## 1 Supplementary Information



0

Fig. S1

10 20 30 40 50 60 70 80 Number of CLSs

| 3  | Figure S1. CXXC5 is expressed in F4/80 positive CLSs. Visceral adipose tissues from human    |
|----|----------------------------------------------------------------------------------------------|
| 4  | subjects that were lean, obese, diabetic, and obese-diabetic ( $n = 4$ per group). (A)       |
| 5  | Representative IHC images of CXXC5 and F4/80 in visceral adipose tissue. (B) The correlation |
| 6  | of cytosolic CXXC5 expression with the number of CLSs. Scale bars = $100 \ \mu m$ .          |
| 7  |                                                                                              |
| 8  |                                                                                              |
| 9  |                                                                                              |
| 10 |                                                                                              |
| 11 |                                                                                              |
| 12 |                                                                                              |
| 13 |                                                                                              |
| 14 |                                                                                              |
| 15 |                                                                                              |
| 16 |                                                                                              |
| 17 |                                                                                              |
| 18 |                                                                                              |
| 19 |                                                                                              |
| 20 |                                                                                              |
| 21 |                                                                                              |
| 22 |                                                                                              |
| 23 |                                                                                              |
| 24 |                                                                                              |
| 25 |                                                                                              |



Figure S2. Analyses of the expression levels of Wnt/ $\beta$ -catenin signaling target genes in insulin sensitive tissues.  $Cxxc5^{+/+}$  mice fed HFD or NCD for 8 weeks (n = 6 per group). Relative mRNA expression levels of Wnt/ $\beta$ -catenin signaling target genes (*Tcf7l2*, *Axin2*, *Wisp1*, and *Fosl1*) in epiWAT, scWAT, and liver. Expression levels of mRNA were normalized by HFD-fed group. All data are presented as the mean  $\pm$  SD. \*P < 0.05, \*\*P < 0.01, \*\*\*P <0.001 determined by Student's *t*-test.



Figure S3. Ablation of *Cxxc5* resists obesity without differences in food intake. *Cxxc5*<sup>+/+</sup> and *Cxxc5*<sup>-/-</sup> mice fed HFD for 8 weeks (n = 9-13 per group). (A) Representative photographs (upper panel) and wet weight of epiWAT, scWAT, mesenteric, perirenal, liver, BAT, spleen, and heart (lower panel). (B) Daily food intake during all study weeks. All data are presented as the mean  $\pm$  SD. \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001 determined by Student's *t*-test.

Fig. S4



Figure S4. Ablation of *Cxxc5* improves metabolic parameters.  $Cxxc5^{+/+}$  and  $Cxxc5^{-/-}$  mice were fed HFD for 8 weeks (n = 9-13 per group). Plasma concentration or relative levels of leptin, resistin, adiponectin, TGs, total cholesterol, and HDL-cholesterol after overnight fasting. All data are presented as the mean  $\pm$  SD. \*\*\*P < 0.001 determined by Student's *t*-test.





| 56 | Figure S5. Ablation of <i>Cxxc5</i> has no metabolic effects on mice fed NCD. <i>Cxxc5</i> <sup>+/+</sup> and     |
|----|-------------------------------------------------------------------------------------------------------------------|
| 57 | <i>Cxxc5</i> <sup>-/-</sup> mice were fed NCD for 8 weeks ( $n = 9-12$ per group). (A) Glucose tolerance test and |
| 58 | AUC. (B) Insulin tolerance test and AUC. (C) Plasma concentration of glucose and TGs. (D)                         |
| 59 | Representative photographs (upper panel) and wet weight of epiWAT, scWAT, perirenal,                              |
| 60 | mesenteric, liver, BAT, spleen, and heart (lower panel). All data are presented as the mean $\pm$                 |
| 61 | SD. Statistical analysis was determined by Student's <i>t</i> -test.                                              |
| 62 |                                                                                                                   |
| 63 |                                                                                                                   |
| 64 |                                                                                                                   |
| 65 |                                                                                                                   |
| 66 |                                                                                                                   |
| 67 |                                                                                                                   |
| 68 |                                                                                                                   |
| 69 |                                                                                                                   |
| 70 |                                                                                                                   |
| 71 |                                                                                                                   |
| 72 |                                                                                                                   |
| 73 |                                                                                                                   |
| 74 |                                                                                                                   |
| 75 |                                                                                                                   |
| 76 |                                                                                                                   |
| 77 |                                                                                                                   |
| 78 |                                                                                                                   |

