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Supplementary table 1 | Key vaccine factors and immunological response  

Vaccines Adjuvanted Vaccine type Serum 
antibody 
response 

Mucosal 
antibody 
response 

Cellular response Route of 
administ
ration 

Duration of 
Protection (in 
healthy adults) 

Duration of 
Protection (in 
immuno-
compromised) 

 

BCG (tuberculosis) No live attenuated yes unclear T-cell mediated 
immunity 

i.c. NA (efficacy against 
TB varies from 0% to 
80%) 

ND 1,2 

Cholera no inactivated whole-cell (O1 
monovalent and O1/O139 bivalent) 
(Dukoral®, Shanchol®) 

yes yes   oral 6 months – 2 years 
(protective efficacy 
50% over 3 years)  

Vaccination safe 
in HIV  

3-5 

Cholera no live attenuated yes yes  oral 5 years contraindicate 5,6 

Dengue no live attenuated, chimeric yellow 
fever-dengue strain (Dengvaxia®) 

yes  yes i.m.  contraindicated 7,8 

Diphtheria toxoid  Yes/no Toxoid  yes unclear  i.m. 10 years  9-11 

Ebola no (rDNA, replication-incompetent) 
recombinant Adenovirus / Vaccinia 
Virus encoding glycoprotein of Ebola 
virus  

yes  yes i.m. unknown ND  

Ebola no recombinant vesicular stomatitis virus 
encoding ebolavirus surface 
glycoprotein (rVSV∆G‐ZEBOV‐GP, live) 

yes  yes i.m. unknown ND  

Hepatitis A  yes Inactivated yes no memory B cell 
and T cells 

i.m. > 35 years Lower AB 
response in HIV  

12-15 

Hepatitis A  live attenuated vaccine (based on H2 
or LA-1 HAV strains and 
manufactured as well as mainly used 
in China or India) 

yes  memory B cell 
and T cells 

i.m. > 15 years  16,17 

Hepatitis B (HBsAg) no Protein yes yes induction of 
memory B and T 
cells 

i.m. > 10 years hampered in HIV, 
chronic renal 
disease 

18-20 

Hib PS  polysaccharide yes yes  i.m. 10 years  21 

Hib glycoconjugate  polysaccharide –protein yes yes  i.m. 10 years  22 

Human papilloma 
virus HPV 

yes Virus-like particles yes yes  i.m. ~ 8 years  23 

Influenza, seasonal Yes/no inactivated yes unclear CD4+ and CD8+ T-
cell immunity 

i.m.  < 1 year  24-26 

Influenza, seasonal no Subunit yes  unclear CD4+ and CD8+ T-
cell immunity 

i.m.  < 1 year   
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Vaccines Adjuvanted Vaccine type Serum 
antibody 
response 

Mucosal 
antibody 
response 

Cellular response Route of 
administ
ration 

Duration of 
Protection (in 
healthy adults) 

Duration of 
Protection (in 
immuno-
compromised) 

 

Influenza, seasonal no Live attenuated yes  yes + (CD8+) CD4+ and 
CD8+ T-cell 
immunity 

i.n. < 1 year   

Influenza, 
pandemic (H1N1) 

yes inactivated, subunit yes   CD4+ and CD8+ T-
cell immunity 

i.m. unclear   

Japanese 
encephalitis 

yes Inactivated, vero-cell based (SA 14-
14-2 viral strain)* 

yes  no yes i.m. 10 years after first 
booster 

 27,28 

Measles no Live attenuated yes  yes CD8+ i.m. Long-lasting  29-32 

Meningococcal PS no polysaccharide yes  no  i.m. 1-2 years  33,34 

Meningococcal 
conjugates 

No (Menveo, 
Menactra),  
yes (Menjugate, 
Meningitec) 

PS-protein conjugated to 
Corynebacterium diphtheriae CRM 
protein (Menjugate®, Menveo®, 
Menactra®)  

yes no  i.m. 5 years  35 

Meningococcal 
conjugates 

Yes (NeisVac-C), 
no (Nimenrix, 
MenQuadfi) 

PS-protein conjugated to tetanus 
toxoid carrier protein (NeisVac C®, 
Nimenrix®, MenQuadfi®) 

yes no B-Cell Memory i.m. Long-lasting (after 
priming) 

 36 

Meningococcal B* yes Protein (recombinant protein & outer 
membrane vesicles Bexsero®; 
recombinant lipidated protein 
Trumenba®) 

yes no yes i.m. > 4 years  37,38 

Mumps no Live attenuated yes 
 

yes  i.m.   32 

Pertussis, whole 
cell 

yes Inactivated yes 
 

yes  i.m.   39,40 

Pertussis, acellular yes Protein yes no CD4+ i.m. < 10 years  40,41 

Pneumococcal PS no PS yes yes  i.m. 5 years ~ 3 years 42 

Pneumococcal 
conjugates 

yes PS-protein (d-carrier protein, tetanus 
toxoid, or diphtheria toxoid protein) 

yes yes  i.m. n.d. n.d. 42,43 

Polio Sabin no Live attenuated yes yes  oral 10 years  44 

Polio Salk no Inactivated yes yes  i.m. 10 years   

Rabies no Inactivated yes 
 

 i.m. 5 years   

Rotavirus no Live attenuated (Rotarix®); live 
reassortant human-bovine (RotaTec®) 

not 
relevant 

yes  oral 1-3 years   

Rubella No Live attenuated yes yes  i.m. > 10 years   

Tetanus toxoid Yes/no Toxoid yes 
 

IgA + i.m. > 10 years  45 

Tic-borne 
encephalitis (TBE) 

yes Inactivated yes  yes  i.m. 5 years Shorter in elderly 
subjects 

 

