

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202105240

Local Release of TGF- β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy

Huiming Peng, Jian Shen, Xin Long, Xiaoqi Zhou, Jiaqi Zhang, Xina Xu, Teng Huang, Hui Xu, Shuguo Sun, Chun Li, Ping Lei*, Heshui Wu* and Jun Zhao*

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202105240

Local Release of TGF- β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy

Huiming Peng, Jian Shen, Xin Long, Xiaoqi Zhou, Jiaqi Zhang, Xina Xu, Teng Huang, Hui Xu, Shuguo Sun, Chun Li, Ping Lei*, Heshui Wu*, and Jun Zhao*

Supporting Information for

Local Release of TGF-β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy

Huiming Peng, Jian Shen, Xin Long, Xiaoqi Zhou, Jiaqi Zhang, Xina Xu, Teng Huang, Hui Xu, Shuguo Sun, Chun Li, Ping Lei*, Heshui Wu*, Jun Zhao*

Figure S1. IRE induced release of glutathione (GSH). A) GSH concentration in cell supernatant after IRE treatment of Panc-1 human pancreatic cancer cells, Pan02 murine pancreatic cancer cells, and 4T1 murine breast cancer cells. B) Schemes of experiment flow. Cells were suspended in phosphate buffered saline (PBS) at 2×10^6 /mL, and subjected to electroporation at 0 (control), 500 V/cm (reversible electroporation, RE), or 2400 V/cm (IRE). Other parameters for electroporation: pulse duration = 100 µsecond, pulse interval = 1 second, pulse number = 20. The supernatant of cell suspension was collected, GSH concentration measured with Ellman's reagent. ***p < 0.0001. Data are presented as mean ± SEM of *n* = 4 in bar graphs overlaid with individual data points. Significance was determined using one-way ANOVA followed by Tukey post hoc analysis. * p < 0.05, ** p < 0.01, n.s. = not significant

Figure S2. Expression of p-SMAD2 in Hs766T human pancreatic cancer cell line (A) and 4T1 murine breast cancer cell line (B).

Figure S3. In vitro toxicity of dMSN-SB and SB525334. A) Panc-1 human pancreatic cancer cells; B) Panc02 murine pancreatic cancer cells; C) 4T1 murine breast cancer cells, and D) Hs766T human pancreatic cancer cells. Cells were incubated at 37 °C for 24 hours with dMSN-SB or SB525334 at concentrations equivalent to 0 to 200 μ M of SB525334. Cell viability was measured using CCK-8 assay and normalized to that of untreated control. Data are shown as mean \pm SEM, n = 6. Small error bars covered by the symbol are not shown.

Figure S4. Relative expression of N2-associated genes in murine bone marrow-isolated neutrophils after treatment with N2 cocktail, SB525534 (10 μ M), dMSN-SB (10 μ M) and/or dMSN-SB (50 μ M). Cells were cultured for 24 hours before analyses. Data are shown as heat map with a colored scale. Each square represents an individual independent data point. Three replicates were included in each group.

Figure S5. TGF- β expression in Panc02 and 4T1 xenograft tumors. Vinculin was used as loading control. Four independent tumors were analyzed for each tumor type.

Figure S6. Quantification of immunoblots in Figure 2E. Signal intensity from each band was integrated and normalized to those of β -actin in sham control. Data are presented as mean \pm SEM of n = 2 in bar graphs overlaid with individual data points

Figure S7. Flowcytometry analysis of TAN puritiy after magentic activated cell sorting.

Figure S8. RT-PCR analyses of N2-associated genes in TANs isolated from Panc02 tumors post-IRE. Data are shown as heat map with a colored scale. Each square represents an individual independent data point. Three replicates were included in each group.