Fig. S6



79

Figure S6. Ablation of *Cxxc5* resists hypertrophy of adipose tissue with modulation of M1 and M2 macrophage markers. epiWAT from  $Cxxc5^{+/+}$  and  $Cxxc5^{-/-}$  mice fed HFD for 8 weeks (n = 9-13 per group). (A) Representative images of H&E staining (left panel). Quantitative analyses of adipocyte cell size (right panel). (B) Representative IHC images for F4/80 and Cd11b (left panel) and the percentage of crown-like structures (CLSs) per adipocyte on

| 85  | histological sections (right panel). (C) Relative expression levels of marker genes for M1 and |
|-----|------------------------------------------------------------------------------------------------|
| 86  | M2 macrophages. Expression levels of mRNA were normalized by HFD-fed $Cxxc5^{+/+}$ mice        |
| 87  | group. All data are presented as the mean $\pm$ SD. *P < 0.05, **P < 0.01, ***P < 0.001        |
| 88  | determined by Student's t-test.                                                                |
| 89  |                                                                                                |
| 90  |                                                                                                |
| 91  |                                                                                                |
| 92  |                                                                                                |
| 93  |                                                                                                |
| 94  |                                                                                                |
| 95  |                                                                                                |
| 96  |                                                                                                |
| 97  |                                                                                                |
| 98  |                                                                                                |
| 99  |                                                                                                |
| 100 |                                                                                                |
| 101 |                                                                                                |
| 102 |                                                                                                |
| 103 |                                                                                                |
| 104 |                                                                                                |
| 105 |                                                                                                |
| 106 |                                                                                                |
| 107 |                                                                                                |
| 108 |                                                                                                |

Fig. S7



| 110 | Figure S7. Relative effectiveness of KY19334 and sitagliptin on diet-induced obesity.                           |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 111 | C57BL/6 mice fed NCD or HFD for 18 weeks were p.o. administered KY19334 (25 mg/kg/d),                           |
| 112 | sitagliptin (50 mg/kg/d) for 5 days on weeks 8 and 12 ( $n = 10$ per group). (A) Body weight                    |
| 113 | changes. (B) Daily food intake during all study wks. (C) Wet weight of epiWAT, scWAT,                           |
| 114 | perirenal, mesenteric, liver, BAT, spleen, and heart. (D, E) Plasma concentration after overnight               |
| 115 | fasting. Total cholesterol and HDL-cholesterol (D), TGs, and adiponectin (E). All data are                      |
| 116 | presented as the mean $\pm$ SD. * <i>P</i> < 0.05, *** <i>P</i> < 0.001 determined by Student's <i>t</i> -test. |
| 117 |                                                                                                                 |
| 118 |                                                                                                                 |
| 119 |                                                                                                                 |
| 120 |                                                                                                                 |
| 121 |                                                                                                                 |
| 122 |                                                                                                                 |
| 123 |                                                                                                                 |
| 124 |                                                                                                                 |
| 125 |                                                                                                                 |
| 126 |                                                                                                                 |
| 127 |                                                                                                                 |
| 128 |                                                                                                                 |
| 129 |                                                                                                                 |
| 130 |                                                                                                                 |
| 131 |                                                                                                                 |
| 132 |                                                                                                                 |

