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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Main findings: 

 

This manuscript by Mirhadi and colleagues reports the multi-dimensional characterisation of patient-

derived xenografts (PDXs) from non-small cell lung cancer (NSCLC). PDXs retained the transcriptomic 

and methylomic stratification developed in NSCLC patients for lung adenocarcinoma (LUAD) and lung 

squamous cell carcinoma (LUSC) and harboured genetic alterations analogous – in both nature and 

frequency – to those detected in patients. Proteomic profiling followed by unsupervised hierarchical 

clustering revealed three major clusters: one comprising mainly LUSC, a second comprising LUSC 

together with large cell neuroendocrine carcinoma, and a third comprising mainly LUAD. The authors 

also identified specific proteotypes that associated with defined transcriptomic or methylomic 

subgroups, had variable prognostic significance, and were enriched for selective actionable pathways 

and genomic alterations. 

 

 

General assessment: 

 

PDXs have been successfully deployed to extract multi-dimensional profiles with prognostic or 

predictive value, and also for biomarker/target validation or discovery. On this ground, the present 

study does a good job of gathering and integrating ‘omics’ data in a relatively large collection of 

models. Regrettably, the authors did not validate their findings in original (pre-implantation) tumors 

and did not attempt pharmacological targeting of the proposed vulnerabilities. As such, the paper 

remains descriptive and poorly informative. 

 

 

Major concerns: 

 

1) The transcriptomic, methylomic, genomic and proteomic data obtained in PDXs should have been 

benchmarked against analogous profiles in matched pre-implantation material. Is the assignment of 

individual PDXs to a specific transcriptional/epigenetic subgroup maintained in the corresponding 

original tumour? Are there differences in focal gene amplifications between fresh and mouse-passaged 

tumours when considering the number of gene copies? Is the overall genomic architecture preserved? 

An effort of this kind – which may be limited to a representative fraction of models – is necessary to 

strengthen the conclusiveness and generalisability of the reported observations. 

2) It is quite surprising that the authors did not leverage the merit of PDXs – i.e., the possibility of in 

vivo therapeutic intervention based on molecular profiling – to target some of the druggable 

vulnerabilities emerged from their proteomic survey. Without this piece of information, it is difficult to 

anticipate whether the proposed liabilities are therapeutically relevant, hence potentially translatable 

to the clinical setting. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

NCOMMS-21-04521 

Integrative analysis of non-small cell lung cancer patient-derived xenografts identifies unique 

proteotypes associated with patient outcomes 

 

The authors test the ability to generate patient derived xenografts (PDXs) from 501 non-small cell 

lung cancer (NSCLC) specimens in NOD SCID mice, correlate these with clinical demographic features, 

and then perform proteogenomic analyses on the PDXs. They find a take rate of 27.3% and establish 



137 NSCLC PDXs. The take rate was higher in lung squamous cancers (LUSCs, 64%) than lung 

adenocarcinomas (LUADs, 30%), and that patients whose tumors generated PDXs that could be 

passaged had inferior survival to those whose tumors could not be established as a propagating PDX. 

Their proteogenomic analyses for mRNA, proteomics, methylation and copy number changes, 

identified several different subgroups for LUAD and LUSC that were similar to prior published groups 

and to TCGA samples and several of these subgroups had survival differences. They also confirmed, in 

general, low correlations between the different profiling methods for quantitating the expression of 

individual genes. The proteome analyses also included phosphotyrosine evaluations. A variety of 

computational biology and pathway analyses were performed. In addition, they distinguished mouse 

from human proteins to identify stromal (mouse) components. Of note the PDXs were grown 

subcutaneously and not orthotopically. They conclude: “The models indicate 3 lung adenocarcinoma 

and 2 squamous cell carcinoma proteotypes that are associated with different patient outcomes, 

protein-phosphotyrosine profiles, candidate targets, and in adenocarcinoma, distinct stromal immune 

features. The PDX resource will foster proteome-directed stratification and development of new 

treatments for aggressive NSCLC. “No functional studies are presented. 

 

 

Comments to Authors: 

 

The work is technically well done and clearly presented. The large number of new PDXs derived by the 

authors with their proteogenomic characterization will be an important new lung cancer research 

resource if they are made freely available. All of the major findings the authors have made are 

confirmatory of many prior studies in lung cancer and other tumors. For example, the worse prognosis 

in patients whose tumors can form PDXs vs. those whose tumors do not generate PDXs. The various 

classification groups for LUAD and LUSCs from the PDXs and their relationship to tumor specimens 

are, essentially, confirmatory of several prior studies. The technology and methods for generating the 

PDXs, for obtaining the molecular and proteomic data, and computational analyses all are well known 

and standard and that is fine, but they do not “break new ground.” While they derived prognostic 

signatures, these are essentially similar to prior reports. In addition, there is no independent 

validation population that was studied. So as a “resource” this has useful information and reagents for 

future studies. 

 

1. However, in its present form, the manuscript as a “resource” provides data, but, in my opinion, the 

computational analyses should be structured in a way to provide a “roadmap” for future translational 

research by identifying the highest value targets, pathways, and PDXs to begin systematic testing for 

new lung cancer vulnerabilities. This latter information requires a more focused computational analysis 

rather than additional data. 

2. As to additional data, there are three major questions the authors could have addressed but did not 

provide data on – all require some functional studies. I point these out, because providing answers to 

any of these three would have elevated this manuscript significantly. The first are the factors and 

mechanisms that allow some tumors to form PDXs while other, which can have devasting malignant 

behavior in patients do not. If we knew what any of these differences are, we would immediately have 

a much deeper understanding of lung cancer pathogenesis and potentially new therapeutic targets. 

 

3. The second, what are the specific different vulnerabilities in any of the proteogenomic identified 

subgroups of NSCLC in these PDXs and do any of these provide a druggable therapeutic target and 

potential “therapeutic window”? While we may not have a final therapeutic is there a subset of these 

PDXs that could be “cured” in preclinical studies by targeting something that their proteogenomic 

studies identified, using, for example, functional genomics (e.g., drop out screens) and are there 

precision medicine biomarkers to identify ahead of time which PDXs would respond to this specific 

targeting and which would not? The DepMap studies are all done in vitro and all need to be verified in 

vivo (e.g., in xenografts). One could image that their proteogenomic studies identified a subgroup of 

LUADs for which we don’t have targeted therapy, and the specific gene/protein to target within this 

group. For example, there could be a phosphotyrosine target that is a dependency. 



 

4. Finally, the tumors were studied subcutaneously in NOD-SCID mice and there are probably some 

differences in the tumor microenvironment (TME). Information on whether the TME was the same 

orthotopically (in the lung) and in subcutaneous tissues would be important. However, ultimately, we 

would want to know that a specific PDX did something to the TME that enabled “immune escape” of 

the tumor, and/or now became a potential therapeutic target to aid in immunotherapy. For example, 

the tumors in this subgroup made some specific cytokine that could be targeted (I just give this as an 

example). 

 

5. Thus, the PDXs and the proteogenomic analyses would give us not just a “resource” but an example 

of the importance of this resource. I would leave it to the authors to decide which if any or all of these 

examples they could provide data on to make this publication go beyond reporting of a new panel of 

PDXs. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

In this manuscript, Mirhadi et al presented a large-scale proteogenomic study of non-small cell lung 

cancer PDX samples. They conducted the genomic, transcriptomic, proteomic and tyrosine 

phosphoproteomic analysis of the PDX model samples that were generated from NSCLC patients. The 

authors showed that transcriptome-based subtypes of the PDX samples were similar and comparable 

to the previously reported subtypes of patients in TCGA cohorts, although the frequencies of some 

well-known DNA alterations in NSCLC were different between PDX samples and patients. Proteomic 

analysis showed distinct LUAD and LUSC proteotypes, which were associated with different prognosis 

and molecular features. The authors further nominated potential proteotype-specific druggable targets 

and biomarkers. Finally, the authors further investigated some mouse (stromal) proteome features 

among the proteotypes. 

Overall, the authors conducted a huge amount of work in NSCLC PDX models, which could potentially 

serve as a valuable resource for NSCLC research. However, this manuscript does not provide enough 

details on their mass spectrometry data processing procedure and the following proteomics analysis. 

Therefore, it is hard to evaluate the reliability of their conclusions drawn from the proteomics data. In 

addition, although the authors generated a lot of data, many of their analyses and results are 

descriptive and preliminary. 

 

Specific comments: 

1. In this manuscript, different number of samples were used for different analysis. It is very 

confusing how many samples were used in each analysis. For example, this study generated 137 PDX 

models. Why the authors only conducted proteomic analysis of 133 samples (Only 133 proteome data 

shown in supplementary table and supplementary figure 2A)? The authors performed 

phosphoproteomic analysis of 125 PDX samples, but they only showed 115 phosphoproteome data in 

the manuscript. This study generated 65 LUSC PDX models and 58 LUAD PDX models. Only 60 LUSC 

PDX samples and 58 LUAD PDX samples were used for unsupervised consensus clustering and PCA 

analysis. The number of proteins, phosphoproteins, phosphosites identified in each sample should be 

provided. 

2. Since the engraftment rate for stable PDX is low (27.3%), the representation of PDX samples are 

obviously quite different (distorted) from the population of NSCLC patients. Although the authors 

compared their genomics data with those of primary tumors in TCGA cohorts, the manuscript did not 

present a clear general view on the genetic and transcriptomic differences (over- or under- 

representation) between the PDX samples and clinical patients. This is an important clue for the 

proper use of PDX models in NSCLC study. 

3.Quality control processes for mass spectrometry data processing and details for bioinformatic 

analysis should be provided (e.g. quantification reliability, missing values, proteins used for clustering, 

etc.). The samples are mixtures of human and mouse proteins. The authors should clearly clarify this 



issue and explain how the data was used for subsequent analysis. Without these details, the reliability 

of the proteomic results is difficult to be evaluated. 

4. Why did the authors use different quantification approach for proteome (TMT labeling) and tyrosine 

phosphoproteome (label free). Without strict quality control, affinity enrichment-based label free 

quantification is not reliable. In addition, the data quality of phosphotyrosine proteome seems to be 

relatively low. For most of the samples, only less than 100 pY sites were quantified. How did the 

authors use this data with such a low number of phosphosites for further analysis? 

5. The genetic backgrounds between NSCLC patients from the European ancestry (Nature. 2014, 543-

550; Nat Genetics 2016, 607) and East-Asian ancestry (Nat Genet. 2020, 52:177; Cell. 2020 

182:226; Cell. 2020,182:245) are quite different. For example, their transcriptome subtypes are 

different (Nature. 2014, 543-550; Nat Genet. 2020, 52:177). The authors should provide the ethnic 

information of the human subjects and compared their data with the proper patients. 

6. For tyrosine phosphoproteome, did the authors identify the substrates in RTK/RAF/RAS pathways, 

which are frequently altered in NSCLC? The authors need clearly present this information for each 

sample in their manuscript. 

7. A compelling advantage of PDX models is that they can be used for drug efficacy test. The authors 

nominated some proteotype-specific drug target based on the enrichment pathways from proteome 

and pY proteome data, but without any experimental validation. I do not think such analysis could 

provide convincing information. 

8. For potential biomarker identification, what is the rationale for 4-fold difference in expression? What 

is the frequency of each protein occurred in the samples? The authors should provide more 

information for the potential biomarkers. Validation in clinical samples is also necessary. What is the 

potential application of these biomarkers? 