Figure S9. Effect of neutrophil depletion on the efficacy of IRE + α PD1 treatment in subcutaneous Panc02 model. A) Kaplan-Meier survival curves of sham control (black solid circle, n = 7), IRE + α PD1 (n = 12), and IRE + α PD1 + α Ly6G (n= 11). Survival difference in was evaluated using Log-rank test, *p < 0.05. B) Percentage comparison of mice without visible tumors on day 90 after enrollment. IRE + α PD1 (1 out of 12) or IRE + α PD1 + α Ly6G (6 out of 11). Significance of difference was examined using χ 2 test.

Figure S10. Fluorescence tracking of dMSN-SB after intratumoral injection. A) Whole body fluorescence imaging of Panc02 tumor at different time points after IRE. B) Quantification of integrated fluorescence signals of tumor regions. C) Fluorescence imaging of different organs on day 8 after IRE. Experimental procedure: Near-infrared fluorescence dye DiR was loaded during preparation of dMSN-SB, and the resultant formulation was intratumoral injected after IRE using the same dose for therapy studies. The mice were imaged on Pearl Trilogy Imaging System (Li-Cor Biosciences, NE, USA). Data are presented as mean \pm SEM in bar graphs overlaid with individual data points. Significance was determined using one-way ANOVA followed by Tukey post hoc analysis. *p < 0.05.

Figure S11. Anti-tumor efficacy in subcutaneous Panc02 model. A) Percentage comparison of mice without visible on day 90 after enrollment in groups of IRE + α PD1 (20%), IRE + dMSN-SB (30%), and IRE + dMSN-SB + α PD1 (67%). Significance of difference was examined using χ 2 test. B) Tumor growth curves up to 28 days after enrollment in groups of sham control (*n* = 5), IRE (*n* = 5), dMSN-SB (*n* = 7), α PD1 (*n* = 5), IRE + α PD1 (*n* = 5), IRE + dMSN-SB (*n* = 10), IRE + dMSN-SB + α PD1 (*n* = 15). Data are shown as mean ± SEM in symbols. Significance of differences was determined using one-way ANOVA followed by Tukey post-hoc analysis. *p < 0.05, **p < 0.01.

Figure S12. Comparision between dMSN-SB and unloaded SB525334 for enhancment of IRE + α PD1 therapy. A) Treatment dosage, routes, and schedules for subcutaneous Panc02 tumor model. B) Kaplan-Meier survival cuves of sham control (n = 5), IRE + dMSN-SB + α PD1 (n = 15), and IRE + SB525334 (n = 15). C) Percentage comparison of mice with no visible tumor on day 90, p = 0.06, χ 2-test.

Figure S13. Timeline for re-challenge study and splenocyte analyses.

Figure S14. Gating strategy for memory splenocytes.

Figure S15. Representative H&E staining of tumor-free pancreas in cured orthotopic Panc02 model. Scale bar = $100 \ \mu m$.

Figure S16. Anti-tumor efficacy in murine 4T1 orthotopic breast tumor model. A) Tumor growth curves to 15 days after start of treatments. B) Kaplan-Meier survival cures. C) Changes of body weight during treatment.

Figure S17. Gating strategy for intratumoral T cell flowcytometry. A) Schedule for treatment and tumor collection. B) Gating strategy for T cells.

Figure S18. Gating Strategy for intratumoral dendritic cells

Figure S19. Gating Strategy for TANs

Figure S20. Quantification of Immunoblots in Figure 6A. Signal intensity from each band was integrated and normalized to those of β -actin in sham control.

Figure S21. Relative abundance of T cell subpopulations to that of TAN. Significance of differences was determined using one-way ANOVA followed by Tukey post-hoc analysis. ****p < 0.0001,

Figure S22. Toxicology studies on Panc02-bearing mice treated with IRE + SB525334. A) Blood chemistry analyses of liver, kidney, and heart toxicity in mice of sham control (n = 4) or IRE + SB252334 group (n = 4). The upper and lower limits of normal ranges are marked with red dashed lines. B) H&E staining of heart section in one mouse that showed abnormal blood chemistry results after IRE + SB525334 treatment. Regions of hydropic degeneration, fatty degeneration, and myolysis were observed (black arrows). Scale bar = 100 µm. Mice were treated with IRE on day 0, and administered with SB525334 at 10 mg kg⁻¹ per dose via oral gavage on days -1, 1, 3, 5, 7, and 9. Blood and tissue samples were collected on day 10 and then analyzed. Four mice were included in each group. Untreated mice were used as control.

