTTTCTCACAGAGAG-3' (P1), intron 6 forward primer: 5'-ATGCTCACTAGAGACCCAGTCCTC-3' (P2), and intron 6 reverse primer: 5'-TTCACCAGGCTTTTGGACACAGCAC-3' (p3) and examined via gel electrophoresis. When using the cassette specific primer sets, three bands are possible, WT – 210 bp (p₂-p₃), Floxed – 250 bp (p₂-p₃ containing LoxP and BamH I sites), and *CERK*-KO – 528 bp (p₁-p₃without exon 6).

Figure S2. Eicosanoid profile of HUVEC and HL-60 cells. (A) Graphical analysis of eicosanoids (n=6) and (B) C1P species (n=3) from HUVECs pre-treated with NVP-231 (300 nM) or DMSO (0.001%) control for 24 hours. (C) Graph depicting eicosanoid (n=3) and (D) C1P species from HL-60 cells (n=3) treated with NVP-231 for 24 hours (Two-way ANOVA with Šídák's multiple comparisons test; *p < 0.05, ****p < 0.0001).

Figure S3. Scratch assay lipid changes over time. (A) Eicosanoid changes for wild-type pDF scratch assay at time 0- and 60-minutes post-injury (n=3). (B) Ceramide changes for wild-type pDF scratch assay at time 0- and 60-minutes post-injury (n=3). Wild-type pDFs were pre-treated with DMSO (0.01%) or NVP-231 (100 nM) for 30 minutes received mechanical trauma via asterisk pattern scratch across the plate. Cells were collected immediately (T=0) or 60-minutes (T=60) post-injury and analyzed for eicosanoid and ceramide levels via UPLC ESI-MS/MS. Values expressed as fold change to DMSO controls (*p < 0.05, ****p < 0.0001; n=3, pDFs collected from 3 different mice. Two-way ANOVA with Šídák's multiple comparisons test).