9. The PDX models were from severely compromised immunodeficient mice, which were significantly 

different from the human cancer microenvironment. The authors analyzed some mouse proteome 

features (defined them as stromal) among the proteotypes in their manuscript. However, this mouse 

proteome is fundamentally different from real stroma in human. I do not think such analysis could 

reflect the real human tumor microenvironment. 
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Reviewer comments are reproduced verbatim in bold, and new text that has been added to the manuscript is 
highlighted in italics. 

Reviewer #1 

1) The transcriptomic, methylomic, genomic and proteomic data obtained in PDXs should have been 
benchmarked against analogous profiles in matched pre-implantation material. Is the assignment of 
individual PDXs to a specific transcriptional/epigenetic subgroup maintained in the corresponding original 
tumour? Are there differences in focal gene amplifications between fresh and mouse-passaged tumours 
when considering the number of gene copies? Is the overall genomic architecture preserved? An effort of this 
kind – which may be limited to a representative fraction of models – is necessary to strengthen the 
conclusiveness and generalisability of the reported observations. 

We agree with the reviewer on the importance of comparing the omics profiles of matched pre-implantation 
tumors and the PDXs. We have previously published such comparison in subsets of the models (PMID: 25429762, 
27750381) and regret that this information was not clearly conveyed in the original manuscript.  In the revised 
manuscript we have modified the introduction to provide this missing information. These modifications are 
described below in the excerpt from the revised manuscript: 

Introduction, page 3: 

The engrafted patient tumors retain the phenotypic features of the primary tumors, including histology, mutational 
landscape, RNA and protein expression 20–25. We previously measured high correlations (rs >0.67) between 11 
PDX and their matched patient NSCLC for individual profiles of their DNA copy number, mRNA and protein 
abundances26.  In another study comparing 36 matched PDX-primary NSCLC we demonstrated retention of >90% 
of SNP mutations and the close recapitulation in PDX models of gene expression, methylation, and protein-
phosphotyrosine (pY) profiles 27.” 

2) It is quite surprising that the authors did not leverage the merit of PDXs – i.e., the possibility of in vivo 
therapeutic intervention based on molecular profiling – to target some of the druggable vulnerabilities 
emerged from their proteomic survey. Without this piece of information, it is difficult to anticipate whether 
the proposed liabilities are therapeutically relevant, hence potentially translatable to the clinical setting. 

We agree with the reviewer on the importance and potential to undertake pre-clinical investigations of newly 
predicted, proteotype-associated therapeutic vulnerabilities by using the PDX models. While the systematic 
testing of identified candidate targets is beyond the scope of this publication, we have revised the manuscript to 
address this concern and further demonstrate the potential for proteomics to complement genomics-based 
hypotheses of therapeutic vulnerabilities. The revised manuscript includes new data that demonstrate the pre-
clinical utility of the PDX models related to receptor tyrosine kinases (RTKs) and tyrosine kinase inhibitors (TKIs). 
The revised text is shown below: 

Results, page 17: 

EGFR tyrosine kinase inhibitors (TKIs) are currently restricted to cases with EGFR hotspot mutations. We observed that 
cases with hotspot mutations do not always have high EGFR expression nor increased activated pY sites compared to 
cases without mutations (Fig.  6C). Herein, we demonstrate that a PDX with WT amplification and high EGFR protein 
expression and pY enrichment but no oncogenic hot spot mutation significantly responded to treatment with the EGFR 
TKI Afatinib (p-value<0.0001) (Fig.  7E). This is an example wherein proteome analysis might reveal potentially 
responsive, activated target pathways not uncovered by genome/transcriptome analyses.  In a previous study, we 
treated 4 PDX models bearing EGFR activating mutations by multiple EGFR inhibitors55. Two models (PHLC137 and 
192) (Fig. 7C-indicated by blue diamond) responded to Erlotinib, Dacomitinib, Afatinib and Cetuximab, whereas the 
other two models either did not, or only responded to cetuximab (PHLC148 and 164) (Fig. 7C-indicated by yellow 
star). Comparing the proteome of the two responders vs. non-responders revealed VIM expression significantly higher 
in the non-responders, consistent with previous reports56, and CALML3 expression higher in responders 
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(Supplementary Fig. 7A). Another potential TKI target in NSCLC is fibroblast growth factor receptor 1 (FGFR1), 
which is amplified in 20% of LUSC and known to be involved in cell proliferation and survival. Indeed, 24% (14 of 
58) of our LUSC cases contain an amplification of 8p11.23 that includes FGFR1(Supplementary Fig. 7B). However, 
we saw no significant change relative to non-amplified samples in the levels of FGFR1 protein or protein-pY in these 
cases (Supplementary Fig. 7C).  Consistent with these observations, we tested the FGFR1 inhibitor BGJ398 for growth 
inhibition in four randomly-selected FGFR1-amplified tumors (PHLC-200,-274, -299, and -321), and found that in 
all cases there was an initial minor shrinkage of tumors but ultimately no inhibition of PDX tumor growth 
(Supplementary Fig. 7D-G). These examples demonstrate the utility of the PDX models to test therapeutic hypotheses 
including target validation based on protein expression or pathway activation.” 

Reviewer #3 

1. In its present form, the manuscript as a “resource” provides data, but, in my opinion, the computational 
analyses should be structured in a way to provide a “roadmap” for future translational research by 
identifying the highest value targets, pathways, and PDXs to begin systematic testing for new lung cancer 
vulnerabilities. This latter information requires a more focused computational analysis rather than additional 
data. 

We appreciate the reviewer’s suggestion to include a more focused computational analysis and a roadmap for 
future translational work. To address this comment, we have added to the manuscript a more focused analysis to 
identify the highest value targets and pathways as detailed below in the excerpt from the revised manuscript. In 
addition, we have revised Figure 1 to include a schematic roadmap that presents the steps taken to identify, 
validate, and prioritize targets and pathways as a guide for future translational research in lung cancer.   

Legend to Fig. 1: 

Figure 1.  A roadmap to cancer proteotype discovery and utility. A subset of 137 of 501 primary NSCLC tumors 
engrafted to yield PDX models. PDXs represent the most aggressive subset of NSCLC and were profiled for gene 
expression, gene copy number variation, DNA methylation, exome mutations, proteome and phosphotyrosine(pY)-
proteome. Proteome profiling revealed proteotypes associated with patient survival differences. Proteotypes display 
distinctive active pathway features and associated candidate therapeutic targets. Signatures comprising proteotype 
markers effectively stratify orthogonal NSCLC primary tumors 13,15 as well as NSCLC DepMap cell lines 26, which 
enables a degree of candidate target validation and prioritization based on alignment with DepMap sensitivities 27. 

Added to the Results, page 15:  

The proteotype protein signatures were also able to effectively categorize 34/34 LUAD and 9/12 LUSC cell lines 
previously characterized at the proteome level as part of the DepMap project26. The LUAD cell lines clustered into 
groups corresponding to LUAD1 (8 lines), LUAD2 (13 lines), and LUAD3 (13) (Supplementary Fig. 6A-B), and the 
LUSC cell lines clustered into groups corresponding to LUSC1 (6 lines) and LUSC2 (3 lines) (Supplementary Fig. 6C-
D). Genetic and pharmacological sensitivities associated with the cell lines grouped by proteotype were defined by 
using DepMap data27 (Supplementary Table 11). This analysis revealed proteotype-specific sensitivities 
(Supplementary Table 11), including top set of candidate actionable targets and molecules based on the effect size 
of their inhibition on cell line viability (Supplementary Fig. 6E-F). We further identified sensitivities that matched 
significantly differential proteins of the proteotypes (Supplementary Table 11). Pathway analysis of these matched 
targets showed the LUAD1 lines to be sensitive to losing components of the TCA cycle, LUSC1 spliceosome and 
LUSC2 ribosome biogenesis. This was consistent with the enrichment of high activity of TCA cycle in LUAD1 and higher 
enrichment and activity of spliceosome in LUSC1 (Supplementary Table 11). Ribosome components were expressed 
lower in LUSC2, which might be why LUSC2 cell lines are sensitive to losing components of ribosome biogenesis. 

2. As to additional data, there are three major questions the authors could have addressed but did not 
provide data on – all require some functional studies. I point these out, because providing answers to any of 
these three would have elevated this manuscript significantly. The first are the factors and mechanisms that 
allow some tumors to form PDXs while other, which can have devasting malignant behavior in patients do 
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not. If we knew what any of these differences are, we would immediately have a much deeper 
understanding of lung cancer pathogenesis and potentially new therapeutic targets. 

We thank the reviewer for raising these important questions, which we have also been considering, especially on 
the factors and mechanisms associated with engraftment that may be related to tumor aggressiveness and patient 
outcomes.  Addressing this question will require a multi-omics analysis of engrafting and non-engrafting primary 
patient tumors. This is the subject of our ongoing research and represents a major line of research that is beyond 
the scope of this large study in which we have generated and comprehensively analyzed 137 patient-derived 
xenograft tumors.   

3. The second, what are the specific different vulnerabilities in any of the proteogenomic identified 
subgroups of NSCLC in these PDXs and do any of these provide a druggable therapeutic target and potential 
“therapeutic window”? While we may not have a final therapeutic is there a subset of these PDXs that could 
be “cured” in preclinical studies by targeting something that their proteogenomic studies identified, using, 
for example, functional genomics (e.g., drop out screens) and are there precision medicine biomarkers to 
identify ahead of time which PDXs would respond to this specific targeting and which would not? The 
DepMap studies are all done in vitro and all need to be verified in vivo (e.g., in xenografts). One could 
image that their proteogenomic studies identified a subgroup of LUADs for which we don’t have targeted 
therapy, and the specific gene/protein to target within this group. For example, there could be a 
phosphotyrosine target that is a dependency. 

This comment is akin to comment 2 of reviewer 1. We fully agree with the reviewer of the important potential 
utility of the PDX models to test emerging therapeutic hypotheses. Systematic screening of our PDX models for 
therapeutic vulnerability is a huge ambitious project, which will likely require extensive and collaborative efforts 
among lung cancer researchers. We hope this effort will be stimulated by publication of our findings as a timely 
resource. We have added a statement to the Discussion to describe the technical limitation of the PDX system 
testing for RNAi or CRISPR screens:  

“Another obvious limitation of the PDX models is that they are not readily feasible for comprehensive/systems type 
analyses of gene dependencies or chemical screens.”  

To address the reviewer’s concerns, we have added new data, which demonstrate the pre-clinical utility of the 
PDX models related to receptor tyrosine kinases (RTKs) and tyrosine kinase inhibitors (TKIs). We also included new 
analysis of the DepMap screens to address the proteotype-specific sensitivity comment. The follow text has been 
added to the revised manuscript: 

Results, page 17: 

EGFR tyrosine kinase inhibitors (TKIs) are currently restricted to cases with EGFR hotspot mutations. We observed that 
cases with hotspot mutations do not always have high EGFR expression nor increased activated pY sites compared to 
cases without mutations (Fig.  6C). Herein, we demonstrate that a PDX with WT amplification and high EGFR protein 
expression and pY enrichment but no oncogenic hot spot mutation significantly responded to treatment with the EGFR 
TKI Afatinib (p-value<0.0001) (Fig.  7E). This is an example wherein proteome analysis might reveal potentially 
responsive, activated target pathways not uncovered by genome/transcriptome analyses.  In a previous study, we 
treated 4 PDX models bearing EGFR activating mutations by multiple EGFR inhibitors55. Two models (PHLC137 and 
192) (Fig. 7C-indicated by blue diamond) responded to Erlotinib, Dacomitinib, Afatinib and Cetuximab, whereas the 
other two models either did not, or only responded to cetuximab (PHLC148 and 164) (Fig. 7C-indicated by yellow 
star). Comparing the proteome of the two responders vs. non-responders revealed VIM expression significantly higher 
in the non-responders, consistent with previous reports56, and CALML3 expression higher in responders 
(Supplementary Fig. 7A). Another potential TKI target in NSCLC is fibroblast growth factor receptor 1 (FGFR1), 
which is amplified in 20% of LUSC and known to be involved in cell proliferation and survival. Indeed, 24% (14 of 
58) of our LUSC cases contain an amplification of 8p11.23 that includes FGFR1(Supplementary Fig. 7B). However, 
we saw no significant change relative to non-amplified samples in the levels of FGFR1 protein or protein-pY in these 
cases (Supplementary Fig. 7C).  Consistent with these observations, we tested the FGFR1 inhibitor BGJ398 for growth 
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inhibition in four randomly-selected FGFR1-amplified tumors (PHLC-200,-274, -299, and -321), and found that in 
all cases there was an initial minor shrinkage of tumors but ultimately no inhibition of PDX tumor growth 
(Supplementary Fig. 7D-G). These examples demonstrate the utility of the PDX models to test therapeutic hypotheses 
including target validation based on protein expression or pathway activation. 