Figure S23. Cell viability after treatment with reversible electroporation and/or SB525334. A&B) human pancreatic cancer cell lines Panc-1 and Hs766T; C) murine pancreatic cancer cell line Panc02; D) murine breast cancer cell line 4T1. E) Layout of samples and corresponding experimental conditions. Electroporation parameters: gap between electrodes: 4 mm; pulse duration: 100 μ s; interval between pulses: 1 s; number of pulses: 20; pulse voltage: 80, 160, and 120 V. Panc-1 cells were suspended at 2.0 × 10⁶/mL in complete medium, and subjected to electroporation in a cuvette. The cells were then seeded at 1.0 × 10⁴/well in a 96-well plate with SB525334 in complete medium, and cultured for 24 h. Cell viability was measured via CCK-8 assay. Six replicates were included in each group. Data was presented as mean ± SEM. Statistical significance was determined using one-way ANOVA.

Figure S24. Photograph of IRE-treatment on orthotopic pancreatic tumor model.

	ii ii aprogaiatea	e jeonines in rige	ne / B						
Analysis Type: PANTHER Overrepresentation Test (Released 20210224)									
Annotation Version and Release Date:									
GO Ontology database DOI: 10.5281/zenodo.5228828 Released 2021-08-18									
Analyzed List: upload_1 (Mus musculus)									
Reference List: Mus musculus (all genes in database)									
Test Type: FISHER									
Correction: FDR									
GO Biological Process	Fold	Raw	FDR						
	Enrichment	P-Value							
leukocyte migration (GO:0050900)	81.77	6.62E-17	1.04E-12						
leukocyte chemotaxis (GO:0030595)	> 100	4.76E-16	3.75E-12						
cytokine-mediated signaling pathway	59.18	1.14E-15	6.00E-12						
(GO:0019221)									
cell chemotaxis (GO:0060326)	76.51	1.27E-14	4.99E-11						
inflammatory response (GO:0006954)	38.28	5.40E-14	1.70E-10						
neutrophil chemotaxis (GO:0030593)	> 100	9.39E-13	2.11E-09						
positive regulation of immune system	18.54	8.85E-13	2.32E-09						
process (GO:0002684)									
granulocyte chemotaxis (GO:0071621)	> 100	1.57E-12	2.74E-09						
cellular response to cytokine stimulus	26.34	1.49E-12	2.93E-09						
(GO:0071345)									
neutrophil migration (GO:1990266)	> 100	2.35E-12	3.70E-09						
positive regulation of response to	37.54	3.37E-12	4.83E-09						
external stimulus (GO:0032103)									
granulocyte migration (GO:0097530)	> 100	4.64E-12	6.09E-09						
response to cytokine (GO:0034097)	22.95	5.07E-12	6.14E-09						
chemotaxis (GO:0006935)	31.98	1.19E-11	1.34E-08						
taxis (GO:0042330)	31.67	1.29E-11	1.35E-08						
response to external biotic stimulus	2.01E-11	1.59E-08							
(GO:0043207)									
response to other organism	13.54	1.99E-11	1.65E-08						
(GO:0051707)									
cell migration (GO:0016477)	20.01	1.71E-11	1.68E-08						
myeloid leukocyte migration	94.44	1.96E-11	1.72E-08						
(GO:0097529)									
defense response (GO:0006952) 13.62 1.88E-11 1.74E-08									
leukocyte migration (GO:0050900)	81.77	6.62E-17	1.04E-12						