Typhoid no Live attenuated (Vi-negative strain) yes yes yes  oral 3-5 years   

Typhoid PS no PS (+/- conjugated) yes no yes  i.m. 3-5 years   
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Vaccines Adjuvanted Vaccine type Serum 
antibody 
response 

Mucosal 
antibody 
response 

Cellular response Route of 
administ
ration 

Duration of 
Protection (in 
healthy adults) 

Duration of 
Protection (in 
immuno-
compromised) 

 

Varicella 
(chickenpox) 

no Live attenuated yes 
 

CD4+ i.m. life-long   

Varicella (zoster) no Live attenuated yes 
 

CD4+ i.m. > 4 years   

Varicella (zoster) yes Inactivated (shingrix®) yes  yes i.m. > 4 years   

Yellow fever no Live attenuated yes 
 

yes  s.c. life-long  46 

SARS-Cov-2* no modRNA (e.g. BNT162b2)  yes yes Th1-based CD4+ 
and CD8+ 
response 

i.m. unclear  47-50 

 no modRNA in lipid nanoparticle 
dispersion (e.g. mRNA-1273) 

yes yes Th1-based CD4+ 
and CD8+ 
responses 

i.m. unclear  51-53 

 no Non-replicating viral vector (e.g. 
ChAdOx1-s, Ad26.COV2-S) 

yes yes Th1-based CD4+ 
and CD8+ 
responses 

i.m. unclear  54-61 

Abbreviations: i.c., intracutaneously; i.m., intra muscular; s.c., subcutaneous; i.n., intranasal; modRNA, nucleoside-modified messenger RNA; NA, not applicable; PS, polysaccharide; VLP, virus-like 
particle 
* Other vaccine types available in different countries. Note: This table may not be exhaustive and includes currently licenced vaccines in various countries. Additional information based on 62-72. 
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Supplementary table 2 | Adjuvants used in different licenced vaccines 

Type Adjuvant (components) Examples of vaccine  Aspects in immunosuppression 

Oil-in-water 
emulsions  

Exact molecular mechanisms unknown  
- antigen dose sparing effect 
- enhances diversity of induced antibodies 
- indirect stimulation of immune response (activation of APCs via stimulation of TNF-alpha, IL-1B, CCL)73; 
localized and short impact on immune system74 

MF59 (Squalene; 
polysorbate 80; sorbitan 
trioleate) 

Seasonal influenza, pandemic 
influenza, avian influenza  

induces the release of extracellular ATP as 
endogenous stress signal75 resulting in 
activation of innate immune pathways; 
adjuvant effects may be retained in CD4-
deficient conditions76 

AS03 (Squalene; alpha-
tocopherol polysorbate 
80) 

pandemic influenza, avian 
influenza 

effective in organ transplant recipients26,77; 
not effective to overcome 
immunosuppression on rituximab therapy78; 
enhanced IgG memory B-cell response in 
HIV79; no increased short-term risk in MS80 

AF03 (squalene; 
polyoxyethylene 
cetostearyl ether; 
mannitol) 

pandemic influenza81 not 
marketed 

82 

Aluminium salt Exact molecular mechanisms unknown  
- possible depot mechanism (unclear)  
- enhanced uptake by APCs 
- Direct stimulation of innate immune receptors (interaction with surface membrane lipids of dendritic 
cells)83-85 

Crystalline aluminium 
oxyhydroxide (aluminium 
hydroxide) 

Japan B encephalitis, 
meningococcus C86, 
tetanus/diphtheria/pertussis, 
HAV 

Adjuvant effect not hampered by IL-1beta 
inhibition86 

Aluminium phosphate Tetanus/diphtheria, pertussis, 
and poliomyelitis; Haemophilus 
influenzae  

 

Aluminium potassium 
phosphate (alum) 

Tetanus, diphtheria, pertussis, 
influenza 

 

Aluminium 
hydroxyphosphate sufate 

HPV (Gardasil®), HAV (Vaqta®) 87 

Toll-like receptor 
agonists 

Trigger of innate immune response; activation of TLRs results in secretion of IL-10, TNF-α, and IL-6 of type 1 
interferon response 

AS01 (MPL; liposome, QS-
21), TLR4 agonist 

Herpes zoster subunit88-90  

RC529 (chemical mimetic 
of MPL), TLR4 agonist 

HBV (Supervax®) combined 
with alum91 

 

AS04 (MPL; aluminium 
hydroxide), TLR4 agonist 

HPV (Cervarix®); Hepatitis B 
(Fendrix®)92 

 

