Appendix Content

Appendix Figure S1. Dwarf phenotype of the *ubp12i/ubp13* double mutant (p1)

Appendix Figure S2. Loss of UBP12 and UBP13 decreased BR sensitivity, whereas overexpressing *UBP13* led to BR hypersensitivity in *Arabidopsis* (p2)

Appendix Figure S3. Characterization of BRI1-mCit/*bri1/ubp12i/ubp13* and BRI1_{25KB}-mCit/*bri1/ubp12i/ubp13* (p3)

Appendix Figure S4. BRI1 protein stability decreases in *ubp12i/ubp13* double mutant (p4)

Appendix Figure S5. PUB13 catalyzes K63-linked polyubiquitin chains on BRI1 (p5)

Appendix Figure S6. Deubiquitination of BRI1 expressed in *Arabidopsis* plants by recombinant UBP13 (p6)

Appendix Figure S7. BL-responsive phenotypes of BRI1-mCit/*bri1/ubp12i/ubp13* and BRI1_{25KB}-mCit/*bri1/ubp12i/ubp13* (p7)

Appendix Table S1. Primers used in this study (p8)

Mock

+DEX

Appendix Figure S1. Dwarf phenotype of the ubp12i/ubp13 double mutant

A Growth phenotypes of the wild-type (WT), *bri1*-null mutant, and *ubp12i/ubp13* double mutant grown on 1/2MS medium supplemented with 10 μM DEX (+DEX) or without DEX (Mock) for 18 days. Scale bars: 10 mm.

B Transcript levels of the *UBP12* and *UBP13* genes in the double mutants. Total RNA was isolated from 6-day-old seedlings grown on 1/2MS medium supplemented with 10 μ M DEX or not (Mock). The expression levels of *UBP12* and *UBP13* were assessed by qRT-PCR relative to that in WT grown on mock medium. The expression of *ACTIN7* was used as an internal control (n = 3 biological replicates).

C Root growth defects in the *ubp12i/ubp13* double mutant. Seedlings were grown on 1/2MS medium supplemented with 10 μ M DEX or not (mock) for 11 days and used for measurement of primary root lengths (left) and emerged lateral root densities (right) (n > 20 seedlings for each line).

Data information: data are presented as means ± SD (B and C). *P*<0.05 (one-way ANOVA and post-hoc Tukey's test) (C).

Appendix Figure S2. Loss of UBP12 and UBP13 decreased BR sensitivity, whereas overexpressing *UBP13* led to BR hypersensitivity in *Arabidopsis*

A Transcript levels of the *UBP12* and *UBP13* genes in the *35S:UBP13* lines. Total RNA was isolated from 6-day-old dark-grown seedlings. The expression levels of *UBP12* and *UBP13* were assessed by qRT-PCR relative to that in WT. The expression of *18S rRNA* was used as an internal control (n = 3 biological replicates).

B Phenotype of WT, *ubp12i/ubp13* double mutant, two independent lines of *35S:UBP13*, and *bri1*-null mutant grown on DEX medium in the presence of 100 nM BL or not (Mock) in the dark for 6 days. Scale bars: 10 mm.

C Hypocotyl length relative to the mock control of seedlings (B). Experiments were done in triplicate (n > 15 seedlings for each line).

D Phenotype of the WT and *ubp12i/ubp13* double mutant grown on DEX medium in the presence of increasing concentrations of BL in the dark for 6 days. Scale bars: 10 mm.

E Hypocotyl length relative to the mock control of seedlings (D). Experiments were done in triplicate (n >15 seedlings for each line).

Data information: data are presented as means \pm SD (A, C, and E). *P*<0.05 (one-way ANOVA and post-hoc Tukey's test) (C), **P*<0.05, ***P*<0.01 compared with WT under each condition (one-way ANOVA and post-hoc Tukey's test) (E).

Appendix Figure S3. Characterization of BRI1-mCit/*bri1/ubp12i/ubp13* and BRI1_{25KR}-mCit-/*bri1/ubp12i/ubp13*

A Transcript levels of the *BRI1*, *UBP12*, and *UBP13* genes. Total RNA was isolated from 7-day-old seedlings grown on DEX medium. The expression levels of *BRI1*, *UBP12* and *UBP13* were assessed by qRT-PCR relative to that in WT. The expression of *18S rRNA* was used as an internal control (n = 3 biological replicates).

B Root growth defects in transgenic lines in the *ubp12i/ubp13* background. Seedlings were grown on DEX medium for 11 days and used for measurement of primary root lengths (left) and emerged lateral root densities (right) (n > 20 seedlings for each line).

Data information: data are presented as means ± SD. P<0.05 (one-way ANOVA and post-hoc Tukey's test) (B).

Appendix Figure S4. BRI1 protein stability decreases in ubp12i/ubp13 double mutant

A Eighteen-day-old plants grown on DEX medium transferred to 1/2MS liquid medium with 200 μ M CHX in the presence of 10 μ M DEX for the indicated time. BRI1 proteins were analyzed by western blot with an α -BRI1 antibody. PEPC was used as a loading control. The values shown above each lane indicate the abundance of the BRI1 proteins relative to that of samples before CHX treatment in the respective lines.

B Degradation rates of BRI1 proteins (A) plotted over time. The relative protein abundance of BRI1 proteins before CHX treatment was set to 100% in the respective lines (n = 1 biological replicate).

