Supplementary information

Vaccination and immunotherapies in neuroimmunological diseases

In the format provided by the authors and unedited

Vaccines	Adjuvanted	Vaccine type	Serum antibody response	Mucosal antibody response	Cellular response	Route of administ ration	Duration of Protection (in healthy adults)	Duration of Protection (in immuno- compromised)	
BCG (tuberculosis)	No	live attenuated	yes	unclear	T-cell mediated immunity	i.c.	NA (efficacy against TB varies from 0% to 80%)	ND	1,2
Cholera	no	inactivated whole-cell (O1 monovalent and O1/O139 bivalent) (Dukoral®, Shanchol®)	yes	yes		oral	6 months – 2 years (protective efficacy 50% over 3 years)	Vaccination safe in HIV	3-5
Cholera	no	live attenuated	yes	yes		oral	5 years	contraindicate	5,6
Dengue	no	live attenuated, chimeric yellow fever-dengue strain (Dengvaxia®)	yes		yes	i.m.		contraindicated	7,8
Diphtheria toxoid	Yes/no	Toxoid	yes	unclear		i.m.	10 years		9-11
Ebola	no	(rDNA, replication-incompetent) recombinant Adenovirus / Vaccinia Virus encoding glycoprotein of Ebola virus	yes		yes	i.m.	unknown	ND	
Ebola	no	recombinant vesicular stomatitis virus encoding ebolavirus surface glycoprotein (rVSV∆G-ZEBOV-GP, live)	yes		yes	i.m.	unknown	ND	
Hepatitis A	yes	Inactivated	yes	no	memory B cell and T cells	i.m.	> 35 years	Lower AB response in HIV	12-15
Hepatitis A		live attenuated vaccine (based on H2 or LA-1 HAV strains and manufactured as well as mainly used in China or India)	yes		memory B cell and T cells	i.m.	> 15 years		16,17
Hepatitis B (HBsAg)	no	Protein	yes	yes	induction of memory B and T cells	i.m.	> 10 years	hampered in HIV, chronic renal disease	18-20
Hib PS		polysaccharide	yes	yes		i.m.	10 years		21
Hib glycoconjugate		polysaccharide – protein	yes	yes		i.m.	10 years		22
Human papilloma virus HPV	yes	Virus-like particles	yes	yes		i.m.	~ 8 years		23
Influenza, seasonal	Yes/no	inactivated	yes	unclear	CD4+ and CD8+ T- cell immunity	i.m.	< 1 year		24-26
Influenza, seasonal	no	Subunit	yes	unclear	CD4+ and CD8+ T- cell immunity	i.m.	< 1 year		

Supplementary table 1 | Key vaccine factors and immunological response

Vaccines	Adjuvanted	Vaccine type	Serum antibody response	Mucosal antibody response	Cellular response	Route of administ ration	Duration of Protection (in healthy adults)	Duration of Protection (in immuno- compromised)	
Influenza, seasonal	no	Live attenuated	yes	yes	+ (CD8 ⁺) CD4+ and CD8+ T-cell immunity	i.n.	< 1 year		
Influenza, pandemic (H1N1)	yes	inactivated, subunit	yes		CD4+ and CD8+ T- cell immunity	i.m.	unclear		
Japanese encephalitis	yes	Inactivated, vero-cell based (SA 14- 14-2 viral strain)*	yes	no	yes	i.m.	10 years after first booster		27,28
Measles	no	Live attenuated	yes	yes	CD8⁺	i.m.	Long-lasting		29-32
Meningococcal PS	no	polysaccharide	yes	no		i.m.	1-2 years		33,34
Meningococcal conjugates	No (Menveo, Menactra), yes (Menjugate, Meningitec)	o (Menveo, PS-protein conjugated to Ienactra), Corynebacterium diphtheriae CRM es (Menjugate, protein (Menjugate®, Menveo®,		no		i.m.	5 years		35
Meningococcal conjugates	Yes (NeisVac-C), no (Nimenrix, MenQuadfi)	PS-protein conjugated to tetanus toxoid carrier protein (NeisVac C®, Nimenrix®, MenQuadfi®)	yes	no	B-Cell Memory	i.m.	Long-lasting (after priming)		36
Meningococcal B*	yes	Protein (recombinant protein & outer membrane vesicles Bexsero®; recombinant lipidated protein Trumenba®)	yes	no	yes	i.m.	> 4 years		37,38
Mumps	no	Live attenuated	yes		yes	i.m.			32
Pertussis, whole cell	yes	Inactivated	yes		yes	i.m.			39,40
Pertussis, acellular	yes	Protein	yes	no	CD4+	i.m.	< 10 years		40,41
Pneumococcal PS	no	PS	yes	yes		i.m.	5 years	~ 3 years	42
Pneumococcal conjugates	yes	PS-protein (d-carrier protein, tetanus toxoid, or diphtheria toxoid protein)	yes	yes		i.m.	n.d.	n.d.	42,43
Polio Sabin	no	Live attenuated	yes	yes		oral	10 years		44
Polio Salk	no	Inactivated	yes	yes		i.m.	10 years		
Rabies	no	Inactivated	yes			i.m.	5 years		
Rotavirus	no	Live attenuated (Rotarix [®]); live reassortant human-bovine (RotaTec [®])	not relevant	yes		oral	1-3 years		
Rubella	No	Live attenuated	yes	yes		i.m.	> 10 years		
Tetanus toxoid	Yes/no	Toxoid	yes		IgA +	i.m.	> 10 years		45
Tic-borne encephalitis (TBE)	yes	Inactivated	yes		yes	i.m.	5 years	Shorter in elderly subjects	
Typhoid	no	Live attenuated (Vi-negative strain)	yes	yes	yes	oral	3-5 years		
Typhoid PS	no	PS (+/- conjugated)	yes	no	yes	i.m.	3-5 years		

Vaccines	Adjuvanted	Vaccine type	Serum antibody response	Mucosal antibody response	Cellular response	Route of administ ration	Duration of Protection (in healthy adults)	Duration of Protection (in immuno- compromised)	
Varicella	no	Live attenuated	yes		CD4+	i.m.	life-long		
(chickenpox)									
Varicella (zoster)	no	Live attenuated	yes		CD4+	i.m.	> 4 years		
Varicella (zoster)	yes	Inactivated (shingrix [®])	yes		yes	i.m.	> 4 years		
Yellow fever	no	Live attenuated	yes		yes	s.c.	life-long		46
SARS-Cov-2*	no	modRNA (e.g. BNT162b2)	yes	yes	Th1-based CD4+ and CD8+ response	i.m.	unclear		47-50
	no	modRNA in lipid nanoparticle dispersion (e.g. mRNA-1273)	yes	yes	Th1-based CD4+ and CD8+ responses	i.m.	unclear		51-53
	no	Non-replicating viral vector (e.g. ChAdOx1-s, Ad26.COV2-S)	yes	yes	Th1-based CD4+ and CD8+ responses	i.m.	unclear		54-61

Abbreviations: i.c., intracutaneously; i.m., intra muscular; s.c., subcutaneous; i.n., intranasal; modRNA, nucleoside-modified messenger RNA; NA, not applicable; PS, polysaccharide; VLP, virus-like particle

* Other vaccine types available in different countries. Note: This table may not be exhaustive and includes currently licenced vaccines in various countries. Additional information based on 62-72.