Virosomes Liposomes with surface exposed vaccine antigens, uptake in APCs, cell activation, boost antibody response, 
deliver immune activators directly to the B cells 73,93-95 

Unilamellar liposomes Influenza (Inflexal V®), 
Hepatitis A (Epaxal®)96-98 
COVID-19 vaccine 99 

 

Matrix M (purified saponin 
nanoparticles from 
Quillaja saponaria Molina) 

COVID-19 vaccine; Plasmodium 
vaccine, influenza vaccine 
(phase 3 studies)100-102  

 

Abbreviations: APC=antigen presenting cells; TNF-alpha=tumor necrosis factor-alpha; IL-1B=interleukin 1b; CCL=chemokine C-C 
ligands ; TLR= Toll-like receptor; MPL = monophosphoryl lipid; QS-21 = Quillaja saponaria Molina, fraction 21;  
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Supplementary table 3 | Disease-modifying treatment and vaccination 

Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Direct depletion/cytolysis 

Ocrelizumab 
First dose is split into 2 
separate infusions of 300mg 
i.v. 2 weeks apart.  
The following doses of 600 
mg i.v. will be given once 
every 6 months. 

2017 US 
2018 EU 

26 days CD20 B-cell depletion. 
Causes fast and nearly complete B- cell elimination 
from circulation but lesser in lymph node follicles, 
marginal zone of spleen, and peritoneal cavity103. 
 
Continuous immunosuppression 

Serious infections: 
1.3% ocrelizumab versus 2.9% in interferon beta- 1a- 
treated group (RR-MS) 104 
Upper respiratory tract infections more common in 
ocrelizumab-treated group compared to placebo (PP-
MS)105. 
Serious infections seen in treatment of rheumatoid 
arthritis patients (opportunistic infections, such 
mycobacterial infections, hepatitis B reactivation, 
histoplasmosis, pneumocystis pneumonia, VZV 
pneumonia or candida infections)106 have not been 
observed in MS studies so far. 
PML (case report), case series of carry-over PML107 
 

CD20 antibody dependent B-cell and 
CD20 pos. T-cells (subgroup) cytolysis 
 
Causes fast and nearly complete B- 
cell elimination from circulation but 
lesser in lymph node follicles, 
marginal zone of spleen, and 
peritoneal cavity. 
 
Potential reduction of IgG 
(hypogammaglobulinaemia)104,108 

Rituximab 
Various schemes  
Start with two-1000 mg i.v. 
doses separated by 2 weeks 
Individual maintenance 
treatment with 1000mg i.v. 
every 6 months or 
depending on B-cell counts 

1997 
(NHL) 
2006 
(RA) 

18 (8-20) 
days 

Anti- CD20 B-cell depletion. 
Causes fast and nearly complete B- cell elimination 
from circulation but less so in lymph node follicles, 
marginal zone of spleen, and peritoneal cavity 103. 
 
Continuous immunosuppression 

61.4% mild- to- moderate infection- associated 
events (Phase I study, RR-MS) 109. 
About 70% infections (Phase II, RR-MS) in both 
groups (Rituximab vs. placebo). No opportunistic 
infections 110. 
No serious AEs (Phase II and III, PP-MS) 111. 
Most common infection-associated adverse events 
(>10% in the rituximab group) found in a Cochrane 
review (RR-MS) were nasopharyngitis, upper 
respiratory tract infections, urinary tract infections 
and sinusitis. Among them, only urinary tract 
infections (14.5% versus 8.6%) and sinusitis (13.0% 
versus 8.6%) were more common in the rituximab 
group 112,113. 
 

CD20 antibody dependent B-cell and 
CD-20 pos. T-cells (subgroup) 
cytolysis 
 
Causes fast and nearly complete B- 
cell elimination from circulation but 
less so in lymph node follicles, 
marginal zone of spleen, and 
peritoneal cavity. 
Potential reduction of IgG 
(hypogamma-globulinaemia) 
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Ofatumumab 
20 mg s.c. every 4 weeks 
after treatment initiation 
with 20 mg s.c. day 1, day 7, 
day 14  

2020 US 
2021 EU 

14 days Depletion of CD20 + B-cells and depletion of CD20 + T-
cells in blood and lymph-nodes like RTX/OCR but less 
depletion of marginal zone B-memory cells in spleen 
compared to RTX 114 
 
Continuous immunosuppression 

Increased risk of infections observed with other anti-
CD20 B-cell depleting therapies 
Potential increased risk of infections including 
serious bacterial, fungal, and new or reactivated viral 
infections (some fatal) in patients treated with other 
anti-CD20 antibodies. 
Rate of infections similar to teriflunomide. The most 
common infections reported were upper respiratory 
tract and urinary tract infections 115. 

CD20 antibody dependent B-cell and 
CD20 pos. T-cells (subgroup) cytolysis 
 
Causes fast and nearly complete B- 
cell elimination from circulation and 
lymph node follicles but with minor 
extent in marginal zone of spleen. 
 