Table S1. Gene ontology analysis based on 11 upregulated cytokines in Figure 7D

¹Top 30 enriched biological processes are listed

Murine			-	
Target		Sequence (5' to 3')	Refences	
C-12	Forward	TTCTCTGTACCATGACACTCTGC	PrimerBank	ID
CCIS	Reverse	CGTGGAATCTTCCGGCTGTAG	6755432a1	
Cual0	Forward	AACCTCCCACGTAGCTTTCG	NINA 008500 4	
Cxcl9	Reverse	GCCAATGCCTGGTGTGTAAC	NWI_008599.4	
Eas	Forward	TATCAAGGAGGCCCATTTTGC	VM 020250751 2	
r as	Reverse	TGTTTCCACTTCTAAACCATGCT	Alvi_030230731.2	
Logm 1	Forward	CTGCAGACAGTGACCATC	NIM 008625 2	
Icami	Reverse	GTCCAGTTTCCCGGACAA	NWI_008023.2	
Ifraa	Forward	ATGAACGCTACACACTGCATC	NIM 009227 /	
IJNg	Reverse	CCATCCTTTTGCCAGTTCCTC	INIVI_000557.4	
Nog2	Forward	GTTCTCAGCCCAACAATACAAGA	PrimerBank	ID
INOSZ	Reverse	GTGGACGGGTCGATGTCAC	6754872a1	
A na 1	Forward	CTCCAAGCCAAAGTCCTTAGAG	PrimerBank	ID
Argi	Reverse	AGGAGCTGTCATTAGGGACATC	7103255a1	
C_{a} 117	Forward	AATGTAGGCCGAGAGTGCTG	NIM 011222 2	
	Reverse	TGCCCTGGACAGTCAGAAAC	NM_011552.5	
C_{2}	Forward	CAGATGCAGTTAACGCCCCA	NIM 011222 2	
CCl2	Reverse	TGAGCTTGGTGACAAAAACTACAG	NM 011333.3	
Cal	Forward	TGCTGCTTTGCCTACCTCTC	NIM 012652 2	
CUIS	Reverse	TCCTTCGAGTGACAAACACGA	11111 013035.5	
C4206	Forward	GATCCTCAACCCAAGGGCTC	NM 008625.2	
Cu200	Reverse	ACCAATGCAACCCAGTGCTA	NWI_008023.2	
Crello	Forward	CCAAGTGCTGCCGTCATTTTC	NIM 021274 2	
CACHO	Reverse	GGCTCGCAGGGATGATTTCAA	11111_021274.2	
Crer?	Forward	GCTCACAAACAGCGTCGTAG	NM 00000 3	
CXC12	Reverse	CCATGCTGATGCAGGCTAGT	11111_009909.5	
1110	Forward	AGCCTTATCGGAAATGATCCAGT	NM 010548 2	
1110	Reverse	GGCCTTGTAGACACCTTGGT	NWI_010340.2	
Mmn0	Forward	GCAGAGGCATACTTGTACCG	NM 013599 5	
mmp)	Reverse	CGTCGTCGAAATGGGCATCT	10101000000	
Neutrophil	Forward	CATCTGCTTCGGGGGACTCTG	NM 015779.2	
Elastase	Reverse	CCCTCTCGGTCTTTGGGATG	101010101012	
Prtn 3	Forward	CACCTTCCTATGCCGGGAAC	NM 011178 2	
1 11115	Reverse	CCGCAGCACGTTTTGAATCC	10011170.2	
Tofh1	Forward	CTCCCGTGGCTTCTAGTGC	PrimerBank	ID
1801	Reverse	GCCTTAGTTTGGACAGGATCTG	6755775a1	
Tnfa	Forward	GACGTGGAACTGGCAGAAGAG	NM 001278601 1	
inju	Reverse	TTGGTGGTTTGTGAGTGTGAG	11111_001270001.1	
Vegf	Forward	GCACATAGAGAGAATGAGCTTCC	PrimerBank ID	

 Table S2. Primer sequences

	Reverse	CTCCGCTCTGAACAAGGCT	6678563a1	
Ym1	Forward	TTTGGACCTGCCCGTTC	NIM 000002 2	
	Reverse	CCTTGGAATGTCTTTCTCCACA	INIVI_009892.5	

¹Primers are selected from PrimerBank or designed with Primers 3.0.