…and Results, page 15: 

The proteotype protein signatures were also able to effectively categorize 34/34 LUAD and 9/12 LUSC cell lines 
previously characterized at the proteome level as part of DepMap project26. The LUAD cell lines clustered into 
groups corresponding to LUAD1 (8 lines), LUAD2 (13 lines), and LUAD3 (13) (Supplementary Fig. 6A-B), and the 
LUSC cell lines clustered into groups corresponding to LUSC1 (6 lines) and LUSC2 (3 lines) (Supplementary Fig. 6C-
D). Genetic and pharmacological sensitivities associated with the cell lines grouped by proteotype were defined by 
using DepMap data27 (Supplementary Table 11). This analysis revealed proteotype-specific sensitivities 
(Supplementary Table 11), including a top set of candidate actionable targets and molecules based on the effect size 
of their inhibition on cell line viability (Supplementary Fig. 6E-F). We further identified sensitivities that matched 
significantly differential proteins of the proteotypes (Supplementary Table 11). Pathway analysis of these matched 
targets showed the LUAD1 lines to be sensitive to losing components of the TCA cycle, LUSC1 spliceosome and 
LUSC2 ribosome biogenesis. This was consistent with the enrichment of high activity of TCA cycle in LUAD1 and higher 
enrichment and activity of spliceosome in LUSC1 (Supplementary Table 11). Ribosome components were expressed 
lower in LUSC2, which might be why LUSC2 cell lines are sensitive to losing components of ribosome biogenesis. 

4. Finally, the tumors were studied subcutaneously in NOD-SCID mice and there are probably some 
differences in the tumor microenvironment (TME). Information on whether the TME was the same 
orthotopically (in the lung) and in subcutaneous tissues would be important. However, ultimately, we would 
want to know that a specific PDX did something to the TME that enabled “immune escape” of the tumor, 
and/or now became a potential therapeutic target to aid in immunotherapy. For example, the tumors in this 
subgroup made some specific cytokine that could be targeted (I just give this as an example). 

We agree and appreciate the importance of tumor microenvironment and its recapitulation in the PDX system. 
We agree that the TME of PDX tumors grown in NOD-SCID mice will differ from that of primary tumors and that 
PDXs grown subcutaneously may differ from those grown orthotopically. We focused on our established 
subcutaneous PDX protocol with the rationale that in this system there is strong and significant prognostic impact 
associated with engraftment, which has not been demonstrated in an orthotopic model. We are in the process of 
determining the feasibility of orthotopic PDX models of primary NSCLC, but this protocol is not yet established 
and remains beyond the scope of the current study. Although it is possible to identify the presence of certain 
immune cells in primary tumors based on expression of cell-type specific markers, fibroblast stromal signatures 
are hard to identify and assignment of molecular features as stroma- or tumor-derived is not readily achieved by 
analysis of bulk tumor tissue. For these reasons, comparison of human vs mouse stroma is a challenging task and 
never been done before successfully. In term of immune-deficient host, we are also working on a strategy to 
enable use of PDX for immune-oncology research, including the use of a humanized mouse model or other 
approaches. However, for this manuscript, we have added in our discussion the shortcoming of using our model: 

Discussion, page 22: 

An obvious drawback of our method was the use of subcutaneous implantation of patient tumors in NOD-SCID mice 
that have a compromised immune system. NOD-SCID mice have a reduced innate immunity and nearly no adaptive 
immunity74,75. Although, these immunodeficient features are necessary to prevent tumor rejection, this limits the 
scope of stromal differences that would usually be present in an immune-healthy individual. This also makes NOD-
SCIDs not the ideal model for testing of immuno-modulatory treatments. 

While these drawbacks exist, the intact part of the immune system of these models and the murine origin of the 
stromal component, allows us to clearly see differences among two of our proteotypes, LUAD1 and LUAD3, which 
highlight the influence of tumor signaling can have on modulating immune components of the tumor cells or of the 
mouse. 



NCOMMS-21-04521A Mirhadi et al.  
 

 
 

5

To address the second part of Reviewer #3’s comment regarding potential immune-modulatory proteins that 
could be targeted, we note that we identified several highly expressed immunomodulatory proteins in LUAD3 
known to be important for immune suppression, see results page 19. LGALS1, expressed 11.7 times higher in 
LUAD3 is tumor derived and secreted into the ECM where it induces apoptosis in anti-tumor immunocytes and 
skews the cytokine milieu towards promoting tumor growth16. Another key immunosuppressive protein expressed 
3.5 higher in LUAD3 is NT5E, which is a membrane bound protein that converts extracellular AMP to adenosine, a 
metabolite which in turn restricts inflammatory immune response through negative feedback loop on adenosine 
receptor expressing neutrophils17. Higher expression of such immunomodulatory proteins in this proteotype might 
explain the differential recruitment of TME.   

 

Reviewer #4 

1. In this manuscript, different number of samples were used for different analysis. It is very confusing how 
many samples were used in each analysis. For example, this study generated 137 PDX models. Why the 
authors only conducted proteomic analysis of 133 samples (Only 133 proteome data shown in 
supplementary table and supplementary figure 2A)? The authors performed phosphoproteomic analysis of 
125 PDX samples, but they only showed 115 phosphoproteome data in the manuscript. This study generated 
65 LUSC PDX models and 58 LUAD PDX models. Only 60 LUSC PDX samples and 58 LUAD PDX samples 
were used for unsupervised consensus clustering and PCA analysis. The number of proteins, 
phosphoproteins, phosphosites identified in each sample should be provided. 

We regret the confusion surrounding numbers of samples and analyses that was apparent in the original 
submission. In brief, our study generated 137 stable PDX models but the number of PDX models profiled by each 
platform varied due to availability of tumor tissues. To clarify and avoid confusion, we have modified the main 
text in the Methods section to include as a first statement the number of PDX samples that were profiled by that 
platform. We have also modified Table S8-Clinical&OmicSubtypeInfo to include all 6 platforms and provided 
information on which platforms were used to profile per each model. For each subsequent analysis, all relevant 
models profiled by that platform have been used.  

To address the second comment, we have included 3 additional columns to Table S8-ProteomeExperimentalInfo 
tab to include information on number of quantified proteins, phosphotyrosine peptides and phosphoproteins per 
model.  

2. Since the engraftment rate for stable PDX is low (27.3%), the representation of PDX samples are 
obviously quite different (distorted) from the population of NSCLC patients. Although the authors compared 
their genomics data with those of primary tumors in TCGA cohorts, the manuscript did not present a clear 
general view on the genetic and transcriptomic differences (over- or under- representation) between the PDX 
samples and clinical patients. This is an important clue for the proper use of PDX models in NSCLC study. 

We appreciate the reviewer’s concerns regarding comparisons of genetic and transcriptomic features between 
the PDX models and patient primary tumors. We have established that the PDX models represent NSCLC tumors 
with more aggressive behavior and carry poorer prognosis for the patient, and therefore may represent 
advanced stage patient tumors. However, currently there is little or no comprehensive omics data on the latter 
that we can compare with our PDX omics data. As mentioned in our response to comment 1 of Reviewer #1, we 
have first prioritized the profiling of the PDX models as we consider their characterization as essential in order to 
validate them and enable/foster further studies based on them. However, our previous publications have partially 
addressed the PDX/clinical tumor comparison (Please see response to Reviewer #1, comment 1). Nevertheless, we 
note that in this manuscript we showed that the landscape of transcriptomic differences reported between patient 
tumors (TCGA) are fully represented in our cohort of PDXs and in the same proportions indicating that the PDX 
models may have utility as models for specific subtypes of omics features found in primary NSCLC.  
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We have added additional information to the revised manuscript discussing this issue for the methylation subtypes 
and rephrased to make clearer the differences in genetic alterations as follow: 

Results, page 7: 

The data suggests that DNA methylation signatures are also conserved and represented in the PDX models. Although 
the frequency of methylation-based subtypes was on par with that of primary LUAD, in LUSC the C1 subtype was 
under-represented by 50% and the C2 subtype was over-represented by 100% in comparison to a patient 
population14. These suggest that biological aspects related to these subtypes might influence engraftment. 

…and: 

We observed that alterations frequently identified in LUAD and LUSC primary tumors are represented in the PDX 
models but in some cases were over- or under-represented compared to the frequencies seen in patient tumor 
populations 31 (Fig.  3A-B) (Supplementary Table 8). For instance, KRAS mutations are over-represented in LUAD 
PDXs at 50% frequency compared to 30% in patient primary tumors, whereas EGFR sensitizing mutations in exon 
18-21 are under-represented 31 (Fig.  3A, Supplementary Table 8). These findings are consistent with mutant KRAS 
being associated with better and mutant EGFR poorer engraftments, respectively, hence poorer and better 
prognoses10,30,32. NFE2L2, FAT1 and NOTCH1, were over-represented in LUSC PDXs compared to primary 
tumors 31, suggesting such alterations might favor more aggressive cancer phenotype and PDX formation. CNV in 
LUAD and LUSC PDX tumors mirrors closely primary tumors, (Fig.  3C, D) (Supplementary Table 8). Overall, these 
analyses revealed that the NSCLC PDX models retain genomic features that resemble primary tumors including some 
that may be related to aggressiveness and engraftment. 

3. Quality control processes for mass spectrometry data processing and details for bioinformatic analysis 
should be provided (e.g. quantification reliability, missing values, proteins used for clustering, etc.). The 
samples are mixtures of human and mouse proteins. The authors should clearly clarify this issue and 
explain how the data was used for subsequent analysis. Without these details, the reliability of the 
proteomic results is difficult to be evaluated. 

We appreciate the reviewers request for these important technical details that were not readily accessible in the 
original submission. This information is now included in the revised manuscript as follows.  

Results, page 8: 

Tandem mass tag (TMT)-based quantitative MS analysis of PDX tumors was undertaken (Supplementary Fig. 2A). For 
data quality assurance, a replicate sample pair in the same experimental group and two pairs of replicates samples 
split into different experimental groups were analyzed. The technical replicates provided a readout for fidelity of the 
normalization method and technical robustness. A strong linear relationship between the replicates was seen for each 
pair (R2 ≥0.94) (Supplementary Fig. 2E). PCA verified that samples did not cluster based on experimental group or 
isobaric labels (Supplementary Fig. 2F-G). MS analysis of 133 PDX samples uncovered a total of 13284 proteins 
using a strict false discovery rate (FDR) of 0.01 of which 6830 were identified as human, 4423 as mouse, and 2031 
that did not contain unique human or mouse peptides and therefore were assigned as human/mouse (Fig.  4A). To 
assess tumor-stroma composition, the fraction of total ion intensity corresponding to human, mouse, and 
human/mouse proteins was determined for each PDX sample (Fig.  4B) (Supplementary Table 8). This provided a 
unique opportunity to correct for discrepancies in tumor (i.e. human) cell composition across samples, which ranged 
between 20-70% (Fig.  4B) (Supplementary Table 8). This ensured that measured changes in protein abundance 
reflects proteome remodeling in tumor cells and not differences in tumor cellularity. 