Potential reduction of IgG 
(hypogammaglobulinaemia)108 
 

Inebilizumab: 
Initial dose is two single 
300 mg i.v. given 2 weeks 
apart. Subsequent doses 
(starting 6 months from the 
first dose) 300 mg i.v. every 
6 months 

2020 US 
EU 
pending 

18 days Precise mechanism of therapeutic effects in NMOSD is 
unknown but is presumed to involve binding to CD19 
present on pre-B and mature B lymphocytes causing 
depletion through antibody-dependent cell-mediated 
cytotoxicity. 

Continuous immunosuppression. 

An increased risk of infection was noted comparable 
to that observed with other B-cell-depleting 
therapies.  
Most common infections reported included urinary 
tract infection (20%), nasopharyngitis (13%), upper 
respiratory tract infection (8%), and influenza (7%). 
No confirmed cases of PML were identified in clinical 

trials. 116,117. 

CD19 antibody dependent B-cell 
depletion. 
 
Cell surface binding to B lymphocytes 
results in antibody-dependent cellular 
cytolysis. 
 
Potential reduction of IgG 
(hypogammaglobulinaemia)108 
 

Alemtuzumab 
2 or more treatment courses 
separated by a year. 
Cumulative dose first course 
60mg i.v., every following 
course 36 mg i.v. (12 mg 
each day of course) 

2013 EU 
2014 US 

4-5 days CD52 cell depletion 
Repopulation of lymphocytes, leading to long-term 
changes in adaptive immunity and rebalancing of the 
immune system 118. 
 
Intermittent immunosuppressive 

Infections more frequent compared to IFN-beta 1a 
treated patients: (majority mild to moderate). 
Upper respiratory tract and herpes infections were 
predominant. 
PML (case report). 
Listeria meningitis (case reports). 
Herpesvirus (incidence reduced by acyclovir 
prophylaxis (30 days after each treatment cycle) 119-

124. 
 

CD52 antibody dependent cellular 
cytolysis (T- and B-cells) 
Leukopenia and long lasting 
lymphopenia (T cells affected more 
than B cells)  
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Cladribine 
Weight dependent dose:  
2 treatment courses 
separated by a year with 2 
treatment cycles in each 
course. During each cycle 
daily oral application for 4 or 
5 days. The 2 cycles are 
separated by a month.  

2017 EU 
2019 US 

5.4 h Synthetic chlorinated deoxyadenosine (purine) 
analogue: 
Preferential accumulation of cladribine phosphates in 
cell types with a high intracellular ratio of 
deoxycytidine kinase to 5'-nucleotidases leading to 
sustained reduction of circulating T and B lymphocytes. 
Interferes with DNA synthesis and repair through 
incorporation into DNA and through inhibition of 
enzymes involved in DNA metabolism causing DNA 
strand breaks and ultimately cell death125. 
Induces apoptosis and depletion of B- and T-cells 
including non-proliferating cells 126 
 
Intermittent immunosuppression, immune 
reconstitution 
 

Incidence of infections was 48.3% with cladribine 
tablets and 42.5% with placebo, with 99.1% and 
99.0% rated mild-to-moderate. Herpes zoster 
infections developed in 20 (2.3%) cladribine-treated 
patients; all cases were dermatomal.  
Overall no significant elevated risk of infection127. 
The incidence rates of infections and infestations 
showed no clear relation to total dose received, with 
the exception of the herpes zoster. 
Infection rate higher with increased doses compared 
to other groups (4.8%-1.1%, placebo 2.0%)128. 
No cases of progressive multifocal 
leukoencephalopathy (PML)128. 

Reduced proliferation of B-and T-
lymphocytes 
 
Interference with lymphocyte 
proliferation 
 
Lymphopenia129 

Reduced proliferation 

Teriflunomide 
14 mg once daily p.o. 

2012 19-20 
days 

Dihydro-orotate dehydrogenase inhibitor (reduced de 
novo pyrimidine synthesis in fast dividing immune 
cells/autoreactive cells), antiproliferative 
(Salvage pathway for de novo pyrimidine synthesis still 
working 130. 
Does not affect dividing or resting cells 130,131. 
 
Possibly immunosuppressive 
 

No increased risk of infections.  
Single cases of appendicitis, bronchitis, pneumonia, 
Klebsiella sepsis, and UTI were reported. 
Neither PML nor other opportunistic infections 
related to the treatment 132. 
Single cases of combined HCV/CMV-infection and 
one intestinal TBC were considered not treatment 
related133. 

Interference with lymphocyte 
proliferation 
 
Leukopenia (neutropenia)  

 

Azathioprine 
Individual dosing 25-50 mg 
up to 3 times a day p.o.,  
2-4 mg/kg BW/d p.o. 
depending on leukocyte 
count (target 3500-4000/µl) 
and lymphocyte count 
(target 1000/µl) count 

1957 26 to 80 
min (3-5 
h 
metabolit
es) 
biological 
effect: 
24 h 134 

Purine analogue, antimetabolite (prodrug) 
Inhibition of purine nucleotide synthesis during RNA-
/DNA-synthesis 135 
Effect on Na(+)/H(+)-exchanger activity in dendritic 
cells 136. 
Induces apoptosis in stimulated T cells 137. 
 
Continuous immunosuppression 

Increased risk of bacterial, viral, fungal, protozoal, 
and opportunistic infections, including reactivation 
of latent infections. 