Fig. S8



| 136 | Figure S8. KY19334 induces adipose tissue remodeling involving improvement                                   |
|-----|--------------------------------------------------------------------------------------------------------------|
| 137 | inflammation and adipogenesis. C57BL/6 mice fed NCD or HFD for 18 weeks were p.o.                            |
| 138 | administered KY19334 (25 mg/kg/d) or sitagliptin (50 mg/kg/d) for 5 days on weeks 8 and 12                   |
| 139 | (n = 10  per group). (A) Representative images of H&E staining of epiWAT (left panel) and                    |
| 140 | quantitative analyses of adipocyte cell size of epiWAT (right panel). (B) Representative IHC                 |
| 141 | images ( $n = 5$ independent experiments) for F4/80 and Cd11b (left panel) and the percentage                |
| 142 | of crown-like structures (CLSs) per adipocytes on histological sections (right panel). (C) Flow              |
| 143 | cytometry analysis of the expression of F4/80 and Cd11b and percentage of F4/80 $^+$ Cd11b $^+$ cells        |
| 144 | are shown. (D-F) Relative mRNA expression of M1 and M2 macrophage markers (D), Wnt/ $\beta$ -                |
| 145 | catenin signaling target (E), and adipogenesis (F) genes. Expression levels of mRNA were                     |
| 146 | normalized by vehicle-treated HFD mice group. Scale bars = $100 \ \mu m$ . All data are presented            |
| 147 | as the mean $\pm$ SD. * $P < 0.05$ , ** $P < 0.01$ , *** $P < 0.001$ determined by Student's <i>t</i> -test. |
| 148 |                                                                                                              |
| 149 |                                                                                                              |
| 150 |                                                                                                              |
| 151 |                                                                                                              |
| 152 |                                                                                                              |
| 153 |                                                                                                              |
| 154 |                                                                                                              |
| 155 |                                                                                                              |
| 156 |                                                                                                              |
| 157 |                                                                                                              |
| 158 |                                                                                                              |
| 159 |                                                                                                              |



| 161 | Figure S9. Ablation of <i>Cxxc5</i> preserves β-cell mass and functions in HFD-fed and STZ-           |
|-----|-------------------------------------------------------------------------------------------------------|
| 162 | induced diabetes mellitus (DM) mice. $Cxxc5^{+/+}$ and $Cxxc5^{-/-}$ mice fed HFD for 4 weeks         |
| 163 | followed by injection with STZ (50 mg/kg/d) for 1 week ( $n = 6$ per group). (A) Non-fasting          |
| 164 | blood glucose levels. (B) Glucose tolerance (upper panel) and insulin tolerance tests (lower          |
| 165 | panel) and AUC. (C-E) Plasma concentration of insulin (C), C-peptide (D), and serum active            |
| 166 | GLP-1 levels (E). (F-H) Isolated islets from the pancreas of DM-induced $Cxxc5^{+/+}$ and $Cxxc5^{-}$ |
| 167 | $^{\prime -}$ mice. For transient transfection, islets were transfected with 2µg of siRNA using       |
| 168 | lipofectamine in Opti-MEM. The concentration of secreted insulin (F) and c-peptide (G) from           |
| 169 | islets in response to different concentrations was measured after incubation for 1 h with either      |
| 170 | low (2.8 mM) or high (16.7 mM) glucose in KRBH buffer. (H) Representative images of                   |
| 171 | immunofluorescent staining for insulin and Ki67 (upper panel). Quantitative analyses of insulin       |
| 172 | and Ki67 positive cells in the islets (lower panel). (I) Representative images of                     |
| 173 | immunofluorescent staining for $\beta$ -catenin, insulin, PCNA, Pdx-1, and Ki67 (left panel).         |
| 174 | Quantitative analyses of insulin-positive $\beta$ -cell mass, insulin content, PCNA, Pdx-1, and Ki67  |
| 175 | positive cells in the pancreatic tissues (right panel). (J) Relative expression levels of mRNAs       |
| 176 | for the Wnt/ $\beta$ -catenin signaling target genes. Expression levels of mRNA were normalized by    |
| 177 | DM-induced $Cxxc5^{+/+}$ mice group. Scale bars = 100 µm. All data are presented as the mean $\pm$    |
| 178 | SD. * $P < 0.05$ , *** $P < 0.001$ determined by Student's <i>t</i> - test. DM: Diabetes mellitus.    |
|     |                                                                                                       |