4. Why did the authors use different quantification approach for proteome (TMT labeling) and tyrosine 
phosphoproteome (label free). Without strict quality control, affinity enrichment-based label free 
quantification is not reliable. In addition, the data quality of phosphotyrosine proteome seems to be 
relatively low. For most of the samples, only less than 100 pY sites were quantified. How did the authors 
use this data with such a low number of phosphosites for further analysis? 



NCOMMS-21-04521A Mirhadi et al.  
 

 
 

7

We agree with the reviewer that it would have been ideal if feasible to use identical technical platforms for 
whole proteome and pY proteome analyses.  However, since we were specifically interested in capturing pY sites, 
and these are very low in abundance, we needed to start from the highest amount of tumor tissue, which based on 
tissue availability was typically 1 mg. TMT-labeling 1mg of peptide was beyond our budget and labeling minute 
amounts of affinity purified phosphopeptides was beyond our technical capability. In addition, we had concerns 
of reports of significant neutral loss and reduced proton mobility of TMT-labelled pY-peptides has been 
reported, which might have distorted our findings (Everley et al….and Gygi SP. Neutral Loss Is a Very Common 
Occurrence in Phosphotyrosine-Containing Peptides Labeled with Isobaric Tags. J Proteome Res. 2017, 
16(2):1069-1076, PMID: 27978624). Therefore, we strived to optimize rather than integrate our respective pY 
and whole proteome workflows. 

We note that our yields of pY peptides from 1 mg (as protein) of unstimulated (for example by growth factor 
treatment or pY phosphatase inhibition with sodium orthovanadate) starting material is comparable with 
publications that used similar strategies.  Previous efforts by other groups quantified >100 pY sites from 3 mg of 
starting material 18. Another study identified 1800 pY sites from 2 mg of stimulated treated Jurkat T cells but 
only 343 pY sites from 5 mg of unstimulated cells. Finally, most comparable to our starting material, another study 
identified 197 pY sites from 5 mg of heterogeneous tissue sample 19. Another study done on heterogeneous 
tissue identified 845 pY sites from 10 mg of protein 20. Altogether, these show that our method and 
quantification was comparable to other studies, and we only lacked in starting material, which is always a 
limitation when working with tumor tissue. 

Study Sample Protein 
amount 

# of pY 

This PDX study Heterogeneous PDX tumors 1 mg ~130/sample 
Yao et. al., 2019 18 Cell line-unstimulated 1-3 mg ~100/sample 
Dong et. al., 2017 19 Cell line-stimulated 2 mg 1800 

Cell line-unstimulated 5 mg 343 
Heterogeneous tissue 5 mg 197 

Jedrychowski et. al., 2011 20 Heterogeneous tissue 10 mg 845 
 

Prior to conducting this study, to ensure that our sample-preparation and pY capturing strategy is reliable and 
comparable to similar studies. We benchmarked our method and compared it to other studies. Using the two-step 
enrichment strategy used in this study we were able to pull down ~1400 pY sites from 1mg of EGF or vanadate-
treated HeLa cells. Since the number of pY sites identified in the PDX models were limited, we did not intend to 
use this data for subtyping samples. Instead, once the proteotypes were identified by using the total proteome 
analysis, pY phosphosites were compared across proteotype groups to identify differential pY sites. 

5. The genetic backgrounds between NSCLC patients from the European ancestry (Nature. 2014, 543-550; 
Nat Genetics 2016, 607) and East-Asian ancestry (Nat Genet. 2020, 52:177; Cell. 2020 182:226; Cell. 
2020,182:245) are quite different. For example, their transcriptome subtypes are different (Nature. 2014, 
543-550; Nat Genet. 2020, 52:177). The authors should provide the ethnic information of the human subjects 
and compared their data with the proper patients. 

We agree with the reviewer that ethnic background can provide us with an additional dimension to view whether 
differences seen are a consequence of difference in ethnicity background. However, at our institution (University 
Health Network, Toronto, Canada) and generally in Canada, patient ethnicity data is not systematically collected 
in the medical record, as there was no standard or reliable approach to record patient ancestry. 

6. For tyrosine phosphoproteome, did the authors identify the substrates in RTK/RAF/RAS pathways, which 
are frequently altered in NSCLC? The authors need clearly present this information for each sample in their 
manuscript. 
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We agree with the reviewer that since the tumor-associated RTK/RAS/RAF phosphoproteome is frequently 
altered in NSCLC this information is relevant and would improve our study. To address this concern, we have 
included a new excel sheet in Supplementary Table 10 (pY functional category) where all phosphosites are 
grouped into their functional category of receptor tyrosine kinases (RTK), phospho-tyrosine kinases (PK-Y), 
phosphokinases (PK), proteins with phosphotyrosine binding domains (SH2/PTB), signaling proteins, and others. 
Here, the relative signal for each case and per proteotype has been color coded and additionally the raw 
signals can also be viewed. We have also provided information per peptide for pathway involvement based on 
KEGG and Reactome, cellular component based on GO annotation (GOCC), and protein family based on 
Panther family (pfam), and whether these might be part of a protein complex based on Corum protein complex. 

7. A compelling advantage of PDX models is that they can be used for drug efficacy test. The authors 
nominated some proteotype-specific drug target based on the enrichment pathways from proteome and pY 
proteome data, but without any experimental validation. I do not think such analysis could provide 
convincing information. 

This comment is akin to comment 2 of reviewer #1. We agree on the importance of testing therapeutic predictions 
in the PDX models, which will require extensive and likely collaborative efforts among lung cancer researchers. 
This is a major motivation for our timely study. To address the reviewer’s concern, we have added new data, 
which demonstrate the pre-clinical utility of the PDX models related to receptor tyrosine kinases (RTKs) and 
tyrosine kinase inhibitors (TKIs). We also modified our analysis to use the DepMap screens to identify the highest 
value sensitivities including sensitivities that matched differentially expressed proteins of our proteotypes.  These 
new data are described in the revised manuscript as indicated above in our response to question 3 from 
Reviewer #3. 

8. For potential biomarker identification, what is the rationale for 4-fold difference in expression? What is the 
frequency of each protein occurred in the samples? The authors should provide more information for the 
potential biomarkers. Validation in clinical samples is also necessary. What is the potential application of 
these biomarkers? 

We thank the reviewer for this comment and regret that this information was not clearly conveyed in the original 
manuscript.  The goal of selecting markers for the proteotypes was to identify a smaller set of proteins that could 
be used to survey external cohorts in order to stratify them according to our defined proteotypes. A smaller 
number of markers was sought in order to be compatible with targeted approaches for detection such as 
immunohistochemistry (IHC) or parallel reaction monitoring MS.  To identify a smaller subset, we used a 4-fold cut-
off among the identified significantly altered proteins, a grouping that considered variance, frequency, and fold 
change. A fold-difference cut-off has been shown to be a reliable and reproducible method with more resistance 
to outliers 21. Previous efforts have demonstrated that with a fold-change difference >4 in TMT-acquired 
proteome data the correlation of MS signal to western blot intensity is very high, with a Pearson r between 0.8-
121. This is perhaps because the higher the fold difference the higher the likelihood that it will surpass technical 
and technological limitations that introduce noise in different surveying methods i.e., percent stromal 
contamination, method/machine variation/differences, and detection sensitivity. In this manuscript, we used 
proteotype markers defined by the 4-fold parameter in order to successfully survey two independent clinical 
NSCLC cohorts of ~100 patients each for ‘clinical validation’ (Supplementary Fig. 5). These markers successfully 
grouped the external patient cohorts in what we defined as our proteotypes, which matched the bona fide  
subtypes identified in the original studies, demonstrating the clinical utility of these signature protein markers. We 
further used these markers to assign proteotypes to DepMap LUAD and LUSC cell lines as a rationale to identify 
proteotype sensitivities to drugs and knockdown/knockouts in the DepMap dataset (Supplementary Fig. 5). 

To address the reviewers’ concerns, we have included an additional tab to Supplementary Table 9-proteotype 
biomarkers that includes all proteotype markers along with information on frequency, significance, fold change, 
and localization. We have further modified the text of the manuscript to describe our rationale for the strategy: 
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Results, page 13: 

In order to identify protein signatures that could be used to define the proteotype of primary tumors, we considered 
only proteins significantly differentially expressed (≥4-fold) in proteotypes and detected in at least 50% of cases 
(Supplementary Fig. 4) (Supplementary Table 9). This threshold was established based on evidence that measurements 
of proteins with this magnitude of change were found reproducible and reliable, and with a high correlation rate 
between MS and western blot signals (Pearson’s r=0.8-1) 40.  

 

9. The PDX models were from severely compromised immunodeficient mice, which were significantly 
different from the human cancer microenvironment. The authors analyzed some mouse proteome features 
(defined them as stromal) among the proteotypes in their manuscript. However, this mouse proteome is 
fundamentally different from real stroma in human. I do not think such analysis could reflect the real human 
tumor microenvironment. 

We agree with the reviewer’s comment that the tumor microenvironment of the NOD-SCID mice is different than 
that of patients. This is a limitation of our model that we further acknowledge in our revised discussion as follows:  

An obvious drawback of our method was the use of subcutaneous implantation of patient tumors in NOD-SCID mice 
that have a compromised immune system. NOD-SCID mice have a reduced innate immunity and nearly no adaptive 
immunity74,75. Although, these immunodeficient features are necessary to prevent tumor rejection, this limits the 
scope of stromal differences that would usually be present in an immune-healthy individual. This also makes NOD-
SCIDs not the ideal model for testing of immuno-modulatory treatments.  

While these drawbacks exist, the intact part of the immune system of these models and the murine origin of the 
stromal component, allows us to clearly see differences among two of our proteotypes, LUAD1 and LUAD3, which 
highlight the influence of tumor signaling can have on modulating immune components of the tumor cells or of the 
mouse. 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I appreciate the authors’ efforts to address my suggestions and the amount of work that has gone into 

the revision. However, I still believe that the identification of “unique proteotypes”, as stated in the 

title of the manuscript, should be accompanied by a discovery-and-validation approach in terms of 

NEW actionable vulnerabilities. In this revised version, the information about the value of blocking 

active targets, as identified in the proteomic survey, is limited to two questionable instances: i) 

response to the EGFR inhibitor afatinib in a PDX harbouring EGFR amplification (something expected, 

based on several reports from the clinic; see, among others, Toffalorio et al, J Thorac Oncol 10:392-

396, 2015, PMID: 25611230); ii) lack of response to the FGFR inhibitor BGJ398 in PDXs with FGFR1 

amplification in the absence of protein overexpression (again, this is not a new piece of evidence: see, 

for example, Aggarwal et al, J Thorac Oncol 14:1847-1852, 2019, PMID: 31195180; Bogatyrova et al, 

Eur J Cancer 151:136-149, 2021, PMID: 33984662). 

 

By grouping lung cancer cell lines with available proteomic and pharmacologic annotation into 

proteotypes, the authors propose a series of proteotype-specific sensitivities, including a top set of 

candidate drugs based on the effect size of their effect on cell line viability (Supplementary Figure 6F). 