Reduced proliferation of B-and T-
lymphocytes. 
Interfering with the maturation and 
function of dendritic cells 
(DCs)/antigen-presenting cells linking 
innate and adaptive immunity 
 

Leukopenia and lymphopenia 
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Cyclophosphamide 
10-15 mg/kg body weight, 
repeated every 4-8 weeks 

1965 7 h Alkylating metabolites cause single and double-strand 
breaches in fast reproductive cells with consecutive 
reduction of CD4+ helper-cells and increased number 
of CD8+ suppressor-cells 138. 
 
Continuous immunosuppression 

Increased risk of infection (classical 
immunosuppressive agent). Exclude latent infections 
or laboratory changes in cellular and humoral 
immune parameters before application139. 
Infection was the most common side-effect (28% of 
patients with various autoimmune diseases, mainly 
SLE) but rarely required in-patient treatment (9% of 
the patients). No relationship could be found 
between the occurrence of infection and the dose of 
CYC or of GCS140. 

Reduced proliferation of B-and T-
lymphocytes 
 
Increase in CD8+-suppressor cells and 
a reduction in CD4+-helper 
cells 

Mitoxantrone 
5-12 mg/m2 body surface 
area i.v., every 1-3 months 

2000 9 days Topoisomerase inhibitor: 
Suppresses macrophages, B cells and T cells, with a 
preferential effect on helper subsets 141,142. 
Modulates astrocyte activity143. 
 
Continuous immunosuppression 

Frequent UTIs and upper airway infections 144. 
Cases of septicaemia, pneumonia and opportunistic 
infections. No heightened risk of viral infections144. 

Reduced proliferation of B-and T-
lymphocytes 
 
Suppresses macrophages, B cells and 
T cells, with a preferential effect on 
helper subsets 

Mycophenolate mofetil 
Off-label use in 
MS/NMOSD/MG 
1-3 g/d p.o. in two doses  

US 1995 
EU 1996 
(Kidney 
transplan
tation) 

17.9±6.5 
hours 

reversible, non-competitive inhibitor of inosine-5′-
monophosphate dehydrogenase; inhibition of de novo 
purine synthesis 

opportunistic infections, reactivation of latent viral 
infections, (herpes virus infections, polyomaviruses 
(JC, BK)) 

selective inhibition of DNA replication 
in T- and B-cells 

Anti-migratory effects 

Natalizumab 
300mg once per month i.v. 
2 x 150mg once per month 
s.c. 

2006 
s.c.: 2021 
(EU) 

16 days Anti VLA-4, selective adhesion molecule inhibitor: 
Prevents immune cells (T, B, and NK cells) from 
crossing blood vessel walls to reach affected organs 145. 
Induces lymphocyte apoptosis 146. 
 
Continuous local immunosuppression. 

Based on diminished immune surveillance in the CNS 
a broad spectrum of infections are possible 147,148. 
Main issue: PML (JCV-infection, recently increased 
risk in pooled cohort) 149,150. 
Pooled cohort: <1% (156 of 37 249) had PML.  
Anti‐JCV antibody‐negative patients (n=13 996): PML 
risk < 0.07 per 1000 patients. 
Anti‐JCV antibody‐positive patients (n=21 696): 
cumulative PML probability over 6 years was 2.7% 
with previous immunosuppressant use and 1.7% 
without. 
Without previous immunosuppressant use 
(n=18 616), annual PML risks per 1000 patients, 
ranged from  
0.01 in year 1 to 0.6 in year 6 (JCV-Ab-index < 0.9), 
0.1 in year 1 to 3.0 in year 6 (JCV-Ab-index > 0.90·to 
≤1.5);  
0.2 in year 1 to 10.0 in year 6 (JCV-Ab-index >1.5) 
151,152. 

Altered lymphocyte trafficking to CNS 
via blockade of alpha-4 subunit of the 
VLA-4 receptor 
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Fingolimod 
0.5 mg once/d p.o. 

2010 6 to 9 
days 
(9-10 
days) 

S1P1 modulator:  
Prevention of lymphocyte egress (mainly CCR7+CD4+ 
naive and central memory T cells) from lymph nodes 
153. 
 
Reversibly redistributes lymphocytes into lymphoid 
tissue, while preserving lymphocyte function  
Prevents naive and central memory T cells from 
circulating to non-lymphoid tissues such as the CNS  
Causes lymphoid cell retention in secondary lymphoid 
tissue  
Can exert neuroprotective effects by crossing the 
blood–brain barrier and binding to neuronal and glial 
cells 154.  
Alters the balance of NK-cell subsets 155. 
Could modulate remyelination 156. 
Increases astrocyte migration 157. 
 
Continuous immunosuppression 

No elevated risk of serious infectious adverse effects, 
including severe HSV infections 158. 
 
Incidence of VZV infections ranges from 7 to 11 per 
1,000 patient-years (versus 6 in 1,000 patient-years 
in the placebo group) 159 
 
Reports of single cases of cryptococcal brain and skin 
infections and PML cases [reviewed 147] 

Binding to S1P receptors prevents 
lymphocytes to exit lymph nodes 
Lymphocyte trapping in lymph node 
 
Lymphocyte redistribution  

Ozanimod 
0.92 mg once/d p.o. 

