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1 Derivation of the chromatin modification circuit models

1.1 Single histone modification: reactions and model

In order to realize the model, we make the following assumptions:

� we lump together the two methylation states (me2 and me3) for simplicity because both
of them are associated with gene repression. This will not affect the type of qualitative
predictions that we seek to make in this paper;

� a nucleosome cannot be characterized by more than one modified histone simultaneously;

� D represents an unmodified nucleosome;

� DM represents a modified nucleosome (methylated or acetylated);

� For a species X, we use nX to denote the number of such a species and use italics, X, to
denote concentration when appropriate (defining the reaction volume as Ω, X = nX

Ω ). When

working with concentrations, Dtot =
Dtot
Ω represents the total concentration of nucleosomes

that can be modified within a gene of interest.

Then, we model the establishment, the catalysis and the erasure mechanisms as follows.
De novo establishment: the writers of histone modifications are usually found in multi-protein

complexes (denoted here by W) that contribute to stabilizing their enzymatic activity and help in
recruiting these writers to specific loci on DNA. These writer enzymes can be recruited to DNA by
TFs [1](Chapter 6). In particular, based on previous works (Chapter 6 of [1] and [2]), we assume
that the TF binds to DNA first and then recruits W. Furthermore, even if it is less effective, the
writers can still modify the histone even without being recruited by the TF [3, 4] and then we
introduce in the model also the possibility that the enzyme W binds directly to D. By modeling
the de novo establishment of a histone mark by an enzymatic reaction, the reactions characterizing
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this phase are the following:

P + P + ...
aP−−⇀↽−−
dP

Pn, Pn +D
āP−−⇀↽−−
d̄P

C̄P,

D+W
aW0−−−⇀↽−−−
dW

CW0
κW−−→ DM +W, C̄P +W

aW0 + aW−−−−−−−⇀↽−−−−−−
dW

CW
κW−−→ DM + Pn +W,

(1)

in which the first enzymatic reaction represents the basal de novo establishment and the second
enzymatic reaction represents the recruited de novo establishment. Furthermore, P is a sequence-
specific TF that can form multimer with n copies (Pn), W denotes the complex containing the
specific enzyme that writes the modification, C̄P is the complex between D and Pn, CW0 is the
complex between D and W, CW is the complex between C̄P and W, aP , a1, aW0, aW and dP ,
d1, dW are association and dissociation rate constants, respectively, and κW is the catalytic rate
constant of the enzymatic reaction.

Auto-catalysis: As well explained in Section “Models”, histone modification can be quickly
restored on unmodfied histones through a read-write mechanism where a modified histone is rec-
ognized by “readers”, proteins that bind the modified histone, which recruit writer enzymes for
the same modification, thus enabling the modification of nearby unmodified histones [5](Chapter
22), [6, 7, 8, 9, 10]. Consistent with early work that modeled this auto-catalysis mechanism as
a recruited modification [11, 12], we model the auto-catalysis phase with the following enzymatic
reactions:

DM +V
aM−−⇀↽−−
dM

M, D+M
ā−−⇀↽−−
d̄

CM
κM−−→ DM +M, C̄P +M

ā−−⇀↽−−
d̄

CM1
κM−−→ DM +Pn +M (2)

in which V is a multi-protein complex containing the reader and the writer, M denotes the complex
between DM and V, CM denotes the complex between D and M, CM1 denotes the complex between
C̄P and M, aM , ā and dM , d̄ are the association and dissociation rate constants, respectively, and
κM is the catalytic rate constant. Furthermore, the complex M, containing V, can bind also to
C̄P (D bound to Pn) to introduce in the model the fact that, as the sequence-specific TF does not
sequester D from the writer enzyme recruited the de novo establishment phase [1](Chapter 6),[3,
4], in the same way the sequence-specific TF does not sequester D from the writer enzyme recruited
through the read-write (auto-catalysis) mechanism. In particular, we assume that the association
and dissociation rate constants of M with D are independent of weather D is bound to Pn or free.
This reaction model assumes that (see Fig 1C) a modified nucleosome can recruit the writer enzyme
to any other unmodified nucleosome with equal probability, which increases with the concentra-
tion of modified nucleosomes. This is plausible given higher-order chromatin structure, such as by
DNA-looping [13], which allows in principle any nucleosome to move close to any other nucleosome.