Туре	Adjuvant (components)	Examples of vaccine	Aspects in immunosuppression						
Oil-in-water	Exact molecular mechanisms	s unknown							
emulsions	- antigen dose sparing effect								
	- enhances diversity of induced antibodies								
	- indirect stimulation of immune response (activation of APCs via stimulation of TNF-alpha, IL-1B, CCL) ⁷³ ;								
	localized and short impact o	n immune system ⁷⁴							
	MF59 (Squalene;	Seasonal influenza, pandemic	induces the release of extracellular ATP as						
	polysorbate 80; sorbitan	influenza, avian influenza	endogenous stress signal ⁷⁵ resulting in						
	trioleate)		activation of innate immune pathways;						
			adjuvant effects may be retained in CD4-						
			deficient conditions ⁷⁶						
	AS03 (Squalene; alpha-	pandemic influenza, avian	effective in organ transplant recipients ^{26,77} ;						
	tocopherol polysorbate	influenza	not effective to overcome						
	80)		immunosuppression on rituximab therapy7						
			enhanced IgG memory B-cell response in						
			HIV ⁷⁹ ; no increased short-term risk in MS ⁸⁰						
	AF03 (squalene;	pandemic influenza ⁸¹ not	82						
	polyoxyethylene	marketed							
	cetostearyl ether;								
	mannitol)								
Aluminium salt	Exact molecular mechanisms	s unknown							
	- possible depot mechanism (unclear)								
	- enhanced uptake by APCs								
	- Direct stimulation of innate immune receptors (interaction with surface membrane lipids of dendritic								
	cells) ⁸³⁻⁸⁵								
	Crystalline aluminium	Japan B encephalitis,	Adjuvant effect not hampered by IL-1beta						
	oxyhydroxide (aluminium	meningococcus C ⁸⁶ ,	inhibition ⁸⁶						
	hydroxide)	tetanus/diphtheria/pertussis,							
		HAV							
		I IA V							
	Aluminium phosphate	Tetanus/diphtheria, pertussis,							
	Aluminium phosphate								
	Aluminium phosphate	Tetanus/diphtheria, pertussis,							
	Aluminium phosphate	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae							
		Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus							
	Aluminium potassium	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis,	87						
	Aluminium potassium phosphate (alum)	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza	87						
Toll-like receptor	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®)	⁸⁷ secretion of IL-10, TNF-α, and IL-6 of type 1						
Toll-like receptor agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®)							
	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil [®]), HAV (Vaqta [®]) sponse; activation of TLRs results in							
	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS-	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®)							
	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰							
	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil [®]), HAV (Vaqta [®]) sponse; activation of TLRs results in							
	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined							
	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined with alum ⁹¹							
agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined with alum ⁹¹ HPV (Cervarix®); Hepatitis B (Fendrix®) ⁹²	a secretion of IL-10, TNF-α, and IL-6 of type 1						
agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist Liposomes with surface expo	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil [®]), HAV (Vaqta [®]) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax [®]) combined with alum ⁹¹ HPV (Cervarix [®]); Hepatitis B (Fendrix [®]) ⁹² osed vaccine antigens, uptake in AP							
	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil [®]), HAV (Vaqta [®]) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax [®]) combined with alum ⁹¹ HPV (Cervarix [®]); Hepatitis B (Fendrix [®]) ⁹² osed vaccine antigens, uptake in AP	a secretion of IL-10, TNF-α, and IL-6 of type 1						
agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist Liposomes with surface expo deliver immune activators di	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined with alum ⁹¹ HPV (Cervarix®); Hepatitis B (Fendrix®) ⁹² osed vaccine antigens, uptake in AP irectly to the B cells ^{73,93-95}	a secretion of IL-10, TNF-α, and IL-6 of type 1						
agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist Liposomes with surface expo deliver immune activators di	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined with alum ⁹¹ HPV (Cervarix®); Hepatitis B (Fendrix®) ⁹² psed vaccine antigens, uptake in AP irectly to the B cells ^{73,93-95} Influenza (Inflexal V®), Hepatitis A (Epaxal®) ⁹⁶⁻⁹⁸	secretion of IL-10, TNF-α, and IL-6 of type 1						
agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist Liposomes with surface expo deliver immune activators di Unilamellar liposomes	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined with alum ⁹¹ HPV (Cervarix®); Hepatitis B (Fendrix®) ⁹² osed vaccine antigens, uptake in AP irectly to the B cells ^{73,93-95} Influenza (Inflexal V®), Hepatitis A (Epaxal®) ⁹⁶⁻⁹⁸ COVID-19 vaccine ⁹⁹	secretion of IL-10, TNF-α, and IL-6 of type 1						
agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist Liposomes with surface expo deliver immune activators di Unilamellar liposomes	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined with alum ⁹¹ HPV (Cervarix®); Hepatitis B (Fendrix®) ⁹² osed vaccine antigens, uptake in AP irectly to the B cells ^{73,93-95} Influenza (Inflexal V®), Hepatitis A (Epaxal®) ⁹⁶⁻⁹⁸ COVID-19 vaccine; Plasmodium	secretion of IL-10, TNF-α, and IL-6 of type 1						
agonists	Aluminium potassium phosphate (alum) Aluminium hydroxyphosphate sufate Trigger of innate immune re interferon response AS01 (MPL; liposome, QS- 21), TLR4 agonist RC529 (chemical mimetic of MPL), TLR4 agonist AS04 (MPL; aluminium hydroxide), TLR4 agonist Liposomes with surface expo deliver immune activators di Unilamellar liposomes	Tetanus/diphtheria, pertussis, and poliomyelitis; Haemophilus influenzae Tetanus, diphtheria, pertussis, influenza HPV (Gardasil®), HAV (Vaqta®) sponse; activation of TLRs results ir Herpes zoster subunit ⁸⁸⁻⁹⁰ HBV (Supervax®) combined with alum ⁹¹ HPV (Cervarix®); Hepatitis B (Fendrix®) ⁹² osed vaccine antigens, uptake in AP irectly to the B cells ^{73,93-95} Influenza (Inflexal V®), Hepatitis A (Epaxal®) ⁹⁶⁻⁹⁸ COVID-19 vaccine ⁹⁹	secretion of IL-10, TNF-α, and IL-6 of type 1						

Supplementary table 2 | Adjuvants used in different licenced vaccines

Supplementary table 3	Disease-modifying treatment and vaccination
-----------------------	---

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
Direct depletion/cytolysis					•
Ocrelizumab First dose is split into 2 separate infusions of 300mg i.v. 2 weeks apart. The following doses of 600 mg i.v. will be given once every 6 months.	2017 US 2018 EU	26 days	CD20 B-cell depletion. Causes fast and nearly complete B- cell elimination from circulation but lesser in lymph node follicles, marginal zone of spleen, and peritoneal cavity ¹⁰³ . Continuous immunosuppression	Serious infections: 1.3% ocrelizumab versus 2.9% in interferon beta- 1a- treated group (RR-MS) ¹⁰⁴ Upper respiratory tract infections more common in ocrelizumab-treated group compared to placebo (PP- MS) ¹⁰⁵ . Serious infections seen in treatment of rheumatoid arthritis patients (opportunistic infections, such mycobacterial infections, hepatitis B reactivation, histoplasmosis, pneumocystis pneumonia, VZV pneumonia or candida infections) ¹⁰⁶ have not been observed in MS studies so far. PML (case report), case series of carry-over PML ¹⁰⁷	CD20 antibody dependent B-cell and CD20 pos. T-cells (subgroup) cytolysis Causes fast and nearly complete B- cell elimination from circulation but lesser in lymph node follicles, marginal zone of spleen, and peritoneal cavity. Potential reduction of IgG (hypogammaglobulinaemia) ^{104,108}
Rituximab Various schemes Start with two-1000 mg i.v. doses separated by 2 weeks Individual maintenance treatment with 1000mg i.v. every 6 months or depending on B-cell counts	1997 (NHL) 2006 (RA)	18 (8-20) days	Anti- CD20 B-cell depletion. Causes fast and nearly complete B- cell elimination from circulation but less so in lymph node follicles, marginal zone of spleen, and peritoneal cavity ¹⁰³ . Continuous immunosuppression	61.4% mild- to- moderate infection- associated events (Phase I study, RR-MS) ¹⁰⁹ . About 70% infections (Phase II, RR-MS) in both groups (Rituximab vs. placebo). No opportunistic infections ¹¹⁰ . No serious AEs (Phase II and III, PP-MS) ¹¹¹ . Most common infection-associated adverse events (>10% in the rituximab group) found in a Cochrane review (RR-MS) were nasopharyngitis, upper respiratory tract infections, urinary tract infections and sinusitis. Among them, only urinary tract infections (14.5% versus 8.6%) and sinusitis (13.0% versus 8.6%) were more common in the rituximab group ^{112,113} .	CD20 antibody dependent B-cell and CD-20 pos. T-cells (subgroup) cytolysis Causes fast and nearly complete B- cell elimination from circulation but less so in lymph node follicles, marginal zone of spleen, and peritoneal cavity. Potential reduction of IgG (hypogamma-globulinaemia)

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
Ofatumumab 20 mg s.c. every 4 weeks after treatment initiation with 20 mg s.c. day 1, day 7, day 14	2020 US 2021 EU	14 days	Depletion of CD20 + B-cells and depletion of CD20 + T- cells in blood and lymph-nodes like RTX/OCR but less depletion of marginal zone B-memory cells in spleen compared to RTX ¹¹⁴ Continuous immunosuppression	Increased risk of infections observed with other anti- CD20 B-cell depleting therapies Potential increased risk of infections including serious bacterial, fungal, and new or reactivated viral infections (some fatal) in patients treated with other anti-CD20 antibodies. Rate of infections similar to teriflunomide. The most common infections reported were upper respiratory tract and urinary tract infections ¹¹⁵ .	CD20 antibody dependent B-cell and CD20 pos. T-cells (subgroup) cytolysis Causes fast and nearly complete B- cell elimination from circulation and lymph node follicles but with minor extent in marginal zone of spleen. Potential reduction of IgG (hypogammaglobulinaemia) ¹⁰⁸
Inebilizumab: Initial dose is two single 300 mg i.v. given 2 weeks apart. Subsequent doses (starting 6 months from the first dose) 300 mg i.v. every 6 months	2020 US EU pending	18 days	Precise mechanism of therapeutic effects in NMOSD is unknown but is presumed to involve binding to CD19 present on pre-B and mature B lymphocytes causing depletion through antibody-dependent cell-mediated cytotoxicity. Continuous immunosuppression.	An increased risk of infection was noted comparable to that observed with other B-cell-depleting therapies. Most common infections reported included urinary tract infection (20%), nasopharyngitis (13%), upper respiratory tract infection (8%), and influenza (7%). No confirmed cases of PML were identified in clinical trials. ^{116,117} .	CD19 antibody dependent B-cell depletion. Cell surface binding to B lymphocytes results in antibody-dependent cellular cytolysis. Potential reduction of IgG (hypogammaglobulinaemia) ¹⁰⁸
Alemtuzumab 2 or more treatment courses separated by a year. Cumulative dose first course 60mg i.v., every following course 36 mg i.v. (12 mg each day of course)	2013 EU 2014 US	4-5 days	CD52 cell depletion Repopulation of lymphocytes, leading to long-term changes in adaptive immunity and rebalancing of the immune system ¹¹⁸ . Intermittent immunosuppressive	Infections more frequent compared to IFN-beta 1a treated patients: (majority mild to moderate). Upper respiratory tract and herpes infections were predominant. PML (case report). Listeria meningitis (case reports). Herpesvirus (incidence reduced by acyclovir prophylaxis (30 days after each treatment cycle) ¹¹⁹⁻¹²⁴ .	CD52 antibody dependent cellular cytolysis (T- and B-cells) Leukopenia and long lasting lymphopenia (T cells affected more than B cells)