2020 19 h Selective S1P-receptor 1 and 5 modulator:  
Regulation of lymphocyte migration, regulation of 
survival, migration and differentiation of 
oligodendrocytes 160-162.  
Reversibly redistributes lymphocytes into lymphoid 
tissue, while preserving lymphocyte function.  
Prevents naive and central memory T cells from 
circulating to non-lymphoid tissues such as the CNS.  
Causes lymphoid cell retention in secondary lymphoid 
tissue. 
Ozanimod induced dose-dependent reductions in 
circulating B- and T-cell counts and differential effects 
on naive and memory CD4+ and CD8+ T cells and 
CD19+ B cells. 163,164. 
Can exert neuroprotective effects by crossing the 
blood–brain barrier and binding to neuronal and glial 
cells 165. 
 
Continuous immunosuppression. 

Infectious risk might be elevated due to reduction of 
peripheral lymphocyte count. 

Binding to S1-P receptor preventing 
lymphocytes from exiting lymph 
nodes 
Lymphocyte trapping in lymph node 
 
Lymphocyte redistribution  
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Ponesimod 
20 mg once /d p.o. 

03/2021 
US 
06/2021 
EU  

21.7 - 34 
h 

S1P1-modulator (S1PR1 > S1PR5) Infectious risk might be elevated due to reduction of 
peripheral lymphocyte count.  
No significant difference to teriflunomide treatment 
(nasopharyngitis, upper respiratory tract infection, 
herpetic infections) 166  

Binding to S1-P receptor preventing 
lymphocytes from exiting lymph 
nodes (naïve T cells and helper T cells 
> memory and cytotoxic T cells; 
partial sparing of regulatory T cells) 

Lymphocyte trapping in lymph node 
 
Lymphocyte redistribution167 

Siponimod 
2 mg once daily p.o. 
consider dose reduction in 
dependence of genetic 
status 

2019 US 
2020 EU  

56.6 h  Predominantly S1PR1and S1PR5 modulator Increased risk of infections. 
Monitoring for infections before treatment initiation 
and during treatment mandatory. 
Herpetic infections rate increased (treatment 4.6% 
vs. placebo 3.0%,  
Herpes zoster rate 2.5 vs. 0.7%). 
Single cases of cryptococcal meningitis. 
No PML-case so far, but single cases under other S1P 
receptor-modulators. 

Binding to S1P receptors preventing 
lymphocytes to exit lymph nodes 
Lymphocyte trapping in lymph node 
 
Lymphocyte redistribution  

Avoid live vaccines for weeks after 
stopping treatment. 
Vaccination may be less effective if 
administered during treatment. 
Discontinuation one week prior and 
until 4 weeks after a planned 
vaccination is recommended. 
 

Pleiotropic effects 

Interferon-beta: 
Interferon beta 1a i.m. (once 
a week) 
 
Interferon beta 1a s.c. (TIW) 
 
Interferon beta 1 b s.c. 
(every other day) 
 
Peg-Interferon beta 1 a s.c. 
or i.m. (once in 2 weeks) 

 
1996 
 
 
2002 
 
1993 
 
 
2014 

 
10 h 
 
 
50-60 h 
 
up to 5 h 
 
 
78±15 h 
(steady 
state) 

Immunomodulatory, pleiotropic immune effects: 
Inhibition of T-cell proliferation 
Increased T-suppressor cell activity 
Inhibition of pro‐inflammatory cytokines (TNF‐α, IFN‐γ) 
Induction of immunomodulatory cytokines IL-10 and 
TGF‐β 
Suppression of expression of HLA class II and adhesion 
molecules 
Blockade of metal-matrix proteinases/ chemokines 
Activating transcription of antiviral, antimicrobial, 
antiproliferative, and immunomodulatory genes 
Regulates the expression of a complex set of pro- as 
well as anti-inflammatory genes 168,169 
Continuous/pulsatile type 1 interferon receptor 
stimulation and downregulation 
 
Not immunosuppressive; anti-inflammatory; antiviral 
 

Type 1 interferons protect mammals against viral 
infections 170. 
 
Involvement of the interferon type I signaling 
defense against viral infections 171. 
 
No increased risk for infections. 
Treatment-associated leukopenia. 
Occasional local infections or abscess formation at 
injection site 172-176. 

Interaction with MHC II receptor 
Inhibition of antigen presentation 
Decreased INF-gamma production 
Leukopenia (lymphopenia in 
particular)  



 11 

Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Glatirameroids: 
20 mg (once a day) 
40 mg (3 times a week) s.c. 

1996 NA Immunomodulatory, 
pleiotropic immune effects: 
Th1 to Th2 cytokine shift 177. 
Increases regulatory CD8+ cells. 
Activation of FOXP3 leads to shift from CD4+CD25- T-
cells to regulatory CD4+CD25+T-cells 178 179. 
 
No immunosuppression 
 

HSV infections and vaginal candidiasis were 2% more 
frequent in patients treated with glatiramer acetate 
than in placebo-treated patients, whereas other 
infections, such as abscesses, cellulitis, boils, shingles 
or pyelonephritis, were rarer with glatiramer acetate 
treatment than with placebo. 
No opportunistic infections have been described. 