It is felt that a proof-of-concept study in vivo using representative PDXs with relevant proteotypic 

features should be conducted to improve the conclusiveness and translational relevance of the 

dataset. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have responded appropriately to all of the reviewers' comments including providing 

additional experimental data and substantial editing of the manuscript as requested by the reviewers. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors improved their manuscript according to my comments. However, some key issues are not 

satisfactorily or convincingly addressed, especially on the technical parts of mass spectrometry data 

processing and quantification analysis. The details of mass spectrometry data processing are still 

ambiguous, which is difficult for data quality evaluation and the community reproducibility. They 

should provide more details to fit the standards of mass spectrometry-based proteomics data report. 

In addition, the quality control for the PDX samples and phosphotyrosine data need be carefully 

evaluated. The samples with low human tumor cell composition or little pY sites quantified should be 

removed prior to data analysis, or more evidence should be provided to justify the reliability of doing 

so. 

 

1. The PDX proteome is the mixture of human and mouse proteins. The detailed number of proteins 

belong to human, mouse or shared by human and mouse was now listed in the revised manuscript. 

However, the authors did not show the details of which kinds of proteins/peptides were used/selected 

for further data analysis (normalization across samples, missing value, etc.). Without the details, the 

community can hardly reproduce the results of this manuscript. 

2. According to Fig 4B, the human tumor cell composition across samples was ranged between 20-

70%. The samples with low human tumor cell composition should be removed before data analysis 

due to the large interference or noises. For example, multi-omics analysis for large scale clinical tumor 

tissues were all based on the tumor purity at least higher than 50% in CPTAC’s previously studies 

(Cell. 2020 Jul 9;182(1):200-225; Cell. 2019 Oct 31;179(4):964-983; Cell. 2016 Jul 28;166(3):755-



765.). 

3. In the question 4, the authors did not respond to the critical question on how they integrated the 

proteome data and tyrosine phosphoproteome data from different quantification strategies. The data 

processing method and the quantitative standard was very different between the TMT labeling and the 

label-free quantification method. 

4. Even though the authors claimed their method and phosphotyrosine result was comparable to other 

published studies with limited amount of sample resources, the data quality of phosphotyrosine 

proteome in this study appears to be relatively low, especially for the samples with less than 100 pY 

sites quantified. The quantification reliability would be significantly interfered by these low quality 

phosphotyrosine data, such as the results in Fig 5G-H, Fig 6, Fig 7C, and Fig 7F. The samples with few 

quantified pY sites should be removed before statistical analysis, or the authors need provide evidence 

to justify the reliability for including these samples. 

5. The authors conducted the pharmacological exploration by using their protein signatures in cell line 

data of DepMap project in the revised manuscript. However, the results acquired in cell line data could 

not really reflect the potential drug efficacy in the PDX model. 

6. Since the authors also agreed that the tumor microenvironment of the NOD-SCID mice was 

different than that of patients. The results in Fig. 8 on the differential stromal composition of LUAD in 

PDX samples are not informative or even misleading. The authors should not present the results in 

this way. 



 

 

Reviewer #1, expert in PDX models for lung cancer (Remarks to the Author):   

I appreciate the authors’ efforts to address my suggestions and the amount of work that has gone into 
the revision. However, I still believe that the identification of “unique proteotypes”, as stated in the title 
of the manuscript, should be accompanied by a discovery-and-validation approach in terms of NEW 
actionable vulnerabilities. In this revised version, the information about the value of blocking active 
targets, as identified in the proteomic survey, is limited to two questionable instances: i) response to 
the EGFR inhibitor afatinib in a PDX harbouring EGFR amplification (something expected, based on 
several reports from the clinic; see, among others, Toffalorio et al, J Thorac Oncol 10:392-396, 2015, 
PMID: 25611230); ii) lack of response to the FGFR inhibitor BGJ398 in PDXs with FGFR1 amplification 
in the absence of protein overexpression (again, this is not a new piece of evidence: see, for example, 
Aggarwal et al, J Thorac Oncol 14:1847-1852, 2019, PMID: 31195180; Bogatyrova et al, Eur J Cancer 
151:136-149, 2021, PMID: 33984662).  

By grouping lung cancer cell lines with available proteomic and pharmacologic annotation into 
proteotypes, the authors propose a series of proteotype-specific sensitivities, including a top set of 
candidate drugs based on the effect size of their effect on cell line viability (Supplementary Figure 6F). 
It is felt that a proof-of-concept study in vivo using representative PDXs with relevant proteotypic 
features should be conducted to improve the conclusiveness and translational relevance of the 
dataset. 

Response: Our most significant discovery, captured accurately in our title was the discovery of novel 
proteotypes with prognostic impact. Our findings support our overarching contention that in the future NSCLC 
patients may be stratified and treated according to proteotype. No other published report on NSCLC primary or 
PDX models has been able to draw such an impactful conclusion. 

However, Reviewer #1 has requested that we complete pre-clinical testing to validate new targets in the PDX 
models, which was not the purpose of our study. We appreciate the reviewer’s request on new studies in vivo 
using our models, but with due respect, we feel such request is truly excessive, unreasonable and unfair, as a 
truly impactful report of such studies requires the scale that will be worthy of a separate new manuscript and 
will not fit within the limits of the current manuscript. We strongly believe that conducting large-scale drug 
screens on PDXs should be a multi-institutional collaborative effort among lung cancer researchers, probably 
at the scale of TCGA and requiring a large amount of new funding.  As far as we are aware, and we are ready 
to be corrected otherwise, our manuscript constitutes the largest multi-omic profiling data on a NSCLC PDX 
cohort, including the first such report on detailed proteomics profiling and analysis of the proteome of these 
tumors, similar in scale (sample number) to those recently published using patient samples. The results are 
novel including proteotypes with survival differences among the already more aggressive (i.e. engrafting) group 
among other interesting findings. These proteotypes were further validated in multiple external cohorts and 
potential targets were predicted, which will be focus of future studies. We also wish to point out that in the 
multi-omic studies on lung cancer cohorts published recently in Nature Communications (PMID: 31395880) 
and Cell (PMID: 32649877, PMID: 32649874, PMID: 32649875), the investigators also did not provide 



  

functional validation or validation of claimed novel targets. The testing of new therapeutic hypotheses in our 
PDX models would not provide additional validation or invalidation of the prognostic impact of our newly 
discovered proteotypes. Therefore, we believe the additional works requested are outside of the scope of this 
study.  

We agree with Reviewer #1’s recognition of the important need for new treatments in NSCLC. However, the 
purpose of our study was to deepen our understanding of NSCLC biology through the generation and 
characterization of a large PDX collection that we expect will help to facilitate the formulation and testing of 
new therapeutic hypotheses. In this light, we have revised the manuscript to ensure we have not overstated 
the identification or validation of identified candidate targets. In the revised manuscript we have deleted 
references to “candidate targets and drug sensitivities” from the Abstract and Introduction and added a 
concluding sentence to the introduction: “These findings represent new insights into lung cancer biology and 
suggest that the further characterization of NSCLC proteotypes in NSCLC models including our PDX collection 
may be an approach to test emerging therapeutic hypotheses.” 

  

Reviewer #3, expert in lung cancer genomics/subtypes and therapeutics (Remarks to the 
Author):  
The authors have responded appropriately to all of the reviewers' comments including 
providing additional experimental data and substantial editing of the manuscript as requested 
by the reviewers. 
Comment: We greatly respect the reviewer’s understanding and appreciation of our work and 
manuscript.  
 
Reviewer #4, expert in proteomics (Remarks to the Author):  
The authors improved their manuscript according to my comments. However, some key issues are not 
satisfactorily or convincingly addressed, especially on the technical parts of mass spectrometry data 
processing and quantification analysis. The details of mass spectrometry data processing are still 
ambiguous, which is difficult for data quality evaluation and the community reproducibility. They 
should provide more details to fit the standards of mass spectrometry-based proteomics data report. 
In addition, the quality control for the PDX samples and phosphotyrosine data need be carefully 
evaluated. The samples with low human tumor cell composition or little pY sites quantified should be 
removed prior to data analysis, or more evidence should be provided to justify the reliability of doing 
so. 
 
Response to overall remark: 
With due respect, we were truly surprised by the reviewer’s comment that the level of technical details 
regarding proteome data is ambiguous and does not fit “standards of mass spectrometry-based proteomic data 
report.”  To justify that our reported data do indeed meet or surpass current standards, we have broken down 
these technical details into several categories (proteome measurement technique, data quality assurance, 
normalization methodology, report of number of identified proteins, and report of data exclusion from analysis) 
and compare our presentation of this information to the 3 Cell papers referred to by this reviewer (2020 
182:200-25; 179:964-83; 166:755-65.). To summarize, the level of technical details shared in our manuscript is 
either on par or more extensive than these other papers. Please see table below for a detailed comparison: 
 

 

 

 



  

A. Proteome measurement technique: 
Mirhadi et al. (the 
manuscript under 
review) 

Zhang 2016 Clark 2019 Gillette 2020 

In main text: Tandem 
mass tag (TMT)-based 
quantitative MS analysis 
of PDX tumors was 
undertaken 
(Supplementary Fig. 2A). 
 
Further extensive details 
regarding tissue 
homogenization, 
trypsinization, labeling, 
HPLC fractionation and 
MS parameters are 
disclosed in methods 
section. 

Proteomics measure-
ments used isobaric tags 
for relative and absolute 
quantitation (iTRAQ; 
Ross et al., 2004) in 
conjunction with offline 
liquid chromatography 
fractionation via high-pH 
reverse-phase liquid 
chromatography (RPLC) 
and online RPLC with 
high-resolution tandem 
MS to provide broad 
coverage for peptide and 
protein identification and 
quantification. 

Technique used not 
disclosed in main text. 
  
In methods: 
Desalted peptides from 
each sample were 
labeled with 10-plex TMT 
(Tandem Mass Tag) 
reagents (Thermo Fisher 
Scientific). 

Tandem mass tags 
(TMT)-based isobaric 
labeling was used for 
precise relative 
quantification of proteins, 
phosphosites, and acetyl 
sites. 

Conclusion: All 3 CPTAC papers, like ours, are very brief in describing the proteome-based technique used 
in their study. Zhang et al., 2016 shared their fractionation method in the main text whereas in our 
manuscript as well as Clark 2019 and Gillette 2020 shared these details in Methods. 

 

 
B. Data Quality Assurance 

Mirhadi et al. (the manuscript 
under review) 

Zhang 2016 Clark 2019 Gillette 2020 

For data quality assurance, a 
replicate sample pair in the same 
experimental group and two pairs of 
replicates samples split into 
different experimental groups were 
analyzed. The technical replicates 
provided a readout for fidelity of the 
normalization method and technical 
robustness. A strong linear 
relationship between the replicates 
was seen for each pair (R2 ≥0.94) 
(Supplementary Fig. 2E). PCA 
verified that samples did not cluster 
based on experimental group or 
isobaric labels (Supplementary Fig. 
2F-G). 

We used clustering, principal-
component analysis (PCA) and 
statistical tests to identify any 
significant batch effects 
associated with the site of 
analysis (a detailed comparison of 
within-site, between-site, and 
between-sample measurement 
variability and the process used to 
merge the JHU and PNNL data 
are given in Figure S1). As shown 
in Figure S1C, the median 
coefficient of variation (CV) 
between measurements at the 
two sites was 16%. 

No quality 
control 
results/plots 
are reported. 

Excellent 
reproducibility 
and data quality 
were maintained 
across the entire 
dataset (Figures 
S1C– S1F). 
 