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
Cladribine Weight dependent dose: 2 treatment courses separated by a year with 2 treatment cycles in each course. During each cycle daily oral application for 4 or 5 days. The 2 cycles are separated by a month.	2017 EU 2019 US	5.4 h	Synthetic chlorinated deoxyadenosine (purine) analogue: Preferential accumulation of cladribine phosphates in cell types with a high intracellular ratio of deoxycytidine kinase to 5'-nucleotidases leading to sustained reduction of circulating T and B lymphocytes. Interferes with DNA synthesis and repair through incorporation into DNA and through inhibition of enzymes involved in DNA metabolism causing DNA strand breaks and ultimately cell death ¹²⁵ . Induces apoptosis and depletion of B- and T-cells including non-proliferating cells ¹²⁶ Intermittent immunosuppression, immune reconstitution	Incidence of infections was 48.3% with cladribine tablets and 42.5% with placebo, with 99.1% and 99.0% rated mild-to-moderate. Herpes zoster infections developed in 20 (2.3%) cladribine-treated patients; all cases were dermatomal. Overall no significant elevated risk of infection ¹²⁷ . The incidence rates of infections and infestations showed no clear relation to total dose received, with the exception of the herpes zoster. Infection rate higher with increased doses compared to other groups (4.8%-1.1%, placebo 2.0%) ¹²⁸ . No cases of progressive multifocal leukoencephalopathy (PML) ¹²⁸ .	Reduced proliferation of B-and T- lymphocytes Interference with lymphocyte proliferation Lymphopenia ¹²⁹
Reduced proliferation					
Teriflunomide 14 mg once daily p.o.	2012	19-20 days	Dihydro-orotate dehydrogenase inhibitor (reduced de novo pyrimidine synthesis in fast dividing immune cells/autoreactive cells), antiproliferative (Salvage pathway for de novo pyrimidine synthesis still working ¹³⁰ . Does not affect dividing or resting cells ^{130,131} . Possibly immunosuppressive	No increased risk of infections. Single cases of appendicitis, bronchitis, pneumonia, Klebsiella sepsis, and UTI were reported. Neither PML nor other opportunistic infections related to the treatment ¹³² . Single cases of combined HCV/CMV-infection and one intestinal TBC were considered not treatment related ¹³³ .	Interference with lymphocyte proliferation Leukopenia (neutropenia)
Azathioprine Individual dosing 25-50 mg up to 3 times a day p.o., 2-4 mg/kg BW/d p.o. depending on leukocyte count (target 3500-4000/µl) and lymphocyte count (target 1000/µl) count	1957	26 to 80 min (3-5 h metabolit es) biological effect: 24 h ¹³⁴	Purine analogue, antimetabolite (prodrug) Inhibition of purine nucleotide synthesis during RNA- /DNA-synthesis ¹³⁵ Effect on Na(+)/H(+)-exchanger activity in dendritic cells ¹³⁶ . Induces apoptosis in stimulated T cells ¹³⁷ . Continuous immunosuppression	Increased risk of bacterial, viral, fungal, protozoal, and opportunistic infections, including reactivation of latent infections.	Reduced proliferation of B-and T- lymphocytes. Interfering with the maturation and function of dendritic cells (DCs)/antigen-presenting cells linking innate and adaptive immunity Leukopenia and lymphopenia

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
Cyclophosphamide 10-15 mg/kg body weight, repeated every 4-8 weeks	1965	7 h	Alkylating metabolites cause single and double-strand breaches in fast reproductive cells with consecutive reduction of CD4+ helper-cells and increased number of CD8+ suppressor-cells ¹³⁸ . Continuous immunosuppression	Increased risk of infection (classical immunosuppressive agent). Exclude latent infections or laboratory changes in cellular and humoral immune parameters before application ¹³⁹ . Infection was the most common side-effect (28% of patients with various autoimmune diseases, mainly SLE) but rarely required in-patient treatment (9% of the patients). No relationship could be found between the occurrence of infection and the dose of CYC or of GCS ¹⁴⁰ .	Reduced proliferation of B-and T- lymphocytes Increase in CD8+-suppressor cells and a reduction in CD4+-helper cells
Mitoxantrone 5-12 mg/m ² body surface area i.v., every 1-3 months	2000	9 days	Topoisomerase inhibitor: Suppresses macrophages, B cells and T cells, with a preferential effect on helper subsets ^{141,142} . Modulates astrocyte activity ¹⁴³ . Continuous immunosuppression	Frequent UTIs and upper airway infections ¹⁴⁴ . Cases of septicaemia, pneumonia and opportunistic infections. No heightened risk of viral infections ¹⁴⁴ .	Reduced proliferation of B-and T- lymphocytes Suppresses macrophages, B cells and T cells, with a preferential effect on helper subsets
Mycophenolate mofetil Off-label use in MS/NMOSD/MG 1-3 g/d p.o. in two doses	US 1995 EU 1996 (Kidney transplan tation)	17.9±6.5 hours	reversible, non-competitive inhibitor of inosine-5'- monophosphate dehydrogenase; inhibition of <i>de novo</i> purine synthesis	opportunistic infections, reactivation of latent viral infections, (herpes virus infections, polyomaviruses (JC, BK))	selective inhibition of DNA replication in T- and B-cells
Anti-migratory effects			•	·	•
Natalizumab 300mg once per month i.v. 2 x 150mg once per month s.c.	2006 s.c.: 2021 (EU)	16 days	Anti VLA-4, selective adhesion molecule inhibitor: Prevents immune cells (T, B, and NK cells) from crossing blood vessel walls to reach affected organs ¹⁴⁵ . Induces lymphocyte apoptosis ¹⁴⁶ . Continuous local immunosuppression.	Based on diminished immune surveillance in the CNSa broad spectrum of infections are possible 147,148.Main issue: PML (JCV-infection, recently increasedrisk in pooled cohort) 149,150.Pooled cohort: <1% (156 of 37 249) had PML.	Altered lymphocyte trafficking to CNS via blockade of alpha-4 subunit of the VLA-4 receptor

Disease-modifying	Available	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction
treatment (Dosage)	since				with vaccines
Fingolimod 0.5 mg once/d p.o.	2010	6 to 9 days (9-10 days)	 S1P1 modulator: Prevention of lymphocyte egress (mainly CCR7+CD4+ naive and central memory T cells) from lymph nodes ¹⁵³. Reversibly redistributes lymphocytes into lymphoid tissue, while preserving lymphocyte function Prevents naive and central memory T cells from circulating to non-lymphoid tissues such as the CNS Causes lymphoid cell retention in secondary lymphoid tissue Can exert neuroprotective effects by crossing the blood-brain barrier and binding to neuronal and glial cells ¹⁵⁴. Alters the balance of NK-cell subsets ¹⁵⁵. Could modulate remyelination ¹⁵⁶. Increases astrocyte migration ¹⁵⁷. 	No elevated risk of serious infectious adverse effects, including severe HSV infections ¹⁵⁸ . Incidence of VZV infections ranges from 7 to 11 per 1,000 patient-years (versus 6 in 1,000 patient-years in the placebo group) ¹⁵⁹ Reports of single cases of cryptococcal brain and skin infections and PML cases [reviewed ¹⁴⁷]	Binding to S1P receptors prevents lymphocytes to exit lymph nodes Lymphocyte trapping in lymph node Lymphocyte redistribution
Ozanimod 0.92 mg once/d p.o.	2020	19 h	Continuous immunosuppression Selective S1P-receptor 1 and 5 modulator: Regulation of lymphocyte migration, regulation of survival, migration and differentiation of oligodendrocytes ¹⁶⁰⁻¹⁶² . Reversibly redistributes lymphocytes into lymphoid tissue, while preserving lymphocyte function. Prevents naive and central memory T cells from circulating to non-lymphoid tissues such as the CNS. Causes lymphoid cell retention in secondary lymphoid tissue. Ozanimod induced dose-dependent reductions in circulating B- and T-cell counts and differential effects on naive and memory CD4+ and CD8+ T cells and CD19+ B cells. ^{163,164} . Can exert neuroprotective effects by crossing the blood-brain barrier and binding to neuronal and glial cells ¹⁶⁵ . Continuous immunosuppression.	Infectious risk might be elevated due to reduction of peripheral lymphocyte count.	Binding to S1-P receptor preventing lymphocytes from exiting lymph nodes Lymphocyte trapping in lymph node Lymphocyte redistribution

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
Ponesimod 20 mg once /d p.o.	03/2021 US 06/2021 EU	21.7 - 34 h	S1P1-modulator (S1PR₁ > S1PR₅)	Infectious risk might be elevated due to reduction of peripheral lymphocyte count. No significant difference to teriflunomide treatment (nasopharyngitis, upper respiratory tract infection, herpetic infections) ¹⁶⁶	Binding to S1-P receptor preventing lymphocytes from exiting lymph nodes (naïve T cells and helper T cells > memory and cytotoxic T cells; partial sparing of regulatory T cells) Lymphocyte trapping in lymph node
Siponimod 2 mg once daily p.o. consider dose reduction in dependence of genetic status	2019 US 2020 EU	56.6 h	Predominantly S1PR₁and S1PR₅ modulator	Increased risk of infections. Monitoring for infections before treatment initiation and during treatment mandatory. Herpetic infections rate increased (treatment 4.6% vs. placebo 3.0%, Herpes zoster rate 2.5 vs. 0.7%). Single cases of cryptococcal meningitis. No PML-case so far, but single cases under other S1P receptor-modulators.	Lymphocyte redistribution ¹⁶⁷ Binding to S1P receptors preventing lymphocytes to exit lymph nodes Lymphocyte trapping in lymph node Lymphocyte redistribution Avoid live vaccines for weeks after stopping treatment. Vaccination may be less effective if administered during treatment. Discontinuation one week prior and until 4 weeks after a planned vaccination is recommended.
Pleiotropic effects					
Interferon-beta: Interferon beta 1a i.m. (once a week) Interferon beta 1a s.c. (TIW)	1996 2002	10 h 50-60 h	Immunomodulatory, pleiotropic immune effects: Inhibition of T-cell proliferation Increased T-suppressor cell activity Inhibition of pro-inflammatory cytokines (TNF-α, IFN-γ) Induction of immunomodulatory cytokines IL-10 and	Type 1 interferons protect mammals against viral infections ¹⁷⁰ . Involvement of the interferon type I signaling defense against viral infections ¹⁷¹ .	Interaction with MHC II receptor Inhibition of antigen presentation Decreased INF-gamma production Leukopenia (lymphopenia in particular)
Interferon beta 1 b s.c. (every other day) Peg-Interferon beta 1 a s.c.	1993	up to 5 h	TGF-β Suppression of expression of HLA class II and adhesion molecules Blockade of metal-matrix proteinases/ chemokines Activating transcription of antiviral, antimicrobial,	No increased risk for infections. Treatment-associated leukopenia. Occasional local infections or abscess formation at injection site ¹⁷²⁻¹⁷⁶ .	
or i.m. (once in 2 weeks)		(steady state)	antiproliferative, and immunomodulatory genes Regulates the expression of a complex set of pro- as well as anti-inflammatory genes ^{168,169} Continuous/pulsatile type 1 interferon receptor stimulation and downregulation Not immunosuppressive; anti-inflammatory; antiviral		