Th1 to Th 2 cytokine shift 
Inhibition of MHC II receptor 
 
Rare leukocytosis or mild leukopenia  

Dimethyl fumarate 
240 mg twice daily p.o. 

2013 1 h 
(MoMF) 

Pleiotropic: 
NRF2 activation 180; Downregulation of NFκB 
(transcription factors) 181; 
Protects against oxidative stress-induced cellular injury 
in neurons and astrocytes182  
Attenuating the activity of pro-inflammatory TH1 and 
TH17 cells by scavenging toxic oxygen metabolites180,181 

DMF does not exacerbate the risk of infection in 
patients with MS 183 
 
PML cases (MS- and psoriasis patients treated with 
DMF or fumaric acid esters, partly under 
combination therapy) [Reviewed 147] 

Enhancement of endogenous 
mechanisms to counteract oxidative 
stress 
Reduction of oxidative stress 
 
Potential leukopenia (lymphopenia)  

Diroximel fumarate 
462 mg twice/d p.o. 

2019 US 
2021 EU 

1 h See dimethyl fumarate See dimethyl fumarate; PML risk  See dimethyl fumarate 

Tocilizumab 
8mg/kg bodyweight i.v. 
every 4 weeks  

2007 US 
2009 EU 
(treatme
nt of RA) 

8-14 days 
in steady 
state 

IL-6 receptor blockade 

preventing interleukin-6 attaching to its receptors,  

Continuous immunosuppression 

risk of serious bacterial infection, skin and soft tissue 
infections, and diverticulitis was higher (TCZ vs. TNFi) 
 
In NMOSD upper respiratory tract infection and 
urinary tract infection were reported less often with 
TCZ compared to AZA 184. 
 

IL-6 inhibition may interfere with the 
normal immune response to new 
antigens 
(reduced B-cell differentiation with 
reduced immunoglobulin production) 

Satralizumab 
120mg s.c. every 4 weeks 
after loading dose of 120 mg 
week 0, 2 and 4 

US 2020 
EU 2021 

30 days inhibition of IL-6 receptor signalling by humanized anti-
interleukin-6 (IL-6) receptor monoclonal recycling 
antibody 

Continuous immunosuppression 

Rates of infection did not differ between 
satralizumab and placebo groups 185,186 
In general an increased risk of infections has been 
observed in patients treated with IL-6 receptor 
antagonists. 
Most common infections nasopharyngitis and 
cellulitis. 
 

IL-6 inhibition may interfere with the 
normal immune response to new 
antigens 
(reduced B-cell differentiation with 
reduced immunoglobulin production) 
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

Eculizumab: 
Induction dose 900 mg 
weekly i.v. for 4 weeks, 
maintenance dose 1200mg 
i.v. every two weeks  

2007 
PNH 
2017 MG 
2019 
NMO 

11.3 ± 
3.4 days 

Inhibition of terminal complement protein C5: 
preventing cleavage into pro-inflammatory protein C5a 
and protein C5b  

MoA associated increased risk of meningococcal 
infections. Vaccination reduces, but does not 
eliminate, the risk of meningococcal infections 
Increased risk of infection with Neisseria and 
capsulated germs/ bacteria.  
Awareness of Gonorrhoea. 
Upper respiratory tract infections and headaches 
were more common in the eculizumab group, 
serious infections 8% with eculizumab vs. 15% under 
placebo187. 

Protective rSBA titres varied for 
meningococcal serogroups and over 
time reflecting an early decline to 
even non-protective rSBA titres. 
These data highlight the importance 
of serologic analyses under chronic 
CI. Currently, re-vaccination with a 
tetravalent meningococcal conjugate 
vaccine every 3 years is 
recommended on chronic CI. 
However, re-vaccination on CI might 
further rely on serologic analyses, 
implying even early booster 
vaccinations similar to adults with 
(functional) asplenia188. 
 

Glucocorticosteroids 
Pulses with 500-2000 mg 
(methyl-prednisolone 
equivalent) i.v. on 3-5 
consecutive days 

1948 161±32 
min 
MP: 
plasma 1-
3 h 
biol. 18-
36 h 
Dexamet
hasone: 
plasma 
3.5 h 
biol. 36-
72 h 

Pleiotropic effects. Suppression of inflammation via 
induction of apoptosis and inhibition of immune-cell 
migration, reduction of pro-inflammatory cytokines  
189-191 
 
Dose dependent immunosuppressive 

Repeated pulse therapy, even at very high doses, 
does not increase the propensity to develop bacterial 
or fungal infections, but severe viral infections, such 
as varicella zoster virus (VZV) or herpes simplex virus 
(HSV), can develop 192 
Long-term continuous glucocorticosteroid 
administration, which is not typically used in the 
treatment of MS, is associated with bacterial, viral, 
fungal, and parasitic infections 193. 