Antibody	Manufacturer	Clone	Catalogue	
			Number	
CD11b-FITC	Biolegend	M1/70	101205	
CD11c-PE/Cyanine7	Biolegend	N418	117317	
CD19-Brilliant Violet	Biolegend	6D5	115537	
421	Diolegena	005	115557	
CD206-Alexa Fluor647	Biolegend	C068C2	141711	
CD25-Brilliant Violet	Piologond	DC61	102043	
421	Diolegena	1001	102043	
CD3E-FITC	Biolegend	145-2C11	100305	
CD44-PE	Biolegend	IM7	103007	
CD45-Brilliant Violet	Dialogond	20 E11	102129	
510	Diolegenu	30-111	103138	
CD4-PE/Cyanine7	Biolegend	GK1.5	100421	
CD54-PE/Cyanine7	Biolegend	YN1/1.7.4	116121	
CD62L-APC	Biolegend	MEL-14	104411	
CD80-PerCP/Cyanine5.5	Biolegend	16-10A1	104721	
CD86-PE	Biolegend	A17199A	159203	
CD8a-PerCP	Biolegend	53-6.7	100731	
CD95-PerCP/Cyanine5.5	Biolegend	SA367HB	152609	
F4/80-PE	Biolegend	BM8	123109	
FOXP3-Alexa Fluor 647	Biolegend	MF-14	126407	
I-A/I-E-APC	Biolegend	M5/114.15.2	107613	
Ly6C- Brilliant Violet	Dialagand		129021	
421	Diolegena	пкі.4	120031	
Ly6G/Ly6C-PerCP	Biolegend	RB6-8C5	108425	
NK1.1-PE	Biolegend	PK136	108707	

 Table S3. List of antibodies used for flowcytometry

Table S4. List of antibodies used for immunoblotting

Antibody	Manufacturer	Catalogue Number	LOT
β-actin	Abclonal	AC006	9100006002

iNOS	Absin	abs130136	MF12
p-Erk 1/2	Absin	abs130614	SD09
(Thr202/Tyr204)			
p-PI3K (Tyr607)	Absin	abs130868	JB11
p-P38 (Thr180/Tyr182)	Absin	abs131122	AI08
TGF-β	Cell signaling	3711S	7
Arginase-1	Cell signaling	936681	1
p-Smad2	Cell signaling	3108T	8

 Table S5. Target list of mouse cytokine array

-				-		-						
	1, 2	3, 4	5,6	7, 8	9, 10	11,12	13, 14	15, 16	17, 18	19, 20	21, 22	23, 24
٨	Contro											Contro
A	1											1
р	CXCL	C5a	C CSE	GM-C	CCI 1	CCI 11	ICAM	IEN a	II 1a	II 10	II 1 ro	пэ
Б	13	CJa	U-CSI	SF	ULLI	CCLII	1	Π'ΙΝ-γ	ILIU	IL-IP	1L1-1a	IL-2
C	II _3	II _A	II -5	II -6	II _7	Π_10	II _13	IL-12p	II -16	II _17	п _23	II _27
C	112-3	112-4	IL-J	IL-0	1L-7	1L-10	IL-15	70	1L-10	112-17	IL-23	112-27
Л	CXCL	CXCL	CXCL	M-CS	CCL2	CCI 12	CXCL	CCI 3	CCI 4	MID 2	CCI 5	CXCL
υ	10	11	1	F	CCL2	CCL12	9	CCLS	CCL4	WIIF - 2	CCLJ	12
Б	CCI 17	TIMP-	TNE «	TREM								
Ľ	CCLI7	1	πη-α	-1								
Б	Contro											
Г	1											

Table S6. List of antibodies used for immunohistochemical st	taining
--	---------

Antibody	Manufacturer	Catalogue Number	LOT
Ki67	Servicebio	GB111499	LS203021
MPO	Servicebio	GB11224	AC2104004E
Ly-6G	Servicebio	GB11229	AC2103022C