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
Glatirameroids: 20 mg (once a day) 40 mg (3 times a week) s.c.	1996	NA	Immunomodulatory, pleiotropic immune effects: Th1 to Th2 cytokine shift ¹⁷⁷ . Increases regulatory CD8+ cells. Activation of FOXP3 leads to shift from CD4+CD25- T- cells to regulatory CD4+CD25+T-cells ¹⁷⁸ ¹⁷⁹ . No immunosuppression	HSV infections and vaginal candidiasis were 2% more frequent in patients treated with glatiramer acetate than in placebo-treated patients, whereas other infections, such as abscesses, cellulitis, boils, shingles or pyelonephritis, were rarer with glatiramer acetate treatment than with placebo. No opportunistic infections have been described.	Th1 to Th 2 cytokine shift Inhibition of MHC II receptor Rare leukocytosis or mild leukopenia
Dimethyl fumarate 240 mg twice daily p.o.	2013	1 h (MoMF)	Pleiotropic: NRF2 activation ¹⁸⁰ ; Downregulation of NFκB (transcription factors) ¹⁸¹ ; Protects against oxidative stress-induced cellular injury in neurons and astrocytes ¹⁸² Attenuating the activity of pro-inflammatory TH1 and TH17 cells by scavenging toxic oxygen metabolites ^{180,181}	DMF does not exacerbate the risk of infection in patients with MS ¹⁸³ PML cases (MS- and psoriasis patients treated with DMF or fumaric acid esters, partly under combination therapy) [Reviewed ¹⁴⁷]	Enhancement of endogenous mechanisms to counteract oxidative stress Reduction of oxidative stress Potential leukopenia (lymphopenia)
Diroximel fumarate 462 mg twice/d p.o.	2019 US 2021 EU	1 h	See dimethyl fumarate	See dimethyl fumarate; PML risk	See dimethyl fumarate
Tocilizumab 8mg/kg bodyweight i.v. every 4 weeks	2007 US 2009 EU (treatme nt of RA)	8-14 days in steady state	IL-6 receptor blockade preventing interleukin-6 attaching to its receptors, Continuous immunosuppression	risk of serious bacterial infection, skin and soft tissue infections, and diverticulitis was higher (TCZ vs. TNFi) In NMOSD upper respiratory tract infection and urinary tract infection were reported less often with TCZ compared to AZA ¹⁸⁴ .	IL-6 inhibition may interfere with the normal immune response to new antigens (reduced B-cell differentiation with reduced immunoglobulin production)
Satralizumab 120mg s.c. every 4 weeks after loading dose of 120 mg week 0, 2 and 4	US 2020 EU 2021	30 days	inhibition of IL-6 receptor signalling by humanized anti- interleukin-6 (IL-6) receptor monoclonal recycling antibody Continuous immunosuppression	Rates of infection did not differ between satralizumab and placebo groups ^{185,186} In general an increased risk of infections has been observed in patients treated with IL-6 receptor antagonists. Most common infections nasopharyngitis and cellulitis.	IL-6 inhibition may interfere with the normal immune response to new antigens (reduced B-cell differentiation with reduced immunoglobulin production)

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
Eculizumab: Induction dose 900 mg weekly i.v. for 4 weeks, maintenance dose 1200mg i.v. every two weeks	2007 PNH 2017 MG 2019 NMO	11.3 ± 3.4 days	Inhibition of terminal complement protein C5: preventing cleavage into pro-inflammatory protein C5a and protein C5b	MoA associated increased risk of meningococcal infections. Vaccination reduces, but does not eliminate, the risk of meningococcal infections Increased risk of infection with Neisseria and capsulated germs/ bacteria. Awareness of Gonorrhoea. Upper respiratory tract infections and headaches were more common in the eculizumab group, serious infections 8% with eculizumab vs. 15% under placebo ¹⁸⁷ .	Protective rSBA titres varied for meningococcal serogroups and over time reflecting an early decline to even non-protective rSBA titres. These data highlight the importance of serologic analyses under chronic CI. Currently, re-vaccination with a tetravalent meningococcal conjugate vaccine every 3 years is recommended on chronic CI. However, re-vaccination on CI might further rely on serologic analyses, implying even early booster vaccinations similar to adults with (functional) asplenia ¹⁸⁸ .
Glucocorticosteroids Pulses with 500-2000 mg (methyl-prednisolone equivalent) i.v. on 3-5 consecutive days	1948	161±32 min MP: plasma 1- 3 h biol. 18- 36 h Dexamet hasone: plasma 3.5 h biol. 36- 72 h	Pleiotropic effects. Suppression of inflammation via induction of apoptosis and inhibition of immune-cell migration, reduction of pro-inflammatory cytokines ¹⁸⁹⁻¹⁹¹ Dose dependent immunosuppressive	Repeated pulse therapy, even at very high doses, does not increase the propensity to develop bacterial or fungal infections, but severe viral infections, such as varicella zoster virus (VZV) or herpes simplex virus (HSV), can develop ¹⁹² Long-term continuous glucocorticosteroid administration, which is not typically used in the treatment of MS, is associated with bacterial, viral, fungal, and parasitic infections ¹⁹³ .	Dose- and regime- dependent immunosuppressive to various degree Transient leukocytosis (increased neutrophils in particular) Lymphopenia

Disease-modifying treatment (Dosage)	Available since	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction with vaccines
IVIg Treatment initiation with 2g/kg body weight i.v. divided on 5 days, repeat courses of 0,4g/kg body weight i.v. every 4 -6 weeks	1981/ 1990	21-31 days	Various effects: Inhibition of complement-system, impact on B-cells and autoantibodies, influence on macrophages and T- cells, modulation of cytokine-networks ^{194,195} .	Transmission of possibly unknown infectious agents cannot be ruled out when using drugs deriving from biological material/human donors. Existing inactivation and elimination procedures might be of restricted value for non- or uncoated viruses ¹⁹⁸ .	Stimulation and support of requested and inhibition of unwanted immune processes
			Modulation of immune reactions at the level of T-cells, B-cells, and macrophages Interference with antibody production and degradation Modulation of complement cascade, Effects on cytokine network ¹⁹⁶ . Effects on B-cells, antibodies, and on the complement system. Influence on T-cells Influence on cell migration ¹⁹⁷ .	Potential antiviral effects ¹⁹⁹ .	
PE/IA 5-8 treatment cycles (relapse treatment)	1999 ^{200,201}	IgG Re- distributi on: 1-3 %/h 202	Rapid removal of pathological mediators (autoantibodies, immune complexes, complement, and cytokines) from the circulation ²⁰³ Intermittent immunosuppressive	Invasive therapy, exposes the patient to the risk of infection, primarily through the central venous catheter but also via elimination of immunoglobulins or complement components ²⁰⁴ . Catheter-associated complications range from 0.5% to 3.3% in patients with chronic hepatitis C, Guillain– Barré syndrome or other neurological diseases ²⁰⁵⁻²⁰⁷ . No plasmapheresis-associated infections were detected in 2,502 plasmapheresis sessions in a cohort of 335 patients (among which over 90% had neurological diseases) ²⁰⁸ . Transmission of viral infections becomes more frequent if plasmapheresis requires the use of fresh frozen plasma rather than albumin ²⁰⁹⁻²¹¹	Immunoglobulin deficiency Reduction of antibody, complement and cytokine levels

Disease-modifying	Available	Half-life ¹	Mode of action	Risks for infection	Possible mechanism of interaction
treatment (Dosage)	since				with vaccines

¹according to various databases

Abbreviations

AE: adverse event; ALT: alanine-aminotransferase; BD: bis in die; BP: blood pressure; CD: cluster of differentiation; CIS: clinical isolated syndrome; CYC: cyclophosphamide; Dexa: Dexamethasone; DMARD: diseasemodifying anti-rheumatic drug; DNA: deoxyribonucleic acid; DTH: delayed-type hypersensitivity; ECG: electrocardiogram; FBC: full blood count; FOXP3: forkhead-box-protein P3; GCS: Glucocorticosteroids; GI: gastro-intestinal; HC: healthy controls; HIV; human immunodeficiency virus; HLA: human leukocyte-antigen; IA: immune adsorption; i.a.: inter alia, IBD: inflammatory bowel disease; IFN : Interferon; IgG: Immunoglobulin G, IL: Interleukin; ITP: immune thrombocytopenia; IVIg: intravenous immunoglobulins; JCV: John-Cunningham-Virus; LFT: liver function test; LVEF: left ventricular ejection-fraction; mABs: monoclonal antibodies; μg: microgram; mg: milligram; MoA: mode of action; MHC: major histocompatibility complex; MG: Myasthenia Gravis; MMF: mycophenolate mofetil; MP: Methylprednisolone; MS: multiple sclerosis; NA: not available; NABs: neutralizing anti-bodies; NFκB: nuclear factor kappa B; NHL: non-Hodgkin-lymphoma; NK: natural killer; NMO: neuromyelitis optica; NRF2: NF-E2 related factor 2; OCR: ocrelizumab; OCT: optical coherene tomography; PCV: pneumococcal conjugate vaccine; PE: plasma exchange; pEP: primary endpoint; PML: progressive multifocal leukoencephalopathy; PNH : paroxysmal nocturnal Haemoglobinuria; PON: ponesimod; PPMS: primary progressive multiple sclerosis; RNA: ribonucleic acid; RRMS: relapsing-remitting multiple sclerosis; RC: relaunatio arthritis; R-CHOP: rituximab combined with cyclophosphamide, doxorubicin, vincristine, prednisolone; RMS: relapsing multiple sclerosis; RNA: ribonucleic acid; RRMS: relapsing-remitting multiple sclerosis; TC: tocilizumab; S1P1: selective Sphingosin-1-phosphate-receptor-1; SLE: Systemic lupus erythematosus; SOT: solid organ transplantation; SPMS: secondary-progressive multiple sclerosis; TC: tocilizumab; TFT; thycrid function test; TGF-B; transforming