Α

Appendix Figure S5. PUB13 catalyzes K63-linked polyubiquitin chains on BRI1

A,B K63- and K48-autoubiquitination activities of PUB13 *in vitro*. GST-PUB13 was incubated without (-) or with native ubiquitin (Native), K63R, or K48R ubiquitin (A) and K63- or K48-only ubiquitin (B). PUB13 ubiquitination was analyzed by western blot with α -Ub (FK2), α -K63Ub (Apu3), α -K48Ub (Apu2), and α -GST antibodies.

C Purification of polyubiquitinated MBP-BRI1_{CD} by MBP pull-down assay. *In vitro* ubiquitination assays produced polyubiquitinated MBP-BRI1_{CD} and polyubiquitinated GST-PUB13 mixture or polyubiquitinated GST-PUB13 alone (Ub reaction) were incubated with amylose resin to purify MBP-BRI1_{CD} (MBP pull-down). Resins were washed in wash buffer containing 0.5% or 1% (v/v) Triton X-100 after incubation for dissociation of nonspecific bindings (flow through [FT]). Polyubiquitinated MBP-BRI1_{CD} eluted from the amylose resin by SDS sample buffer (SE). The ubiquitinated proteins were detected by western blot with an α-Ub (P4D1) antibody. The presence of recombinant proteins was confirmed by α-GST and α-MBP antibodies.

D K63-ubiquitination of BRI1 by PUB13 *in vitro*. MBP-BRI1_{CD} was incubated with GST-PUB13 in the presence of native ubiquitin or ubiquitin variants or in the absence of ubiquitin (-). Polyubiquitinated MBP-BRI1_{CD} was purified by MBP pull-down assay and analyzed by western blot with α -Ub (FK2) and α -K63Ub (Apu3) antibodies.

Appendix Figure S6. Deubiquitination of BRI1 expressed in *Arabidopsis* plants by recombinant UBP13

A Cell-free deubiquitination assay of polyubiquitinated BRI1-mCit proteins by GST-UBP13. Polyubiquitinated BRI1-mCit proteins were extracted from 18-day-old BRI1-mCit/bri1 plants (left) and incubated with GST-UBP13 or GST-UBP13^{C207S} for 10 h (right). BRI1 ubiquitination was analyzed by western blot with α -Ub (P4D1) and α -GFP antibodies. The presence of GST-UBP13 or GST-UBP13^{C207S} recombinant proteins was confirmed by the α -GST antibody.

B Quantification of BRI1 ubiquitination profiles from the band intensities (A). Data are presented as ratios of ubiquitinated BRI1 (P4D1)-to-basal BRI1 (GFP), shown as numbers above each bar. The ratio of sample incubated with GST-UBP13^{C207S} was set to 100 (n = 1 biological replicate).

В

Α

Appendix Figure S7. BL-responsive phenotypes of BRI1-mCit/*bri1/ubp12i/ubp13* and BRI1_{25KR}-mCit-/*bri1/ubp12i/ubp13*

A Phenotype of transgenic lines expressing BRI1 or BRI1_{25KR} tagged with mCitrine in either the UBP12/UBP13 or *ubp12i/ubp13* background grown on DEX medium in the presence of 100 nM BL or not (mock) in the light for 6 days. Scale bars: 10 mm.

B Growth phenotype of the indicated lines grown on DEX medium for 10 days, then transferred to fresh DEX medium containing 1 μ M BL or mock solution (0.1% [v/v] EtOH) for additionally 8 days. Scale bar: 10 mm.

	Primer name	Sequence (5'→3')
Cloning	UBP13 ent 5-1	CACCATGACTATGATGACTCCGC
	UBP13 ent 3-1	CTAATTGTATATTTTCACCGGCTTCTCG
	UBP12RNAi Si_R	CACCTATACCACATACCTTACTTCAGAAAG
	UBP12RNAi Si R	AAAGAAGCATAAACATCCTTGCAG
	BRI1 ent 5-1	CACCATGAAGACTTTTTCAAGCTTC
	BRI1 ent 3-1	TAATTTTCCTTCAGGAACTTC
	UBP13 C207S 5	GGTGCTACCAGTTACATGAATT
	UBP13 C207S 3	AATTCATGTAACTGGTAGCACC
	CIPK8 ent 5-1	CACCATGGTGGTAAGGAAGGT
	CIPK8 ent 3-1	CAAGGCCAAGAGTAAAAGACGT
Genotyping	ubp13-1 LP	GTCTGGCTGTAGTGAATCAAGTC
	ubp13-1 RP	TAATGCCCTCCATGCACTCC
	bri1 LP	GAATCTATCCGCTTCGTTGC
	bri1 RP	AATTCGACCGAGCCCGAAAA
qRT-PCR	UBP13 exp FP	GTGCGTGGGAGCAGTATCTT
	UBP13 exp RP	GCGTGTCGGTTCTGATTTG
	UBP12 exp FP	TCTGGACATCCCTCTTCCAG
	UBP12 exp RP	CGACCGTGCTTTGTTTAGGTA
	BRI1 exp FP	CAACTGCAGTCCGCATATCA
	BRI1 exp RP	AAACCCGAGCTTCCAAATTC

Appendix Table S1. Primers used in this study