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Additional performance Analysis

Baseline EMR model - Figure 1 present the ROC curve for the baseline EMR model which achieved 0.79 AUROC value.
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Figure 1. Receiver operating characteristic curve of the baseline EMR model - using demographics and co-morbidity data

Model selection using 10-fold cross-validation - Figures 2 show visual comparison of different classifier architectures for
late fusion. The box plots shows the accuracy of different classifiers at different time-internals along with error bar for 10-fold
cross-validation.
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Figure 2. Box plots for late fusion performance analysis of different classifiers using demographic, co-morbidity and ECG
data; (a) 1 hr. data; (b) 2 hrs. data ; (c) 3 hrs. data; (d) 4 hrs. data; (e) 5 hrs. data; (f) 6 hrs. data

2/6



Confusion matrix for late fusion model - Figures 3 shows late fusion confusion matrices (2x2) for each time point where each
cell represents the patient counts. The confusion matrices show the true positive and true positive values along the diagonals.

Comparison with analog in-memory computation macros using SRAM

Aside from using switched-capacitor MAC circuits for analog IMC, several works re-use static random access memory (SRAM)
array that holds ANN weights for analog IMC'~°. Figure 4 compares the two analog IMC techniques. Compared to SRAM
array (see the Supplement), the switched-capacitor IMC adopted in this work has two advantages - 1) higher linearity, 2)
better matching. Multiplication is performed in SRAM cell by applying analog input to the wordline (WL) which draws a
proportional current, I;; from the differential readlines (BL and BLB). The current I, discharges voltage on BL/BLB lines, and
accumulation is performed in charge-domain on the BL/BLB lines. The in-memory vector matrix multiplication (VMM) is
linear as long as I is linearly proportional to the voltage applied on the WL line, and is independent of the accumulated voltage
on the BL/BLB lines. However, for large values of VMM output, the transistor drawing I is pushed into triode region, and I,
becomes a nonlinear function of the voltage on BL/BLB lines, thus making the VMM result nonlinear. This is a fundamental
limitation of SRAM based IMC techniques. In contrast, the switched capacitor IMC performs VMM through passive charge
redistribution between the capacitors in the array which makes the VMM computation highly linear. Random mismatches
during chip fabrication process introduces random variations into each circuit component, and hence, ANN weights which
makes VMM results inaccurate. However, it is easier to match passive components, like capacitors, with high accuracy than
transistors. Since switched-capacitor IMCs compute VMM results based on ratios of capacitors, it is more accurate than SRAM
IMC.

0.1 Label encoding versus one-hot encoding for EMR model

The categorical and textual EMR data need to be converted into numeric form for analysis with EMR model. Label encoding
and one-hot encoding are two popular encoding techniques for conversion of categorical/textual data into numeric format.
However, there are trade-offs involved when using these encoding techniques. Label encoding imposes ordinality to categorical
data, while one-hot encoding increases dimensionality of categorical data. We use label encoding in our work because of two
reasons — a) the EMR model uses random forest classifier which has a much better performance than other models considered
(linear SVM, logistic regression, artificial neural network). Random forest can directly accept categorical variables and often
perform better with label encoding than one-hot encoding. One-hot encoding introduces undesirable sparsity to the data since
the one-hot encoded columns are mostly zeros, and tree-based models, such as random forest, will assign low importance to the
one-hot encoded columns since splitting on them will only produce a small gain b) the categorical variables in our work has
low number of levels (7 for race and 3 or lower for the other categorical variables) and hence, performance of the models do
not change much going from label encoding to one-hot encoding. This is shown in Table 1 which shows that there is little
difference in performance of the models for categorical encoding and one-hot encoding.

Table 1. Comparison of label and one-hot encoding for EMR model. Optimal performance for every prediction task is
highlighted in bold.

Label encoding One-hot encoding
Accuracy (%) | AUROC | Accuracy (%) | AUROC
Linear SVM 49 0.47 51 0.54
Logistic Regression 53 0.54 52 0.51
Random Forest 76 0.79 76 0.78
Neural Network 51 0.50 51 0.50
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Figure 3. Confusion matrix for late fusion using demographic, co-morbidity, and ECG data for different sepsis on-set
prediction tasks; (a) 1 hr; (b) 2 hrs; (c) 3 hrs; (d) 4 hrs; (e) 5 hrs; (f) 6 hrs. Only optimal prediction results are shown.
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6T SRAM for in-memory computation

Switched-capacitor for in-memory computation
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1. lgs is non-linear function of bitline voltage
2. Random mismatch in lgg in each bitcell
3. ANN weights can be reprogrammed easily

1. Switched-cap MAC computation is highly linear
2. Capacitors have better matching than transistors
3. ANN weights cannot be reprogrammed

Figure 4. Comparison with analog in-memory computation using SRAM cells
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