References

- Liu, J., Tran, V., Leung, A. S., Alexander, D. C. & Zhu, B. BCG vaccines: their mechanisms of attenuation and impact on safety and protective efficacy. *Hum Vaccin* **5**, 70-78 (2009).
- 2 Jacobs, A. J., Mongkolsapaya, J., Screaton, G. R., McShane, H. & Wilkinson, R. J. Antibodies and tuberculosis. *Tuberculosis (Edinb)* **101**, 102-113 (2016).
- 3 Scerpella, E. G. *et al.* Serum and Intestinal Antitoxin Antibody Responses after Immunization with the Whole-Cell/Recombinant B Subunit (WC/rBS) Oral Cholera Vaccine in North American and Mexican Volunteers. *J Travel Med* **3**, 143-147 (1996).
- 4 Shamsuzzaman, S. *et al.* Robust gut associated vaccine-specific antibodysecreting cell responses are detected at the mucosal surface of Bangladeshi subjects after immunization with an oral killed bivalent V. cholerae O1/O139 whole cell cholera vaccine: comparison with other mucosal and systemic responses. *Vaccine* **27**, 1386-1392 (2009).
- 5 Harris, J. B. Cholera: Immunity and Prospects in Vaccine Development. *J Infect Dis* **218**, S141-s146 (2018).
- 6 Cabrera, A., Lepage, J. E., Sullivan, K. M. & Seed, S. M. Vaxchora: A Single-Dose Oral Cholera Vaccine. *Ann Pharmacother* **51**, 584-589 (2017).
- 7 Deng, S. Q. *et al.* A Review on Dengue Vaccine Development. *Vaccines (Basel)* **8** (2020).
- 8 Thomas, S. J. & Yoon, I.-K. A review of Dengvaxia[®]: Development to deployment. *Human vaccines & immunotherapeutics* **15**, 2295-2314 (2019).
- 9 World Health Organization. Diphtheria vaccine: WHO position paper, August 2017–Recommendations. *Weekly epidemiological record* **92**, 417–436 (2017).
- 10 Shukla, A., Singh, B. & Katare, O. P. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. *Br J Pharmacol* **164**, 820-827 (2011).
- 11 Mills, K. H. *et al.* Protective levels of diphtheria-neutralizing antibody induced in healthy volunteers by unilateral priming-boosting intranasal immunization associated with restricted ipsilateral mucosal secretory immunoglobulin a. *Infect Immun* **71**, 726-732 (2003).
- 12 Lin, K. Y. *et al.* Hepatitis A virus infection and hepatitis A vaccination in human immunodeficiency virus-positive patients: A review. *World J Gastroenterol* **23**, 3589-3606 (2017).
- 13 Van Der Meeren, O., Crasta, P. & de Ridder, M. A retrospective pooled analysis assessing the effect of age on the immunogenicity of Havrix in healthy adults. *Hum Vaccin Immunother* **11**, 1729-1734 (2015).
- 14 Mitchell, L. A., Joseph, A., Kedar, E., Barenholz, Y. & Galun, E. Mucosal immunization against hepatitis A: antibody responses are enhanced by coadministration of synthetic oligodeoxynucleotides and a novel cationic lipid. *Vaccine* **24**, 5300-5310 (2006).

- 15 Van Herck, K., Jacquet, J. M. & Van Damme, P. Antibody persistence and immune memory in healthy adults following vaccination with a two-dose inactivated hepatitis A vaccine: long-term follow-up at 15 years. *J Med Virol* **83**, 1885-1891 (2011).
- 16 Xu, Z. Y. & Wang, X. Y. Live attenuated hepatitis A vaccines developed in China. *Hum Vaccin Immunother* **10**, 659-666 (2014).
- 17 Chen, Y. *et al.* Immune memory at 17-years of follow-up of a single dose of live attenuated hepatitis A vaccine. *Vaccine* **36**, 114-121 (2018).
- 18 do Livramento, A. *et al.* Immune memory response induced in vitro by recombinant hepatitis B surface antigen challenge 13-18 years after primary vaccination. *J Med Virol* **86**, 1700-1704 (2014).
- 19 Cassaniti, I. *et al.* Memory T cells specific for HBV enumerated by a peptidebased cultured enzyme-linked immunospot assay in healthy HBV-vaccinated subjects. *Hum Vaccin Immunother* **12**, 2927-2933 (2016).
- 20 Simpson, S. J. *et al.* Hepatitis B Vaccination Induces Mucosal Antibody Responses in the Female Genital Tract, Indicating Potential Mechanisms of Protection Against Infection. *Sex Transm Dis* **46**, e53-e56 (2019).
- 21 Lepow, M. L., Samuelson, J. S. & Gordon, L. K. Safety and immunogenicity of Haemophilus influenzae type B polysaccharide-diphtheria toxoid conjugate vaccine in adults. *J Infect Dis* **150**, 402-406 (1984).
- 22 Perrett, K. P. *et al.* Long-term persistence of immunity and B-cell memory following Haemophilus influenzae type B conjugate vaccination in early childhood and response to booster. *Clin Infect Dis* **58**, 949-959 (2014).
- 23 Joura, E. A. *et al.* HPV antibody levels and clinical efficacy following administration of a prophylactic quadrivalent HPV vaccine. *Vaccine* **26**, 6844-6851 (2008).
- 24 Lee, J. K. H. *et al.* Efficacy and effectiveness of high-dose influenza vaccine in older adults by circulating strain and antigenic match: An updated systematic review and meta-analysis. *Vaccine* **39 Suppl 1**, A24-A35 (2021).
- Nguyen, J., Hardigan, P., Kesselman, M. M. & Demory Beckler, M.
 Immunogenicity of The Influenza Vaccine in Multiple Sclerosis Patients: A
 Systematic Review and Meta-Analysis. *Mult Scler Relat Disord* 48, 102698 (2021).
- 26 Manuel, O. *et al.* Humoral response to the influenza A H1N1/09 monovalent AS03-adjuvanted vaccine in immunocompromised patients. *Clin Infect Dis* **52**, 248-256 (2011).
- 27 Satchidanandam, V. Japanese Encephalitis Vaccines. *Curr Treat Options Infect Dis*, doi:10.1007/s40506-020-00242-5, 1-12 (2020).
- 28 Hombach, J., Solomon, T., Kurane, I., Jacobson, J. & Wood, D. Report on a WHO consultation on immunological endpoints for evaluation of new Japanese encephalitis vaccines, WHO, Geneva, 2-3 September, 2004. *Vaccine* 23, 5205-5211 (2005).
- 29 Bellanti, J. A., Sanga, R. L., Klutinis, B., Brandt, B. & Artenstein, M. S. Antibody responses in serum and nasal secretions of children immunized with inactivated and attenuated measles-virus vaccines. *N Engl J Med* **280**, 628-633 (1969).

- 30 Chandra, R. K. Reduced secretory antibody response to live attenuated measles and poliovirus vaccines in malnourished children. *Br Med J* **2**, 583-585 (1975).
- 31 Antia, A. *et al.* Heterogeneity and longevity of antibody memory to viruses and vaccines. *PLoS Biol* **16**, e2006601 (2018).
- 32 Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common viral and vaccine antigens. *N Engl J Med* **357**, 1903-1915 (2007).
- 33 Pizza, M., Bekkat-Berkani, R. & Rappuoli, R. Vaccines against Meningococcal Diseases. *Microorganisms* **8** (2020).
- Reingold, A. L. *et al.* Age-specific differences in duration of clinical protection after vaccination with meningococcal polysaccharide A vaccine. *Lancet* **2**, 114-118 (1985).
- 35 Keshavan, P., Pellegrini, M., Vadivelu-Pechai, K. & Nissen, M. An update of clinical experience with the quadrivalent meningococcal ACWY-CRM conjugate vaccine. *Expert Rev Vaccines* **17**, 865-880 (2018).
- 36 Ohm, M. *et al.* Different Long-Term Duration of Seroprotection against Neisseria meningitidis in Adolescents and Middle-Aged Adults after a Single Meningococcal ACWY Conjugate Vaccination in The Netherlands. *Vaccines (Basel)* **8** (2020).
- Rivero-Calle, I., Raguindin, P. F., Gomez-Rial, J., Rodriguez-Tenreiro, C. & Martinon-Torres, F. Meningococcal Group B Vaccine For The Prevention Of Invasive Meningococcal Disease Caused By Neisseria meningitidis Serogroup B. *Infect Drug Resist* 12, 3169-3188 (2019).
- Davenport, V. *et al.* Mucosal immunity in healthy adults after parenteral vaccination with outer-membrane vesicles from Neisseria meningitidis serogroup B. *J Infect Dis* 198, 731-740 (2008).
- 39 Dewan, K. K., Linz, B., DeRocco, S. E. & Harvill, E. T. Acellular Pertussis Vaccine Components: Today and Tomorrow. *Vaccines (Basel)* **8** (2020).
- 40 Kapil, P. & Merkel, T. J. Pertussis vaccines and protective immunity. *Curr Opin Immunol* **59**, 72-78 (2019).
- 41 McGirr, A. & Fisman, D. N. Duration of pertussis immunity after DTaP immunization: a meta-analysis. *Pediatrics* **135**, 331-343 (2015).
- 42 Orami, T. *et al.* Pneumococcal conjugate vaccine primes mucosal immune responses to pneumococcal polysaccharide vaccine booster in Papua New Guinean children. *Vaccine* **38**, 7977-7988 (2020).
- 43 Choo, S., Zhang, Q., Seymour, L., Akhtar, S. & Finn, A. Primary and booster salivary antibody responses to a 7-valent pneumococcal conjugate vaccine in infants. *J Infect Dis* **182**, 1260-1263 (2000).
- 44 Pasetti, M. F., Simon, J. K., Sztein, M. B. & Levine, M. M. Immunology of gut mucosal vaccines. *Immunol Rev* **239**, 125-148 (2011).
- 45 Engstrom, P. E., Gustafson, R., Granberg, M. & Engstrom, G. N. Specific IgA subclass responses in serum and saliva: a 12-month follow-up study after parenteral booster immunization with tetanus toxoid. *Acta Odontol Scand* 60, 198-202 (2002).