Conclusion: In terms of data quality assurance, our study was more extensive in terms of study design, 
presentation, and explanation. Our study, in addition to having the control references which the other studies 
had, also had tumor replicates ran in different TMT groups to ensure data quality. These technical replicates 
clustered together and had a Pearson r of 0.99. Gillette et al 2020 study only briefly mentions that they had 
“excellent data quality” and the figures the presented to show this show a technical rep mean with Pearson r 
of 0.91, lower than ours. They showed this using the reference samples, which are used to normalize and 
are expected to have very similar values.  Clark et al., 2019 did not discuss data quality assurance and 



 

Zhang et al., 2016 data quality were only concerning the lack of batch affect between the two hospitals the 
samples were collected from. 
 

 
C. Normalization 

Mirhadi et al. (manuscript under 
review) 

Zhang 2016 Clark 2019 Gillette 2020 

Total Proteome Data Normalization 
Intra-TMT experiment group 
normalization: samples were 
normalized to the sample with the 
maximum sum intensity of each TMT 
experiment group. Briefly, sum intensity 
of all protein for each sample was 
measured. The sample with the 
maximum intensity in each TMT group 
was identified. A conversion factor is 
calculated which is then multiplied by all 
proteins of that sample.  
Inter-TMT experiment group 
normalization: to normalize TMT 
groups to each other, internal reference 
scaling method was used as previously 
described 92.  Briefly, the control 
channels containing the pool of tumors 
(channel 126 and 131 of each batch) 
within each TMT experiment were 
averaged and used to create reference 
values per protein per each batch. The 
reference values for each protein in 
each TMT group were then averaged 
(geometric mean), and scaling factors 
calculated for each protein to adjust its 
reference value to the geometric mean 
value was measured. These scaling 
factors were then used to adjust the 
summed reporter ion intensities for each 
protein in the remaining eight 
experimental samples in each TMT 
experiment.   
For tumor/stroma content 
normalization, briefly the sum intensity 
of human proteins was calculated, then 
the average of these sums was 
measured. A conversion factor was then 
calculated to equalize total human 
protein signal across samples. Same 
approach was used to equalize the 
stromal content among PDX samples 
with mouse proteins. Refer to 
Supplementary Table 8 for fully 
normalized Table.  

We used the 
relative 
abundance 
measuremen
ts for each 
protein in the 
32 patient 
samples 
analyzed at 
both JHU 
and PNNL to 
normalize 
across the 
two analysis 
sites 
 
 
 
 
 
 
 
 
 
 
 
 
 

Before 
performing 
any 
downstream 
analysis, we 
applied batch 
correction on 
global and 
phosphoprot
eome 
abundance to 
remove the 
technical 
difference 
between 
different TMT 
10-plexes. 
An R tool, 
ComBat, with 
tumor/normal 
status 
adjustment 
was applied 
to remove 
batch effects 
(Johnson et 
al., 2007).  

It was assumed that for every 
sample there would be a set of 
unregulated proteins or 
phosphosites that have 
abundance comparable to the 
common reference (CR) sample. 
In the normalized sample, these 
proteins, phosphosites, or 
acetylsites should have a log 
TMT ratio centered at zero. In 
addition, there were proteins, 
phosphosites, and acetylsites that 
were either up- or downregulated 
compared to the CR. A 
normalization scheme was 
employed that attempted to 
identify the unregulated proteins 
phosphosites or acetylsites, and 
centered the distribution of these 
log-ratios around zero in order to 
nullify the effect of differential 
protein loading and/or systematic 
MS variation. A 2-component 
Gaussian mixture model-based 
normalization algorithm was used 
to achieve this effect. The two 
Gaussians (mi1;si1) and (mi2;si2) 
for a sample i were fitted and 
used in the normalization process 
as follows: the mode mi of the 
log-ratio distribution was 
determined for each sample 
using kernel density estimation 
with a Gaussian kernel and 
Shafer-Jones bandwidth. A two-
component Gaussian mixture 
model was then fit with the mean 
of both Gaussians constrained to 
be mi, i.e., mi1 = mi2 = mi. The 
Gaussian with the smaller 
estimated standard deviation si = 
min ( , ) was assumed to 
represent the unregulated 
component of 
proteins/phosphosites/acetylsites, 
and was used to normalize the 
sample. The sample was 
standardized using (mi), by 



  

subtracting the mean mi from 
each 
protein/phosphosite/acetylsite 
and dividing by the standard 
deviation. 

Conclusion: In terms of description of the normalization methodology used, Zhang 2016 and Clark 2019 
were very brief. Gillette et al, explains their methodology although some explanations remain vague. We 
employed a 3-step normalization strategy which is fully detailed in the methods section. 
 

 
D. Reporting of quantified proteins 

Mirhadi et al. (the 
manuscript under review) 

Zhang 2016 Clark 2019 Gillette 2020 

MS analysis of 133 PDX 
samples uncovered a total 
of 13284 proteins using a 
strict false discovery rate 
(FDR) of 0.01 of which 6830 
were identified as human, 
4423 as mouse, and 2031 
that did not contain unique 
human or mouse peptides 
and therefore were assigned 
as human/mouse (Fig.  4A) 
(Supplementary Table 8). 
 

A total of 9,600 
proteins were 
identified with high 
confidence in all 
tumors, and the 
relative abundances 
in each tumor are 
given in Table S2. 

Proteomics and 
phosphoproteomics 
analyses identified a total 
of 11,355 proteins and 
42,889 phosphopeptides, 
respectively, of which 
7,150 proteins and 20,976 
phosphopeptides were 
quantified across all 
samples (STAR Methods). 

Number of identified 
proteins not reported. 
 

Conclusion: In reporting identified proteins we are more detailed than the 3 CPTAC papers. 
 

 
E. Exclusion of data from downstream analysis 

Mirhadi et al. (the manuscript under 
review) 

Zhang 2016 Clark 2019 Gillette 2020 

Proteome hierarchical clustering 
Proteome hierarchical clustering was 
performed by using the subset of tumor 
(human) proteome quantified in at least 70% 
of samples in the clustering (Fig.  4C, Fig.  
5A-B) and using the subset of stromal 
(mouse) proteome quantified in at least 
70% of samples in the clustering (Fig.  7A-
C). Protein expressions are log2 transformed 
and z-score across respective samples. For 
sample (column-wise) and protein (row-wise) 
clustering, Pearson correlation distance with 
average linkage was used using Perseus 
software default parameters. 
Principal component and volcano analysis 
Only a subset of tumor proteome quantified in 
all samples were used for principal 
component analysis. Only the two 
components with the highest proportion of 
variance were picked for plotting the PCA plot 
using Perseus software. Volcano analysis 
was performed for proteins with detection 
in at least 70% of samples with indicated 

Functional 
analyses and 
proteome-
transcriptome 
associations 
were restricted 
to 3,586 
proteins 
observed and 
quantified in all 
169 HGSC 
samples used 
for protein 
functional 
analyses and 
where sample 
variability 
(signal) 
exceeded 
technical 
variability 
(noise) in the 
merged data 

The 3,567 
(50%) most 
variable 
global 
proteins 
without 
missing 
values were 
analyzed by 
CancerSubty
pes (Xu et 
al., 2017) for 
consensus 
clustering 
(Monti et al., 
2003) of 
tumor 
subtypes. 
Specifically, 
80% of the 
original 
sample pool 
was 

 To ensure that poor 
quality or questionable 
samples were not 
included in the final 
dataset, we performed 
principal component 
analysis (PCA) on the 
RNA-seq, global 
proteome and 
phosphosite expression 
data. In the input to PCA 
(Figure 7A), we excluded 
any genes, proteins and 
phosphosites (in the 
respective datasets) 
missing in 50% or more 
of the samples. For each 
dataset, we plotted the 
95% confidence ellipse 
in the PC1 versus PC2 
plot for the tumor and 
normal groups. Any 
samples falling outside 



  

FDR cut offs and s0=0.1 using Perseus 
software. 
Analysis of Differentially Expressed 
Proteome and Pathway 
Permutation based FDR corrected two tailed 
student’s t-test (q-value<0.05) between one 
subtype compared to others in that histology 
type was performed on the entire proteome 
(human, mouse and ambiguous) 
(Supplementary Table 9). These proteins 
along with associated experimental 
expression and q-values were inputted in 
ingenuity pathway analysis 99. Resulting 
enriched pathways (Supplementary Table 9) 
were further filtered based on significance p-
value<0.05 and activity score as determined 
by IPA z-score> or < 0 (Fig.  6A-B, Fig.  8E). 

(Table S2), 
calculated as 
described in the 
Supplemental 
Experimental 
Procedures. 

randomly 
subsampled 
without 
replacement 
and 
partitioned 
into three 
major 
clusters 
using 
hierarchical 
clustering, 
which was 
repeated 500 
times 
(Wilkerson 
and Hayes, 
2010). 

these ellipses were 
deemed to be outliers. 
Samples that were 
outliers in all three 
datasets (RNA-seq, 
proteome and 
phosphosite) and had 
inconsistent pathology 
reviews were excluded. 
Only sample C3N.00545 
satisfied all exclusion 
criteria and was removed 
from the final dataset. 

Conclusion: Our study reports which proteins are used for every downstream analysis in both the Methods 
section and the main text. Zhang 2016, reports that all subsequent analysis was limited to proteins identified 
across all samples. Clark 2019 only shares their exclusion criteria regarding consensus clustering and not 
other subsequent analysis. Gillette et al. only mention their criteria for excluding one of their samples but 
does not disclose which proteins were used for each subsequent analysis. The information we have 
provided is more transparent than these other studies. 
 

  
 
1. The PDX proteome is the mixture of human and mouse proteins. The detailed number of proteins 
belong to human, mouse or shared by human and mouse was now listed in the revised manuscript. 
However, the authors did not show the details of which kinds of proteins/peptides were used/selected 
for further data analysis (normalization across samples, missing value, etc.). Without the details, the 
community can hardly reproduce the results of this manuscript. 
 
Response:  We appreciate Reviewer #4’s efforts to consider our manuscript. However, we regret that 
Reviewer #4 has missed these points that were in fact included in the method section of original manuscript, 
which were then moved to the main text based on this reviewer’s comments.  
 
Firstly, the number of proteins (Human, Mouse and Human/Mouse) was included in the original submission 
and was in fact one of our main figure panels (Fig 4A). Regarding the comment on sharing relevant technical 
details disclosing which proteins were used for subsequent analyses, all such details were included in the 
methods section of our first submission . Given the comments we received from Reviewer #4 in the first round 
of revision, we moved all relevant technical details necessary to reproduce the results into the main text of the 
manuscript. For any subsequent downstream analysis, we have disclosed details of which proteins (human, 
mouse, or human/mouse) and our missing value cut-offs. These details were and are included in the 
manuscript. See for example: 
“Unsupervised hierarchical clustering based on human/tumor proteins identified in at least 70% of 133 PDX 
tumors revealed … (Fig. 4C).” 
“Non-murine proteins detected in at least 70% of samples were compared between all LUAD and LUSC 
samples (FDR< 0.001) (Error! Reference source not found.4D).” 
“The subset of PDX human tumor proteome proteins identified in at least 70% of cases, was subjected to 
unsupervised consensus clustering.” 



  

“PCA of tumor/human proteome identified in all PDXs further supports the identification of three distinct 
proteotypes (Supplementary Fig. 3E), designated LUAD1, LUAD2 and LUAD3.”  And so on…. 
 