Fig. S10

| 185 | Figure S10. KY19334 treatment does not show any metabolic effects in mice fed NCD.                  |
|-----|-----------------------------------------------------------------------------------------------------|
| 186 | NCD-fed C57BL/6 mice were p.o. administered KY19334 (25 mg/kg/d) for 8 weeks ( $n = 10$             |
| 187 | per group). (A) Representative photographs of vehicle- or KY19334-treated mice. (B) Body            |
| 188 | weight changes. (C) Body weight gain. (D) Food intake. (E) Representative photographs of fat        |
| 189 | pads (epiWAT, BAT), mesenteric, perirenal, and liver. (F) Wet weight of epiWAT, mesenteric,         |
| 190 | perirenal, liver, BAT, and heart. (G) Representative images (three total images per group) of       |
| 191 | H&E staining of ileum and liver tissue. (H) Relative expression levels of $Tnf-\alpha$ and $ll-6$ . |
| 192 | Expression levels of mRNA were normalized by NCD-fed vehicle group. (I) Plasma                      |
| 193 | concentrations of ALT and AST. Scale bars = 100 $\mu m.$ All data are presented as the mean $\pm$   |
| 194 | SD. $n.s = non significance.$                                                                       |
| 195 |                                                                                                     |
| 196 |                                                                                                     |
| 197 |                                                                                                     |
| 198 |                                                                                                     |
| 199 |                                                                                                     |
| 200 |                                                                                                     |
| 201 |                                                                                                     |
| 202 |                                                                                                     |
| 203 |                                                                                                     |
| 204 |                                                                                                     |
| 205 |                                                                                                     |
| 206 |                                                                                                     |
| 207 |                                                                                                     |
| 208 |                                                                                                     |
|     | 17                                                                                                  |