- 46 Farez, M. F. & Correale, J. Yellow fever vaccination and increased relapse rate in travelers with multiple sclerosis. *Arch Neurol* **68**, 1267-1271 (2011).
- 47 Walsh, E. E. *et al.* Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. *N Engl J Med* **383**, 2439-2450 (2020).
- 48 Polack, F. P. *et al.* Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *N Engl J Med* **383**, 2603-2615 (2020).
- 49 Mulligan, M. J. *et al.* Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. *Nature* **586**, 589-593 (2020).
- 50 Sahin, U. *et al.* COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. *Nature* **586**, 594-599 (2020).
- 51 Anderson, E. J. *et al.* Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. *N Engl J Med* **383**, 2427-2438 (2020).
- 52 Jackson, L. A. *et al.* An mRNA Vaccine against SARS-CoV-2 Preliminary Report. *N Engl J Med* **383**, 1920-1931 (2020).
- 53 Widge, A. T. *et al.* Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. *N Engl J Med* **384**, 80-82 (2021).
- 54 Folegatti, P. M. *et al.* Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. *Lancet* **396**, 467-478 (2020).
- 55 Voysey, M. *et al.* Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. *Lancet* **397**, 99-111 (2021).
- 56 Dai, L. & Gao, G. F. Viral targets for vaccines against COVID-19. *Nat Rev Immunol* **21**, 73-82 (2021).
- 57 Ewer, K. J. *et al.* T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. *Nat Med* **27**, 270-278 (2021).
- 58 Ramasamy, M. N. *et al.* Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. *Lancet* **396**, 1979-1993 (2021).
- 59 Sadoff, J. *et al.* Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. *N Engl J Med* **384**, 1824-1835 (2021).
- 60 Bos, R. *et al.* Ad26 vector-based COVID-19 vaccine encoding a prefusionstabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. *NPJ Vaccines* **5**, 91 (2020).
- 61 Alter, G. *et al.* Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. *Nature* **596**, 268-272 (2021).
- 62 Plotkin, S. A. Correlates of protection induced by vaccination. *Clin Vaccine Immunol* **17**, 1055-1065 (2010).
- 63 Plotkin, S. A. Updates on immunologic correlates of vaccine-induced protection. *Vaccine* **38**, 2250-2257 (2020).

- Poolman, J. & Borrow, R. Hyporesponsiveness and its clinical implications after vaccination with polysaccharide or glycoconjugate vaccines. *Expert Rev Vaccines* 10, 307-322 (2011).
- 65 Van Damme, P. *et al.* Antibody persistence and immune memory in adults, 15 years after a three-dose schedule of a combined hepatitis A and B vaccine. *J Med Virol* **84**, 11-17 (2012).
- 66 Carter, N. J. Multicomponent meningococcal serogroup B vaccine (4CMenB; Bexsero((R))): a review of its use in primary and booster vaccination. *BioDrugs* 27, 263-274 (2013).
- 67 Zarei, A. E., Almehdar, H. A. & Redwan, E. M. Hib Vaccines: Past, Present, and Future Perspectives. *J Immunol Res* **2016**, 7203587 (2016).
- 68 Van Den Ende, C., Marano, C., Van Ahee, A., Bunge, E. M. & De Moerlooze, L. The immunogenicity and safety of GSK's recombinant hepatitis B vaccine in adults: a systematic review of 30 years of experience. *Expert Rev Vaccines* **16**, 811-832 (2017).
- 69 Siegrist, C. A. in *Plotkin's Vaccines* (eds S. Plotkin, W. Orenstein, P. Offit, & K. M. Edwards) 17-36 (Elsevier, 2018).
- Villarreal, R. & Casale, T. B. Commonly Used Adjuvant Human Vaccines:
 Advantages and Side Effects. J Allergy Clin Immunol Pract 8, 2953-2957 (2020).
- 71 Zimmermann, P. & Curtis, N. Factors That Influence the Immune Response to Vaccination. *Clin Microbiol Rev* **32** (2019).
- 72 Otero-Romero, S., Ascherio, A. & Lebrun-Frenay, C. Vaccinations in multiple sclerosis patients receiving disease-modifying drugs. *Curr Opin Neurol* **34**, 322-328 (2021).
- 73 Tregoning, J. S., Russell, R. F. & Kinnear, E. Adjuvanted influenza vaccines. *Hum Vaccin Immunother* **14**, 550-564 (2018).
- Pellegrino, P., Clementi, E. & Radice, S. On vaccine's adjuvants and autoimmunity: Current evidence and future perspectives. *Autoimmun Rev* 14, 880-888 (2015).
- 75 Vono, M. *et al.* The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. *Proc Natl Acad Sci U S A* **110**, 21095-21100 (2013).
- 76 Ko, E. J. & Kang, S. M. Immunology and efficacy of MF59-adjuvanted vaccines. *Hum Vaccin Immunother* **14**, 3041-3045 (2018).
- 77 Felldin, M., Andersson, B., Studahl, M., Svennerholm, B. & Friman, V. Antibody persistence 1 year after pandemic H1N1 2009 influenza vaccination and immunogenicity of subsequent seasonal influenza vaccine among adult organ transplant patients. *Transpl Int* **27**, 197-203 (2014).
- 78 Berglund, A. *et al.* The response to vaccination against influenza A(H1N1) 2009, seasonal influenza and Streptococcus pneumoniae in adult outpatients with ongoing treatment for cancer with and without rituximab. *Acta Oncol* **53**, 1212-1220 (2014).

- 79 Ho, J. *et al.* Enhancing effects of adjuvanted 2009 pandemic H1N1 influenza A vaccine on memory B-cell responses in HIV-infected individuals. *AIDS* 25, 295-302 (2011).
- Mahmud, S. M., Bozat-Emre, S., Mostaco-Guidolin, L. C. & Marrie, R. A. Registry Cohort Study to Determine Risk for Multiple Sclerosis after Vaccination for Pandemic Influenza A(H1N1) with Arepanrix, Manitoba, Canada. *Emerg Infect Dis* 24, 1267-1274 (2018).
- 81 Bouvy, J. C. *et al.* Registries in European post-marketing surveillance: a retrospective analysis of centrally approved products, 2005–2013. *Pharmacoepidemiology and drug safety* **26**, 1442-1450 (2017).
- 82 Klucker, M. F., Dalencon, F., Probeck, P. & Haensler, J. AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method. *J Pharm Sci* **101**, 4490-4500 (2012).
- 83 Del Giudice, G., Rappuoli, R. & Didierlaurent, A. M. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. *Semin Immunol* **39**, 14-21 (2018).
- 84 Burny, W. *et al.* Different adjuvants induce common innate pathways that are associated with enhanced adaptive responses against a model antigen in humans. *Frontiers in immunology* **8**, 943 (2017).
- 85 He, P., Zou, Y. & Hu, Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. *Hum Vaccin Immunother* **11**, 477-488 (2015).
- Chioato, A. *et al.* Influenza and meningococcal vaccinations are effective in healthy subjects treated with the interleukin-1β-blocking antibody canakinumab: Results of an open-label, parallel group, randomized, single-center study. *Clin. Vaccine Immunol.* 17, 1952-1957 (2010).
- 87 Garcia Garrido, H. M. *et al.* Hepatitis A vaccine immunogenicity in patients using immunosuppressive drugs: A systematic review and meta-analysis. *Travel Med Infect Dis*, doi:10.1016/j.tmaid.2019.101479, 101479 (2019).
- 88 Berkowitz, E. M. *et al.* Safety and immunogenicity of an adjuvanted herpes zoster subunit candidate vaccine in HIV-infected adults: a phase 1/2a randomized, placebo-controlled study. *J Infect Dis* **211**, 1279-1287 (2015).
- 89 Didierlaurent, A. M. *et al.* Adjuvant system AS01: helping to overcome the challenges of modern vaccines. *Expert Rev Vaccines* **16**, 55-63 (2017).
- 90 Levin, M. J. *et al.* Th1 memory differentiates recombinant from live herpes zoster vaccines. *J Clin Invest* **128**, 4429-4440 (2018).
- 91 Dowling, D. J. & Levy, O. Pediatric Vaccine Adjuvants: Components of the Modern Vaccinologist's Toolbox. *Pediatr Infect Dis J* **34**, 1395-1398 (2015).
- 92 Lindemann, M. *et al.* Humoral and Cellular Responses to a Single Dose of Fendrix in Renal Transplant Recipients with Non-response to Previous Hepatitis B Vaccination. *Scand J Immunol* 85, 51-57 (2017).
- 93 Bungener, L., Huckriede, A., Wilschut, J. & Daemen, T. Delivery of protein antigens to the immune system by fusion-active virosomes: a comparison with liposomes and ISCOMs. *Biosci Rep* **22**, 323-338 (2002).

- Lovgren, K. & Morein, B. The requirement of lipids for the formation of immunostimulating complexes (iscoms). *Biotechnol Appl Biochem* 10, 161-172 (1988).
- 95 Reimer, J. M. *et al.* Matrix-M adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. *PLoS One* **7**, e41451 (2012).
- D'Acremont, V., Herzog, C. & Genton, B. Immunogenicity and safety of a virosomal hepatitis A vaccine (Epaxal) in the elderly. *J Travel Med* 13, 78-83 (2006).
- 97 Gasparini, R., Amicizia, D., Lai, P. L., Rossi, S. & Panatto, D. Effectiveness of adjuvanted seasonal influenza vaccines (Inflexal V (R) and Fluad (R)) in preventing hospitalization for influenza and pneumonia in the elderly: a matched case-control study. *Hum Vaccin Immunother* **9**, 144-152 (2013).
- 98 Hatz, C. *et al.* Successful memory response following a booster dose with a virosome-formulated hepatitis a vaccine delayed up to 11 years. *Clin Vaccine Immunol* **18**, 885-887 (2011).
- Ghasemiyeh, P., Mohammadi-Samani, S., Firouzabadi, N., Dehshahri, A. & Vazin,
 A. A focused review on technologies, mechanisms, safety, and efficacy of
 available COVID-19 vaccines. *Int Immunopharmacol* 100, 108162 (2021).
- 100 Datoo, M. S. *et al.* Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. *Lancet* **397**, 1809-1818 (2021).
- 101 Shinde, V. *et al.* Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. *Lancet Infect Dis* **22**, 73-84 (2022).
- 102 Heath, P. T. *et al.* Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. *N Engl J Med* **385**, 1172-1183 (2021).
- 103 Rahmanzadeh, R., Weber, M. S., Bruck, W., Navardi, S. & Sahraian, M. A. B cells in multiple sclerosis therapy-A comprehensive review. *Acta Neurol Scand* **137**, 544-556 (2018).
- 104 Hauser, S. L. *et al.* Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. *N Engl J Med* **376**, 221-234 (2017).
- 105 Montalban, X. *et al.* Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. *N Engl J Med* **376**, 209-220 (2017).
- 106 Emery, P. *et al.* Safety with ocrelizumab in rheumatoid arthritis: results from the ocrelizumab phase III program. *PLoS One* **9**, e87379 (2014).
- 107 Clifford, D. *et al.* Cases reported as progressive multifocal leukoencephalopathy in ocrelizumab-treated patients with multiple sclerosis. *Proceedings of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS), Stockholm, Sweden,* 11-13 (2019).
- 108 Graf, J. *et al.* Targeting B cells to modify MS, NMOSD, and MOGAD: Part 2. *Neurol Neuroimmunol Neuroinflamm* **8** (2021).