Dose- and regime- dependent 
immunosuppressive to various 
degree 
 
Transient leukocytosis (increased 
neutrophils in particular)  
Lymphopenia  
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

IVIg 
Treatment initiation with 
2g/kg body weight i.v. 
divided on 5 days, repeat 
courses of 0,4g/kg body 
weight i.v. every 4 -6 weeks 

1981/ 
1990 

21-31 
days 

Various effects: 
Inhibition of complement-system, impact on B-cells 
and autoantibodies, influence on macrophages and T-
cells, modulation of cytokine-networks 194,195. 
 
 
Modulation of immune reactions at the level of T-cells, 
B-cells, and macrophages 
Interference with antibody production and degradation 
Modulation of complement cascade, Effects on 
cytokine network 196. 
Effects on B-cells, antibodies, and on the complement 
system. Influence on T-cells 
Influence on cell migration197. 

Transmission of possibly unknown infectious agents 
cannot be ruled out when using drugs deriving from 
biological material/human donors. 
Existing inactivation and elimination procedures 
might be of restricted value for non- or uncoated 
viruses198.  
Potential antiviral effects199. 

Stimulation and support of requested 
and inhibition of unwanted immune 
processes 
 

PE/IA 
5-8 treatment cycles 
(relapse treatment) 

1999 
200,201 

IgG Re-
distributi
on: 
1-3 %/h 
202 

Rapid removal of pathological mediators 
(autoantibodies, immune complexes, complement, and 
cytokines) from the circulation 203 

 
Intermittent immunosuppressive 

Invasive therapy, exposes the patient to the risk of 
infection, primarily through the central venous 
catheter but also via elimination of immunoglobulins 
or complement components 204.  
Catheter-associated complications range from 0.5% 
to 3.3% in patients with chronic hepatitis C, Guillain–
Barré syndrome or other neurological diseases 205-207.  
No plasmapheresis-associated infections were 
detected in 2,502 plasmapheresis sessions in a 
cohort of 335 patients (among which over 90% had 
neurological diseases) 208.  
Transmission of viral infections becomes more 
frequent if plasmapheresis requires the use of fresh 
frozen plasma rather than albumin209-211 

Immunoglobulin deficiency 
Reduction of antibody, complement 
and cytokine levels  
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Disease-modifying 
treatment (Dosage) 

Available 
since  

Half-life1 Mode of action Risks for infection Possible mechanism of interaction 
with vaccines 

1 according to various databases  
Abbreviations 
AE: adverse event; ALT: alanine-aminotransferase; BD: bis in die; BP: blood pressure; CD: cluster of differentiation; CIS: clinical isolated syndrome; CYC: cyclophosphamide; Dexa: Dexamethasone; DMARD: disease-
modifying anti-rheumatic drug; DNA: deoxyribonucleic acid; DTH: delayed-type hypersensitivity; ECG: electrocardiogram; FBC: full blood count; FOXP3: forkhead-box-protein P3; GCS: Glucocorticosteroids; GI: 
gastro-intestinal; HC: healthy controls; HIV; human immunodeficiency virus; HLA: human leukocyte-antigen; IA: immune adsorption; i.a.: inter alia, IBD: inflammatory bowel disease; IFN : Interferon; IgG: 
Immunoglobulin G, IL: Interleukin; ITP: immune thrombocytopenia; IVIg: intravenous immunoglobulins; JCV: John-Cunningham-Virus; LFT: liver function test; LVEF: left ventricular ejection-fraction; mABs: 
monoclonal antibodies; µg: microgram; mg: milligram; MoA: mode of action; MHC: major histocompatibility complex; MG: Myasthenia Gravis; MMF: mycophenolate mofetil; MP: Methylprednisolone; MS: 
multiple sclerosis; NA: not available; NABs: neutralizing anti‐bodies; NFκB: nuclear factor kappa B; NHL: non‐Hodgkin‐lymphoma; NK: natural killer; NMO: neuromyelitis optica; NRF2: NF‐E2 related factor 2; OCR: 
ocrelizumab; OCT: optical coherence tomography; PCV: pneumococcal conjugate vaccine; PE: plasma exchange; pEP: primary endpoint; PML: progressive multifocal leukoencephalopathy; PNH : paroxysmal 
nocturnal Haemoglobinuria; PON: ponesimod; PPMS: primary progressive multiple sclerosis; PPSV: pneumococcal polysaccharide vaccine; PSV: polysaccharide pneumococcal vaccine; RA: rheumatoid arthritis; R-
CHOP: rituximab combined with cyclophosphamide, doxorubicin, vincristine, prednisolone; RMS: relapsing multiple sclerosis; RNA: ribonucleic acid; RRMS: relapsing-remitting multiple sclerosis, RTX: rituximab; 
S1P1: selective Sphingosin-1-phosphate-receptor-1; SLE: Systemic lupus erythematosus; SOT: solid organ transplantation; SPMS: secondary-progressive multiple sclerosis; TB: tuberculosis; TCZ: tocilizumab; TFT; 
thyroid function test; TGF‐β: transforming growth factor‐ beta; Th: T‐helper; TIW: three times a week; TNF‐α: tumor‐necrosis factor‐alpha; TNFi: tumor-necrosis factor-inhibitors; U&E: urea and electrolytes; ULN: 
upper limit of normal; VLA: very late antigen; VZV: varicella zoster virus 
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