 

2. According to Fig 4B, the human tumor cell composition across samples was ranged between 20-
70%. The samples with low human tumor cell composition should be removed before data analysis due 
to the large interference or noises. For example, multi-omics analysis for large scale clinical tumor 
tissues were all based on the tumor purity at least higher than 50% in CPTAC’s previously studies 
(Cell. 2020 Jul 9;182(1):200-225; Cell. 2019 Oct 31;179(4):964-983; Cell. 2016 Jul 28;166(3):755-765.). 
 
Response: We regret that the reviewer has misinterpreted our results.All tumors had cellularity greater than 
50%. Indeed, using histological approaches used in the cited CPTAC studies, a typical PDX has >70% tumor 
cellularity. The 20-70% signal is referring to the total sum intensity of human proteins, which is not identifiable 
by all human bulk tumor samples in studies referred to by Reviewer 4.  
As written in the manuscript: “To assess tumor-stroma composition, the fraction of total ion intensity 
corresponding to human, mouse, and human/mouse proteins was determined for each PDX sample (Fig.  4B) 
(Supplementary Table 8). This provided a unique opportunity to correct for discrepancies in tumor (i.e. human) 
cell composition across samples, which ranged between 20-70% (Fig.  4B) (Supplementary Table 8).” 

Further, we would like to remind that a strong feature of our study is the fact that we were able to discern 
stromal components from tumor cells. This is because during serial passage in the mouse the human stroma 
becomes replaced by murine components. Consequently, our cross-
species, MS analysis of human-tumor vs. murine-stroma allows us to 
account for the tumor/ stromal signals before further analysis and 
hence there was no need to exclude samples. 

To demonstrate that our normalization was effective, consider 
PHLC113-X2, which had the lowest tumor-human proteome signal 
across all PDXs in our cohort at 22.5%. Interestingly, this model was a 
passage 5 PDX and we also had PHLC113-X1 in our cohort, which is 
a passage 3 sample of the same primary tumor with 63% tumor/human 
signal. The stromal-mouse content of this PDX has increased with 
increased serial passaged, which is an expected phenomenon. Once 
the normalization to equalize tumor signal is performed you can see 
that these 2 samples cluster together among LUSCs, supporting that 
(1) our normalization strategy is effective, and (2) because of our ability 
to perform this normalization, tumors with low human signal can 
remain in cohort for further analysis. 
 
3. In the question 4, the authors did not respond to the critical question on how they integrated the 
proteome data and tyrosine phosphoproteome data from different quantification strategies. The data 
processing method and the quantitative standard was very different between the TMT labeling and the 
label-free quantification method. 
Respectfully, the fact is that we did not integrate the proteome and phosphotyrosine data and never claimed 
we did. A fully integrative analysis would have required integration of quantified kinase/phosphatase and 
cognate peptide-phosphopeptide levels, such as we have reported previously,1 but which were not attempted 

 
1 Karisch R et al. (2011) Global proteomic assessment of the classical protein-tyrosine phosphatome and "Redoxome". Cell 146:826-
40 PMID: 21884940; Tong J et al. (2017) Integrated analysis of proteome, phosphotyrosine-proteome, tyrosine-kinome, and 
tyrosine-phosphatome in acute leukemia. Proteomics 17:10.1002,  PMID: 28176486; Jin LL et al. (2010) Measurement of protein 
phosphorylation stoichiometry by SRM mass spectrometry. J Proteome Res 9:2752-61, PMID: 20205385 



  

in this study. In the manuscript, the phosphotyrosine analysis was independently performed in a supervised 
manner, by comparing pY-peptides that had been sorted according to proteotype assignment.  
 
4. Even though the authors claimed their method and phosphotyrosine result was comparable to other 
published studies with limited amount of sample resources, the data quality of phosphotyrosine 
proteome in this study appears to be relatively low, especially for the samples with less than 100 pY 
sites quantified. The quantification reliability would be significantly interfered by these low quality 
phosphotyrosine data, such as the results in Fig 5G-H, Fig 6, Fig 7C, and Fig 7F. The samples with few 
quantified pY sites should be removed before statistical analysis, or the authors need provide evidence 
to justify the reliability for including these samples. 
 
Response:  Respectfully, we remind that in our original response to the first round of reviews we provided a 
comparison of our results with comparable published studies that refute this statement. Regarding the 
suggestion that ‘low quality’ data for samples with lower identifications should be removed from analyses, we 
disagree because this would introduce bias in our analysis. Such filtering was not done in similar published 
studies (PMID: 18083107, PMID: 25670172, PMID: 26356563). In addition, we did not attempt analyses that 
would be affected by samples with fewer identifications. Instead, pY data were used in supervised analyses, 
i.e. after stratification according to proteotype. These included: supervised clustering (Figure 5G-H); differential 
analysis among the groups, which did not include samples with no value (Figure 6C-D); and in Figure 7C we 
are simply looking at EGFR pY site signals.  Lastly, we note that there is no Figure 7F.  
 
5. The authors conducted the pharmacological exploration by using their protein signatures in cell line 
data of DepMap project in the revised manuscript. However, the results acquired in cell line data could 
not really reflect the potential drug efficacy in the PDX model. 
 
Firstly, we note that the fact that the DepMap LUAD and LUSC cell lines were effectively stratified by using our 
proteotype signatures was an overlooked interesting finding. Secondly, we did not claim that the DepMap 
analysis would “reflect the potential drug efficacy in the PDX model,” which would have been an over 
interpretation that we do not agree with. Rather, we simply noted that the gene suppression vulnerabilities 
associated with the proteotype-organized DepMap lines was aligned with our proteomics analyses of activated 
pathways and processes performed on the PDX models. We believe this is a legitimate application of the 
DepMap utility to interrogate our PDX data for candidate vulnerabilities.   
 
6. Since the authors also agreed that the tumor microenvironment of the NOD-SCID mice was different 
than that of patients. The results in Fig. 8 on the differential stromal composition of LUAD in PDX 
samples are not informative or even misleading. The authors should not present the results in this 
way. 
We agree that no cancer model is 100% accurate in its recapitulation of primary tissue and agree with the fact 
that NOD-SCID mice are immune compromised. However, our results clearly show that the intact aspects of 
the immune system in these mice are showing distinct proteome differences between two of the LUAD 
proteotypes. We have reported but not overstated this observation as follows: “Interestingly, LUAD1 and 
LUAD3 had distinctive stromal proteomes (Fig.  8C), with LUAD3 significantly associating with cluster iii (Fisher 
exact t-test p <0.00001) and LUAD1 significantly associating with cluster i and ii (Fisher exact t-test p 
<0.00001). LUAD2 did not significantly correlate with either of these clusters (Fisher exact t-test p>0.05), 
suggesting it does not establish or maintain a distinct stromal composition.”  Our observation is meaningful as 
it indicates that the two different proteotypes recruit distinct stromal components. In fact, the relevance of and 
validation for our observations have already been demonstrated in patients in Gillette et al 2020, wherethey 
reported two immune types among their LAUD samples ‘hot’ and ‘cold’. In our comparative analysis, in the 
Discussion section, we noted that these two LAUD proteotypes overlap with what was considered as hot vs 
cold in the Gillette et. al. study as follows: “In LUAD patients, immune “hot” and “cold” subtypes were recently 
described 13, where the hot subtype was identified by their stronger signature for  B and T cells and 
macrophages, while also presenting stronger signatures for immune inhibitory cells and processes 13. We 



 

observed that the hot subtype corresponds to the LUAD3 proteotype. This illustrates the potential for the PDX 
system to reveal immune system dynamics and potential therapeutic opportunities.” 



Reviewers' Comments: 

 

Reviewer #4: 

Remarks to the Author: 

In the response, the authors made a direct comparison between their methods and CPTAC methods. 

Indeed, there is fundamental difference between the proteomics dataset in their study and those of 

CPTAC. Different from the pure human samples that CPTAC used, PDX samples used in this study are 

mixtures of human and mouse proteins. The method for tyrosine phosphoproteome is different from 

CPTAC, either. Key information in this study, particularly in data analysis, is missing. 

-This manuscript lacks the detail how to define human unique, mouse unique or human/mouse 

proteins. Mass spec data only provide the information of peptide sequences rather than intact protein 

sequences. In many cases, there could be human unique, mouse unique or human/mouse shared 

peptides that are assigned to the same “protein”. What if both human and mouse unique peptides 

belonging to the same protein were identified? This is key information for any further data analysis. 

-There is no detail for “tumor/stroma content normalization (line 735)”. Why the authors “average” 

the intensity sums? How the “conversion factor” was calculated? 

-In supplementary fig 2B-D, how did the authors calculate the correlation values between mRNA and 

protein? It is unclear how the authors selected the genes/proteins for CNV-RNA, CNV-protein and 

RNA-protein correlation analysis. Were human unique, mouse unique or human/mouse proteins were 

used in these analyses? Or other factors were considered for protein/gene selection? 

-It is unclear whether human unique, mouse unique or human/mouse pY peptides were used for 

tyrosine phosphorylation analysis. There is a lack of detail for the data analysis in Supplementary Fig. 

2H-I. What is the exact “maximum signal” used (Line 253)? What conclusion could be made by such 

analysis? It is not clear how ”differential” analysis was conducted for tyrosine phosphorylation data, 

either. Was any statistical method used? 

-The authors only used fold-change as cutoff for lung cancer biomarker analysis, which is a lack of 

statistical analysis (line 286). 

- The authors mentioned “a typical PDX has >70% tumor cellularity” in their response. The tumor 

cellularity of each PDX need be provided in the manuscript to avoid confusion. 

- The tumor microenvironment of the NOD-SCID mice was fundamentally different from cancer 

patients. Since NOD-SCID mice is immunodeficient, I’m not convinced by their conclusion that PDX 

system has the potential to reveal immune system dynamics (line 470). 

In addition, there are some other issues. 

-The authors described they used orbitrap analyzer to detect the CID fragmented ions, which is unable 

to be realized on an Orbitrap Fusion Lumos (line 669). 

-There are some inconstancies to present the data. For example, a total of 58 LUAD PDX models were 

acquired according to fig 2A, but the authors claimed to use 59 LUAD PDX samples for consensus 

clustering (line 229). 



REVIEWER COMMENTS 
 
Reviewer #4 (Remarks to the Author): 
 
In the response, the authors made a direct comparison between their methods and 
CPTAC methods. Indeed, there is fundamental difference between the proteomics 
dataset in their study and those of CPTAC. Different from the pure human samples 
that CPTAC used, PDX samples used in this study are mixtures of human and mouse 
proteins. The method for tyrosine phosphoproteome is different from CPTAC, either. 
Key information in this study, particularly in data analysis, is missing. 

We would like to share that the purpose of the comparison we prepared was not to compare 
methodology but rather to compare the level of details shared on different aspects of methodology based 
on the reviewer‟s comment that the technical details in our study were not on par with the community. 

 

1) This manuscript lacks the detail how to define human unique, mouse unique or 
human/mouse proteins. Mass spec data only provide the information of peptide 
sequences rather than intact protein sequences. In many cases, there could be 
human unique, mouse unique or human/mouse shared peptides that are assigned to 
the same “protein”. What if both human and mouse unique peptides belonging to the 
same protein were identified? This is key information for any further data analysis. 