- 109 Bar-Or, A. *et al.* Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. *Ann Neurol* **63**, 395-400 (2008).
- 110 Hauser, S. L. *et al.* B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. *N Engl J Med* **358**, 676-688 (2008).
- 111 Hawker, K. *et al.* Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. *Ann Neurol* **66**, 460-471 (2009).
- 112 Luna, G. *et al.* Infection Risks Among Patients With Multiple Sclerosis Treated With Fingolimod, Natalizumab, Rituximab, and Injectable Therapies. *JAMA Neurol* **77**, 184-191 (2020).
- 113 He, D. *et al.* Rituximab for relapsing-remitting multiple sclerosis. *Cochrane Database Syst Rev*, doi:10.1002/14651858.CD009130.pub3, CD009130 (2013).
- 114 Huck, C. *et al.* Low-Dose Subcutaneous Anti-CD20 Treatment Depletes Disease Relevant B Cell Subsets and Attenuates Neuroinflammation. *J Neuroimmune Pharmacol* 14, 709-719 (2019).
- 115 Hauser, S. L. *et al.* Ofatumumab versus Teriflunomide in Multiple Sclerosis. *N Engl J Med* **383**, 546-557 (2020).
- 116 Cree, B. A. C. *et al.* Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebocontrolled phase 2/3 trial. *Lancet* **394**, 1352-1363 (2019).
- 117 Cree, B. A. C. *et al.* Long-term Efficacy and Safety of Inebilizumab for Neuromyelitis Optica Spectrum Disorder in the Randomized, Double-blind N-MOmentum Study and Extension (3998). *Neurology* **94**, 3998 (2020).
- 118 Wiendl, H. & Kieseier, B. Multiple sclerosis: reprogramming the immune repertoire with alemtuzumab in MS. *Nat Rev Neurol* **9**, 125-126 (2013).
- 119 Cohen, J. A. *et al.* Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. *Lancet* **380**, 1819-1828 (2012).
- 120 Coles, A. J. *et al.* Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. *Lancet* **380**, 1829-1839 (2012).
- 121 Tuohy, O. *et al.* Alemtuzumab treatment of multiple sclerosis: long-term safety and efficacy. *J Neurol Neurosurg Psychiatry* **86**, 208-215 (2015).
- 122 Willis, M. D. *et al.* Alemtuzumab for multiple sclerosis: Long term follow-up in a multi-centre cohort. *Mult Scler* **22**, 1215-1223 (2016).
- 123 Hartung, H. P., Mares, J. & Barnett, M. H. Alemtuzumab: Rare serious adverse events of a high-efficacy drug. *Mult Scler* **26**, 737-740 (2020).
- 124 Gerevini, S., Capra, R., Bertoli, D., Sottini, A. & Imberti, L. Immune profiling of a patient with alemtuzumab-associated progressive multifocal leukoencephalopathy. *Mult Scler* **25**, 1196-1201 (2019).
- Leist, T. P. & Weissert, R. Cladribine: mode of action and implications for treatment of multiple sclerosis. *Clin Neuropharmacol* **34**, 28-35 (2011).
- 126 Moser, T. *et al.* Long-term peripheral immune cell profiling reveals further targets of oral cladribine in MS. *Ann Clin Transl Neurol* **7**, 2199-2212 (2020).

- 127 Cook, S. *et al.* Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orally) study. *Mult Scler* **17**, 578-593 (2011).
- 128 Giovannoni, G. *et al.* Safety and efficacy of cladribine tablets in patients with relapsing-remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study. *Mult Scler* **24**, 1594-1604 (2018).
- 129 Gold, R. *et al.* Vaccination in multiple sclerosis patients treated with highly effective disease-modifying drugs: an overview with consideration of cladribine tablets. *Ther Adv Neurol Disord* **14**, 17562864211019598 (2021).
- 130 Fox, R. I. *et al.* Mechanism of action for leflunomide in rheumatoid arthritis. *Clin Immunol* **93**, 198-208 (1999).
- Bar-Or, A., Pachner, A., Menguy-Vacheron, F., Kaplan, J. & Wiendl, H.
 Teriflunomide and its mechanism of action in multiple sclerosis. *Drugs* 74, 659-674 (2014).
- 132 Confavreux, C. *et al.* Long-term follow-up of a phase 2 study of oral teriflunomide in relapsing multiple sclerosis: safety and efficacy results up to 8.5 years. *Mult Scler* **18**, 1278-1289 (2012).
- 133 Confavreux, C. *et al.* Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Neurol* **13**, 247-256 (2014).
- 134 Huskisson, E. C. Azathioprine. *Clin Rheum Dis* **10**, 325-332 (1984).
- 135 Invernizzi, P., Benedetti, M. D., Poli, S. & Monaco, S. Azathioprine in multiple sclerosis. *Mini Rev Med Chem* **8**, 919-926 (2008).
- 136 Bhandaru, M. *et al.* Effect of azathioprine on Na(+)/H(+) exchanger activity in dendritic cells. *Cell Physiol Biochem* **29**, 533-542 (2012).
- 137 Elion, G. B. The George Hitchings and Gertrude Elion Lecture. The pharmacology of azathioprine. *Ann N Y Acad Sci* **685**, 400-407 (1993).
- 138 Awad, A. & Stuve, O. Cyclophosphamide in multiple sclerosis: scientific rationale, history and novel treatment paradigms. *Ther Adv Neurol Disord* **2**, 50-61 (2009).
- 139 Boster, A. *et al.* Intense immunosuppression in patients with rapidly worsening multiple sclerosis: treatment guidelines for the clinician. *Lancet Neurol* 7, 173-183 (2008).
- 140 Martin, F., Lauwerys, B., Lefebvre, C., Devogelaer, J. P. & Houssiau, F. A. Sideeffects of intravenous cyclophosphamide pulse therapy. *Lupus* **6**, 254-257 (1997).
- 141 Fidler, J. M., DeJoy, S. Q. & Gibbons, J. J., Jr. Selective immunomodulation by the antineoplastic agent mitoxantrone. I. Suppression of B lymphocyte function. *J Immunol* **137**, 727-732 (1986).
- 142 Koeller, J. & Eble, M. Mitoxantrone: a novel anthracycline derivative. *Clin Pharm* 7, 574-581 (1988).
- 143 Burns, S. A. *et al.* Mitoxantrone repression of astrocyte activation: relevance to multiple sclerosis. *Brain Res* **1473**, 236-241 (2012).
- Martinelli Boneschi, F., Vacchi, L., Rovaris, M., Capra, R. & Comi, G. Mitoxantrone for multiple sclerosis. *Cochrane Database Syst Rev*, doi:10.1002/14651858.CD002127.pub3, CD002127 (2013).

- 145 Rice, G. P., Hartung, H. P. & Calabresi, P. A. Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. *Neurology* **64**, 1336-1342 (2005).
- 146 Leussink, V. I. *et al.* Blockade of signaling via the very late antigen (VLA-4) and its counterligand vascular cell adhesion molecule-1 (VCAM-1) causes increased T cell apoptosis in experimental autoimmune neuritis. *Acta Neuropathol* **103**, 131-136 (2002).
- 147 Winkelmann, A., Loebermann, M., Reisinger, E. C., Hartung, H. P. & Zettl, U. K. Disease-modifying therapies and infectious risks in multiple sclerosis. *Nat Rev Neurol* **12**, 217-233 (2016).
- 148 Major, E. O., Yousry, T. A. & Clifford, D. B. Pathogenesis of progressive multifocal leukoencephalopathy and risks associated with treatments for multiple sclerosis: a decade of lessons learned. *Lancet Neurol* **17**, 467-480 (2018).
- 149 Schwab, N., Schneider-Hohendorf, T., Melzer, N., Cutter, G. & Wiendl, H. Natalizumab-associated PML: Challenges with incidence, resulting risk, and risk stratification. *Neurology* 88, 1197-1205 (2017).
- 150 Berger, J. R. & Fox, R. J. Reassessing the risk of natalizumab-associated PML. *J Neurovirol* **22**, 533-535 (2016).
- 151 Ho, P. R. *et al.* Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. *Lancet Neurol* **16**, 925-933 (2017).
- 152 Tugemann, B. The risk of PML from natalizumab. *Lancet Neurol* **18**, 230 (2019).
- 153 O'Sullivan, C. & Dev, K. K. The structure and function of the S1P1 receptor. *Trends Pharmacol Sci* **34**, 401-412 (2013).
- 154 Cohen, J. A. & Chun, J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. *Ann Neurol* **69**, 759-777 (2011).
- 155 Chanvillard, C., Jacolik, R. F., Infante-Duarte, C. & Nayak, R. C. The role of natural killer cells in multiple sclerosis and their therapeutic implications. *Front Immunol* 4, 63 (2013).
- 156 Kohne, A. *et al.* Fingolimod impedes Schwann cell-mediated myelination: implications for the treatment of immune neuropathies? *Arch Neurol* **69**, 1280-1289 (2012).
- 157 Mullershausen, F. *et al.* Phosphorylated FTY720 promotes astrocyte migration through sphingosine-1-phosphate receptors. *J Neurochem* **102**, 1151-1161 (2007).
- 158 Kappos, L. *et al.* Fingolimod in relapsing multiple sclerosis: An integrated analysis of safety findings. *Mult Scler Relat Disord* **3**, 494-504 (2014).
- 159 Arvin, A. M. *et al.* Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. *JAMA Neurol* **72**, 31-39 (2015).
- 160 Comi, G., Hartung, H. P., Bakshi, R., Williams, I. M. & Wiendl, H. Benefit-Risk Profile of Sphingosine-1-Phosphate Receptor Modulators in Relapsing and Secondary Progressive Multiple Sclerosis. *Drugs* **77**, 1755-1768 (2017).
- 161 Jaillard, C. *et al.* Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. *J Neurosci* **25**, 1459-1469 (2005).