| Gene     | Forward                        | Reverse                        |
|----------|--------------------------------|--------------------------------|
| Axin2    | 5'-TGGAGAGTGAGCGGCAGAGC-3'     | 5'-TGGAGACGAGCGGGCAGA-3'       |
| Wisp1    | 5'-ATCGCCCGAGGTACGCAATAGG-3'   | 5'-CAGCCCACCGTGCCATCAATG-3'    |
| Fosl1    | 5'-AACCGGAGGAAGGAACTGAC-3'     | 5'-CTGCAGCCCAGATTTCTCA-3'      |
| Cxxc5    | 5'-CAAGAAGAAGCGGAAACGCTGC-3'   | 5'-TCTCCAGAGCAGCGGAAGGCTT-3'   |
| Tcf7l2   | 5'-TGTGTACCCAATCACGACAGGAG-3'  | 5'-GATTCCGGTCGTGTGCAGAG-3'     |
| Tnfα     | 5'-CGGAGTCCGGGCAGGT-3'         | 5'-GCTGGGTAGAGAATGGATCA-3'     |
| Tgfβ1    | 5'-TGACGTCACTGGAGTTGTACGG-3'   | 5'-GGTTCATGTCATGGATGGTGC-3'    |
| lfnγ     | 5'-TCAAGTGGCATAGATGTGGAAGAA-3' | 5'-TGGCTCTGCAGGATTTTCATG-3'    |
| F4/80    | 5'-CTTTGGCTATGGGCTTCCAGTC-3'   | 5'-GCAAGGAGGACAGAGTTTATCGTG-3' |
| Mcp1     | 5'-ACTGAAGCCAGCTCTCTCTTCCTC-3' | 5'-TTCCTTCTTGGGGTCAGCACAGAC-3' |
| Arg1     | 5'-CTCCAAGCCAAAGTCCTTAGAG-3'   | 5'-GGAGCTGTCATTAGGGACATCA-3'   |
| Chi3l3   | 5'-CAGGTCTGGCAATTCTTCTGAA-3'   | 5'-GTCTTGCTCATGTGTGTAAGTGA-3'  |
| Retnla   | 5'-CCAATCCAGCTAACTATCCCTCC-3'  | 5'-ACCCAGTAGCAGTCATCCCA-3'     |
| Pdcd1lg2 | 5'-TTGTCGGTGTGATTGGCTTC-3'     | 5'-AAAAGGCAGCACACAGTTGC-3'     |
| II-10    | 5'-GCTATGCTGCCTGCTCTTACT-3'    | 5'-CCTGCTGATCCTCATGCCA-3'      |
| Pparδ    | 5'-TCCATCGTCAACAAGACGGG-3'     | 5'-ACTTGGGCTCAATGATGTCAC-3'    |
| Pparγ    | 5'-TGTGGGGATAAAGCATCAGGC-3'    | 5'-CCGGCAGTTAAGATCACACCTAT-3'  |
| Сесра    | 5'-GGTGGACAAGAACAGCAACGA-3'    | 5'-TGTCCAGTTCACGGCTCAGCT-3'    |
| Srebp1   | 5'-GGAGCCATGGATTGCACATT-3'     | 5'-GGCCCGGGAAGTCACTGT-3'       |
| Fas      | 5'-GCGATGAAGAGCATGGTTTAG-3'    | 5'-GGCTCAAGGGTTCCATGTT-3'      |
| Scd-1    | 5'-CTGTACGGGATCATACTGGTTC-3'   | 5'-GCCGTGCCTTGTAAGTTCTG-3'     |
| Acc      | 5'-CCTCCGTCAGCTCAGATACA-3'     | 5'-TTTACTAGGTGCAAGCCAGACA-3'   |
| G6pc     | 5'-GTCGTGGCTGGAGTCTTG-3'       | 5'-CGGAGGCTGGCATTGTAG-3'       |
| Pepck    | 5'-ATCTCCTTTGGAAGCGGATATG-3'   | 5'-CGCAACGCAAAGCATTTCTT-3'     |
| Pck1     | 5'-GGTATTGAACTGACAGACTC-3'     | 5'-CCAGTTGTTGACCAAAGG-3'       |
| Fbp1     | 5'-GTAACATCTACAGCCTTAATGAG-3'  | 5'-CCAGAGTGCGGTGAATATC-3'      |

## 209 Table S1. Sequences of real-time PCR primers used in this study.

| Ucp1   | 5'-AGGCTTCCAGTACCATTAGGT-3'  | 5'-CTGAGTGAGGCAAAGCTGATTT-3'  |
|--------|------------------------------|-------------------------------|
| Pgc-1a | 5'-AGCCGTGACCACTGACAACGAG-3' | 5'-GCTGCATGGTTCTGAGTGCTAAG-3' |
| Prdm16 | 5'-CCACCAGCGAGGACTTCAC-3'    | 5'-GGAGGACTCTCGTAGCTCGAA-3'   |
| Elovl3 | 5'-TTCTCACGCGGGTTAAAAATGG-3' | 5'-GAGCAACAGATAGACGACCAC-3'   |
| Cox8b  | 5'-GAACCATGAAGCCAACGACT-3'   | 5'-GCGAAGTTCACAGTGGTTCC-3'    |
| Cd137  | 5'-CCTTGCAGGTCCTTACCTTGT-3'  | 5'-GTTGCTTGAATATGTGGGGGA-3'   |
| Tmem26 | 5'-ATGGTGCATTTCAAGAAGCC-3'   | 5'-GCTCACCCTCAAGTTCAAGC-3'    |
| Tbx1   | 5'-CTGTGGGACGAGTTCAATCAG-3'  | 5'-TTGTCATCTACGGGCACAAAG      |