We thank the reviewer for this important question that addresses an important aspect of our data 
analysis, and we agree this needs to be more clear for the reader. As stated on page 31 in our 
manuscript, we utilized MaxQuant‟s „Unique+Razor‟ strategy to deal with quantifying the mixed species 
data stemming from our PDX analysis. We were remiss in not fully describing in sufficient detail how 
MaxQuant handles these types of mixed species samples. To address this concern, we have added a 
more thorough description of this analysis protocol to the methods section page 31 as follows: 

“There is a high degree of sequence redundancy in the proteome. In bottom-up proteomics, this leads to 
situations where often peptides cannot be uniquely associated with one protein of origin. This issue is 
further complicated in mixed species PDX samples where some shared peptide sequences are identical 
in human and mouse. In MaxQuant‟s „Unique+Razor‟ strategy, this complexity is addressed by using 
unique peptides to form distinct protein groups (i.e. human only or mouse only) and with razor (i.e. 
shared) peptides contributing only to the protein group with the greater number of peptide identifications 
(PMID: 27809316). In situations where there are no unique peptides for a protein, the shared-peptides 
are still used to form a protein group but since the specie-of-origin is ambiguous, they are designated as 
Human/Mouse.”  

This strategy leads to 4 situations: 

Human 
Unique 

Peptides 

Mouse 
Unique 

Peptides 

How Razor peptides are assigned to a protein group: 

Yes Yes Unique peptides used to report a quantification value for each human 
and mouse protein. Razor peptides contribute only to the protein group 
with largest number of peptide identifications.  

Yes No Unique and Razor peptides all used to report a value for Human 
protein group; no mouse reported. 

No Yes Unique and Razor peptides all used to report a value for Mouse protein 
group; no human reported. 

No No All razor peptides are used to report a Human/Mouse value for protein 

 



2) There is no detail for “tumor/stroma content normalization (line 735)”. Why the 
authors “average” the intensity sums? How the “conversion factor” was calculated? 

We thank the reviewer for this comment and pointing out a lack of clarity. To address this, we 
have modified our method section to describe the tumor/stroma normalization in more detail as follows: 

 
“For tumor/stroma content normalization, To normalize tumor/stroma content, two conversion factors, 

one for human-specific proteins and one for murine-specific proteins, were calculated for each sample.  
To calculate each conversion factor, the sum of total intensities of human-specific proteins for all samples 
was divided by the number of samples. Then, for each sample, this average value was divided by the 
sum of total intensities of human-specific proteins for that sample, yielding its conversion factor. The 
same strategy was employed to calculate a conversion factor for mouse-specific proteins. Normalized 
protein group values were calculated as the product of measured intensities times the sample-specifc 
conversion factor. Refer to Supplementary Table 8 for normalized values.”  
____________________________________________________________________________________ 
 

3) In supplementary fig 2B-D, how did the authors calculate the correlation values 
between mRNA and protein? It is unclear how the authors selected the 
genes/proteins for CNV-RNA, CNV-protein and RNA-protein correlation analysis. 
Were human unique, mouse unique or human/mouse proteins were used in these 
analyses? Or other factors were considered for protein/gene selection? 

We thank the reviewer for pointing out this lack of clarity. We have corrected this shortfall by 
modifying the manuscript as follows: 

“To address the postulate that the proteome is largely unpredictable based on abundance of genes and 
transcripts, pairwise correlations were made between CNV, mRNA and protein26. These analyses were 
applied for genes/gene products represented at the protein level, and by using only human proteins 
that were quantified in all samples.  The resulting Spearman’s Rho values were positive but low in 
magnitude. The median Spearman’s Rho was 0.33 for CNV-mRNA, 0.22 for CNV-Protein, and 0.3 for 
mRNA-Protein (Supplementary Table 8) (Supplementary Fig. 2B-D).” 

 

4) It is unclear whether human unique, mouse unique or human/mouse pY peptides 
were used for tyrosine phosphorylation analysis. There is a lack of detail for the data 
analysis in Supplementary Fig. 2H-I. What is the exact “maximum signal” used (Line 
253)? What conclusion could be made by such analysis? It is not clear how 
“differential” analysis was conducted for tyrosine phosphorylation data, either. Was 
any statistical method used? 

We appreciate this comment and regret the confusion surrounding our pY analysis. All pY sites 
were used for all downstream analyses. This was reasonable since all analyses were done is a 
supervised manner based on proteotype assignments. The purpose of Supplementary Figure 2H-I was to 
show a normal distribution for identified pY modifications based on both maximal signal and number of pY 
peptides, which then allowed us to employ statistical methods that rely on the assumption of a normal 
distribution. The details about maximal signal calculation and statistical methods used are shared in the 
revised methods section as follow: 

“A total of 564 and 484 pY sites were quantified in LUAD and LUSC samples, respectively. Tyrosine 
phosphorylation was analyzed in a supervised manner for each proteotype. pY signals for each pY site 
were divided by the maximum signal measured for that site to present the values in a relative manner 
compared to the maximum value of 1. Then, the average of relative values for each pY site was used for 
supervised clustering according to proteotypes. Phosphopeptides significantly different by two-tailed 



student t-test (p-value <0.05) in one proteotype compared to the others were determined, and used for 
Ingenuity Pathway Analysis (Supplementary Table 10)

99
.” 

 

5) The authors only used fold-change as cut-off for lung cancer biomarker analysis, 
which is a lack of statistical analysis (line 286). 

We regret that our analysis protocol was confusing and have revised this section accordingly. To 

identify subsets of proteotype signature proteins we used a 4-fold cut-off to filter the identified significantly 

differential expressed proteins (FDR<0.05). This approach considers variance, frequency, and fold 

change. To make this point clearer, we have reworded the text as follows: 

“In order to identify protein signatures that could be used to define the proteotype of primary tumors, we 

considered only significantly differentially expressed proteins as defined by having a more than 4-fold 

difference (≥4-fold, FDR<0.05) between proteotypes, and detected in at least 50% of cases 

(Supplementary Fig. 4) (Supplementary Table 9). This threshold was established based on published 

evidence that measurements of proteins with this magnitude of change were found reproducible and 

reliable, and with a high correlation rate between MS and western blot signals (Pearson‟s r=0.8-1)
42

.” 

 

6) The authors mentioned “a typical PDX has >70% tumor cellularity” in their 
response. The tumor cellularity of each PDX need be provided in the manuscript to 
avoid confusion. 

To satisfy the request of reviewer we have added a column to Table S8-proteome experimental 
details, where cellularity of each PDX is indicated. The tumor cellularity has been assessed by Dr. Tsao 
(co-senior author), who is a practicing pathologist. 

 

 

7) The tumor microenvironment of the NOD-SCID mice was fundamentally different 
from cancer patients. Since NOD-SCID mice is immunodeficient, I’m not convinced 
by their conclusion that PDX system has the potential to reveal immune system 
dynamics (line 470). In addition, there are some other issues. 

We thank the reviewer for pointing out our need to further clarify this important issue. We 
note that NOD-SCID mice, such as we used in our study have a deficiency in the PRDKC gene 
and a polymorphism in the SIRPA gene. Consequently, they lack an adaptive immune 
response, and macrophages are less able to eliminate human cells (Yang et al. 2018, PMID: 
29983387). However, innate immune cells including natural killer cells and macrophages are 
still intact. Even if less efficient in some aspects of their functions, macrophages, monocytes, 
and NK cells persist and can be recruited to the tumor‟s microenvironment in NOD-SCID mice. 
Our data clearly show that the stromal proteomes of LUAD1 and LUAD3 are discernably 
different with evidence for activation of acute phase response signaling in LUAD3. However, we 
agree with the reviewer that our general comment on immune system dynamics was an 
overstatement based on these specific data and have therefore deleted line 470 in the revised 
manuscript. 

 

 

 



8) The authors described they used orbitrap analyzer to detect the CID fragmented 
ions, which is unable to be realized on an Orbitrap Fusion Lumos (line 669). 

We regret this error and thank the reviewer for pointing this out the mistake in our technical 
description. Indeed the ion trap detector was used for the CID method, and we have therefore modified 
the text as follows: 

“pY peptides enriched from 125 PDX samples and 3 normal mixed tissues were analyzed by using an 
Orbitrap Fusion Lumos instrument. Samples were loaded by using EVOSEP tips and analyzed with 44 
min MS runs as we have described previously (Krieger et al. 2019, PMID: 30938160). Two separate LC-
MS/MS runs were performed on every sample, the first one collected collision-induced dissociation (CID)-
MS/MS spectra and the other one collected higher-energy collision dissociation (HCD)-MS/MS spectra. 
The parameters used for MS data acquisition of CID-MS/MS and HCD-MS/MS spectra were: (1) MS: top 
speed mode, cycle time = 3 s; scan range (m/z) = 400–2,000; resolution = 60,000; AGC target = 400,000; 
maximum injection time = 100 ms; MS1 precursor selection range = 700–2,000; included charge states 
2–6; dynamic exclusion after n times, n =1; dynamic exclusion duration = 10 s; precursor priority = most 
intense; maximum intensity = 1E+20; minimum intensity = 50,000; (2) CID-MS/MS: isolation mode = 
quadrupole; isolation window= 0.7; collision energy = 35%; detector type = Ion Trap; Ion Trap Scan Rate 
= Rapid, AGC target =10,000; maximum injection time = 35 ms; Multistage Activation = True, Neutral loss 
mass = 97.9763; microscan =1;  (3) HCD-MS/MS: isolation mode = quadrupole; isolation window = 0.7; 
collision energy = 30%; stepped collision energy (%) = 5; detector type = orbitrap; resolution = 15,000; 
AGC target = 50,000; maximum injection time = 35 ms; micros-can= 1. 

9) There are some inconstancies to present the data. For example, a total of 58 LUAD 
PDX models were acquired according to fig 2A, but the authors claimed to use 59 
LUAD PDX samples for consensus clustering (line 229). 

We thank the reviewer for pointing out this typographical error. In fact, we used 58 LUAD PDX for 
consensus clustering, and this has been corrected in the manuscript as follows: 

 

“Among the 58 LUAD samples, which included two technical repeats, consensus clustering revealed 3 
groups with high stability (Fig. 5A, Supplementary Fig. 3A-D).” 

 



Reviewers' Comments: 

 

Reviewer #4: 

Remarks to the Author: 

In this revised manuscript, the authors have now seriously and directly responded to the key 

questions regarding the technical details of proteomics data analysis. The improvement of these 

details is critical for reproducing and evaluating their results for the community. I suggest the authors 

make additional discussion on the technical limitations of mass spectrometry-based proteomics 

approach for the study of mixed species samples, such as PDX models, since there is obvious technical 

unsoundness. This is especially helpful to the readers without the expertise in proteomics technology. 



Response to reviewers’ comments 
NCOMMS-21-04521D 
 
Reviewer #4: “In this revised manuscript, the authors have now seriously and directly 
responded to the key questions regarding the technical details of proteomics data 
analysis. The improvement of these details is critical for reproducing and evaluating 
their results for the community. I suggest the authors make additional discussion on 
the technical limitations of mass spectrometry-based proteomics approach for the 
study of mixed species samples, such as PDX models, since there is obvious technical 
unsoundness. This is especially helpful to the readers without the expertise in 
proteomics technology.” 
 

We thank the reviewer for helping us better communicate the technical details of our study. We 

agree there are technical challenges and limitations associated with the analysis of mixed 

species samples. To address the reviewer’s suggestion, we have added the following statement 

to the discussion: 

The MS-based proteome platform analyzes samples that have been digested into peptides. 

Consequently, those peptides that differ between mouse and human can be used to support the 

conclusion that the cognate protein from that species has been identified.  However, given the 

high degree of sequence identity between the two species, shared peptides are frequently seen 

that cannot be distinguished as mouse or human. In these instances, based on common 

strategies used in the field, signals from shared peptides may be attributed to the protein with 

the greater number of species-specific peptide identifications. This approach supports 

determination of mouse/stroma and human/tumor content in PDX samples. However, for any 

given protein, complementary analyses such as immunocytochemistry and targetted, 

quantitative MS may further inform on localization and relative abundance. 