- 162 Tiper, I. V., East, J. E., Subrahmanyam, P. B. & Webb, T. J. Sphingosine 1phosphate signaling impacts lymphocyte migration, inflammation and infection. *Pathog Dis* **74**, ftw063 (2016).
- 163 Harris, S. *et al.* Effect of the sphingosine-1-phosphate receptor modulator ozanimod on leukocyte subtypes in relapsing MS. *Neurol Neuroimmunol Neuroinflamm* **7**, e839 (2020).
- 164 Tran, J. Q. *et al.* Results From the First-in-Human Study With Ozanimod, a Novel, Selective Sphingosine-1-Phosphate Receptor Modulator. *J Clin Pharmacol* **57**, 988-996 (2017).
- 165 Cohan, S., Lucassen, E., Smoot, K., Brink, J. & Chen, C. Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. *Biomedicines* **8**, 227 (2020).
- Kappos, L. *et al.* Ponesimod Compared With Teriflunomide in Patients With Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study: A Randomized Clinical Trial. *JAMA Neurol* **78**, 558-567 (2021).
- 167 Roy, R., Alotaibi, A. A. & Freedman, M. S. Sphingosine 1-Phosphate Receptor Modulators for Multiple Sclerosis. *CNS Drugs* **35**, 385-402 (2021).
- 168 Fensterl, V. & Sen, G. C. Interferons and viral infections. *Biofactors* **35**, 14-20 (2009).
- 169 Hall, G. L., Compston, A. & Scolding, N. J. Beta-interferon and multiple sclerosis. *Trends Neurosci* **20**, 63-67 (1997).
- 170 Fensterl, V., Chattopadhyay, S. & Sen, G. C. No Love Lost Between Viruses and Interferons. *Annu Rev Virol* **2**, 549-572 (2015).
- 171 McGlasson, S., Jury, A., Jackson, A. & Hunt, D. Type I interferon dysregulation and neurological disease. *Nat Rev Neurol* **11**, 515-523 (2015).
- 172 Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. The IFNB Multiple Sclerosis Study Group. *Neurology* **43**, 655-661 (1993).
- 173 Randomised double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. PRISMS (Prevention of Relapses and Disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) Study Group. *Lancet* **352**, 1498-1504 (1998).
- 174 Jacobs, L. D. *et al.* Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). *Ann Neurol* **39**, 285-294 (1996).
- 175 Calabresi, P. A. *et al.* Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. *Lancet Neurol* **13**, 657-665 (2014).
- 176 Kieseier, B. C. *et al.* Peginterferon beta-1a in multiple sclerosis: 2-year results from ADVANCE. *Mult Scler* **21**, 1025-1035 (2015).
- 177 Ziemssen, T., Kumpfel, T., Klinkert, W. E., Neuhaus, O. & Hohlfeld, R. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. *Brain* **125**, 2381-2391 (2002).

- 178 Hong, J., Li, N., Zhang, X., Zheng, B. & Zhang, J. Z. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. *Proc Natl Acad Sci U S A* **102**, 6449-6454 (2005).
- 179 Ziemssen, T. & Schrempf, W. Glatiramer acetate: mechanisms of action in multiple sclerosis. *Int Rev Neurobiol* **79**, 537-570 (2007).
- 180 Gold, R., Linker, R. A. & Stangel, M. Fumaric acid and its esters: an emerging treatment for multiple sclerosis with antioxidative mechanism of action. *Clin Immunol* **142**, 44-48 (2012).
- Linker, R. A. *et al.* Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. *Brain* 134, 678-692 (2011).
- 182 Scannevin, R. H. *et al.* Fumarates promote cytoprotection of central nervous system cells against oxidative stress via the nuclear factor (erythroid-derived 2)-like 2 pathway. *J Pharmacol Exp Ther* **341**, 274-284 (2012).
- Havrdova, E. *et al.* Oral BG-12 (dimethyl fumarate) for relapsing-remitting multiple sclerosis: a review of DEFINE and CONFIRM. Evaluation of: Gold R, Kappos L, Arnold D, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012;367:1098-107; and Fox RJ, Miller DH, Phillips JT, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 2012;367:1087-97. *Expert Opin Pharmacother* 14, 2145-2156 (2013).
- 184 Zhang, C. *et al.* Safety and efficacy of tocilizumab versus azathioprine in highly relapsing neuromyelitis optica spectrum disorder (TANGO): an open-label, multicentre, randomised, phase 2 trial. *Lancet Neurol* **19**, 391-401 (2020).
- 185 Traboulsee, A. *et al.* Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. *Lancet Neurol* **19**, 402-412 (2020).
- 186 Yamamura, T. *et al.* Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. *N Engl J Med* **381**, 2114-2124 (2019).
- 187 Pittock, S. J. *et al.* Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. *N Engl J Med* **381**, 614-625 (2019).
- 188 Alashkar, F. *et al.* Serologic response to meningococcal vaccination in patients with cold agglutinin disease (CAD) in the novel era of complement inhibition. *Vaccine* **37**, 6682-6687 (2019).
- 189 Stahn, C., Lowenberg, M., Hommes, D. W. & Buttgereit, F. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. *Mol Cell Endocrinol* **275**, 71-78 (2007).
- 190 Spies, C. M., Bijlsma, J. W., Burmester, G. R. & Buttgereit, F. Pharmacology of glucocorticoids in rheumatoid arthritis. *Curr Opin Pharmacol* **10**, 302-307 (2010).
- 191 Buttgereit, F., Straub, R. H., Wehling, M. & Burmester, G. R. Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. *Arthritis Rheum* 50, 3408-3417 (2004).
- 192 Le Page, E. *et al.* Oral versus intravenous high-dose methylprednisolone for treatment of relapses in patients with multiple sclerosis (COPOUSEP): a

randomised, controlled, double-blind, non-inferiority trial. *Lancet* **386**, 974-981 (2015).

- 193 Klein, N. C., Go, C. H. & Cunha, B. A. Infections associated with steroid use. *Infect Dis Clin North Am* **15**, 423-432, viii (2001).
- 194 Lunemann, J. D., Nimmerjahn, F. & Dalakas, M. C. Intravenous immunoglobulin in neurology--mode of action and clinical efficacy. *Nat Rev Neurol* **11**, 80-89 (2015).
- 195 Galeotti, C., Kaveri, S. V. & Bayry, J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. *Int Immunol* **29**, 491-498 (2017).
- 196 Stangel, M. & Pul, R. Basic principles of intravenous immunoglobulin (IVIg) treatment. *J Neurol* **253 Suppl 5**, V18-24 (2006).
- 197 Gold, R., Stangel, M. & Dalakas, M. C. Drug Insight: the use of intravenous immunoglobulin in neurology--therapeutic considerations and practical issues. *Nat Clin Pract Neurol* **3**, 36-44 (2007).
- 198 Boschetti, N., Stucki, M., Spath, P. J. & Kempf, C. Virus safety of intravenous immunoglobulin: future challenges. *Clin Rev Allergy Immunol* **29**, 333-344 (2005).
- 199 Yajima, M. *et al.* Functional differences between antiviral activities of sulfonated and intact intravenous immunoglobulin preparations toward varicella-zoster virus and cytomegalovirus. *J Infect Chemother* **21**, 427-433 (2015).
- 200 Weinshenker, B. G. *et al.* A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. *Ann Neurol* **46**, 878-886 (1999).
- 201 Keegan, M. *et al.* Plasma exchange for severe attacks of CNS demyelination: predictors of response. *Neurology* **58**, 143-146 (2002).
- 202 Kaplan, A. A. Therapeutic plasma exchange: a technical and operational review. *J Clin Apher* **28**, 3-10 (2013).
- 203 Lehmann, H. C. & Hartung, H. P. Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. *J Neuroimmunol* **231**, 61-69 (2011).
- 204 Lehmann, H. C., Hartung, H. P., Hetzel, G. R., Stuve, O. & Kieseier, B. C. Plasma exchange in neuroimmunological disorders: Part 1: Rationale and treatment of inflammatory central nervous system disorders. *Arch Neurol* **63**, 930-935 (2006).
- 205 Vucic, S. & Davies, L. Safety of plasmapheresis in the treatment of neurological disease. *Aust N Z J Med* **28**, 301-305 (1998).
- 206 Kaneko, S. *et al.* Efficacy and safety of double filtration plasmapheresis in combination with interferon therapy for chronic hepatitis C. *Hepatol Res* **40**, 1072-1081 (2010).
- 207 Lin, J. H. *et al.* Prognostic factors and complication rates for double-filtration plasmapheresis in patients with Guillain-Barre syndrome. *Transfus Apher Sci* 52, 78-83 (2015).
- 208 Yeh, J. H., Chen, W. H. & Chiu, H. C. Complications of double-filtration plasmapheresis. *Transfusion* **44**, 1621-1625 (2004).
- 209 Bouget, J., Chevret, S., Chastang, C. & Raphael, J. C. Plasma exchange morbidity in Guillain-Barre syndrome: results from the French prospective, randomized,

multicenter study. The French Cooperative Group. *Crit Care Med* **21**, 651-658 (1993).

- 210 Boucher, C. A., de Gans, J., van Oers, R., Danner, S. & Goudsmit, J. Transmission of HIV and AIDS by plasmapheresis for Guillain-Barre syndrome. *Clin Neurol Neurosurg* **90**, 235-236 (1988).
- 211 Keegan, M. *et al.* Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. *Lancet* **366**, 579-582 (2005).