Active and passive erasure: active erasure of the mark through eraser enzymes can be modeled
through a similar enzymatic reaction similar to (1):

DM + E
aE−−⇀↽−−
dE

CE
κE−−→ D+ E (3)

in which E is a multi-protein complex containing the eraser enzyme, CE denotes the complex
between DM and E, aE and dE are the association and dissociation rate constants, respectively,
and κE is the catalytic rate constant. In addition to being removed by suitable enzymes, the mark
can be passively removed through dilution due to DNA replication during S phase [5](Chapter
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22). Therefore, calling δ the rate constant of cell division (and DNA replication), we will have the
passive erasure reaction

DM δ−−→ D. (4)

Derivation of the model: the ODE model associated with reactions (1-4) is given by

Ṗn = aPP
n − dPPn + κWCW + κMCM1 − δPn

˙̄CP = āPPnD − d̄P C̄P − (aW0 + aW )C̄PW + dWCW − āC̄PM + d̄CM1

ĊW0 = aW0DW − dWCW0 − κWCW0

ĊW = (aW0 + aW )C̄PW − dWCW − κWCW

Ṁ = aMDMV − dMM − āDM + d̄CM + κMCM − āC̄PM + d̄CM1 + κMCM1

ĊM = āDM − d̄CM − κMCM

ĊM1 = āC̄PM − d̄CM1 − κMCM1

ĊE = aED
ME − dECE − κECE

ḊM = κW (CW0 + CW ) + κM (CM + CM1)− aED
ME + dECE − δDM .

(5)

Since the binding reactions are much faster than the other reactions, we set the complexes to their

quasi-steady state (QSS) values by setting Ṗn = ˙̄CP = ĊW0 = ĊW = Ṁ = ĊM = ĊM1 = ĊE = 0,
obtaining

Pn =
Pn

KP
, C̄P =

Pn

KP K̄P
D, CW0 =

W

KW0
D, CW = (

1

KW
+

1

KW0
)
PnW

KP K̄P
D, M =

DMV

KMM

CM =
V

KMMK̄M
DMD =

V

KM
DMD, CM1 =

V

KM
DM C̄P =

V Pn

KMKP K̄P
DMD, CE =

E

KE
DM ,

in which we introduce the dissociation constants of the first two reactions in (1) and of the first

reaction in (2) (KP = dP
aP

, K̄P = d̄P
āP

and KMM = dM
aM

respectively), the Michaelis-Menten (M-M)

constants of enzymatic reactions in (1), (2) and (3) (KW0 = dW+κW
aw0

, K̄M = d̄+κM
ā , KW = dW+κW

aW

and KE = dE+κE
aE

, respectively) and we define KM = KMMK̄M .
Substituting these values in the last ODE of (5), we obtain

ḊM = κWCW0 + κWCW + κM (CM + CM1)− κECE − δDM

= κW
W

KW0
D + κW (

1

KW
+

1

KW0
)
PnW

KP K̄P
D + κM

(
V

KMMK̄M
DMD +

V Pn

KMKP K̄P
DMD

)
− κE

E

KE
DM − δDM

=

(
κW

W

KW0

(
1 +

Pn

KP K̄P

)
+ κW

W

KW

Pn

KP K̄P
+ κM

(
1 +

Pn

KP K̄P

)
V

KM
DM

)
D − (κE

E

KE
+ δ)DM .

(6)
D can be obtained by the DNA conservation law Dtot = D+DM + C̄P +CW0 +CW +M +CM +
CM1 + CE that, by considering the complexes dynamics to the QSS, can be written as

Dtot = D

(
1 +

Pn

KP K̄P
+

W

KW0

(
1 +

Pn

KP K̄P

)
+

PnW

KP K̄PKW
+

V DM

KM
+

V DMPn

KMKP K̄P

)
+DM

(
1 +

V

KMM
+

E

KE

)
.
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By solving for D the conservation law, we obtain

D =
Dtot −DM (1 + V

KMM
+ E

KE
)

1 + Pn

KP K̄P
+ W

KW0

(
1 + Pn

KP K̄P

)
+ PnW

KP K̄PKW
+ V DM

KM
+ V DMPn

KMKP K̄P

.

Now, if we assume that the sum of the complexes CW , CW0, M , CM , CM1 and CE is negligible

with respect to D + DM + C̄P (that is, D
(

W
KW0

(
1 + Pn

KP K̄P

)
+ PnW

KP K̄PKW
+ V DM

KM
+ V DMPn

KMKP K̄P

)
+

DM ( E
KE

+ V
KMM

) ≪ D
(
1 + Pn

KP K̄P

)
+DM ), D can be written as

D ≈ Dtot −DM(
1 + Pn

KP K̄P

) .
Then, equation (6) becomes

ḊM =

κW
W

KW0
+ κW

W

KW

Pn

KP K̄P(
1 + Pn

KP K̄P

) + κM
V

KM
DM

 (Dtot −DM )− (δ + κE
E

KE
)DM

=
(
kW0 + kW + kMDM

)
(Dtot −DM )− (δ + k̄E)D

M .

1.2 Activating and repressive histone modifications: reactions and model

In this paper, we will refer to H3K4me3 and H3K4ac as activating histone modifications while
we will refer to H3K9me3 as repressive histone modifications. H3K4me3 and H3/H4 acetylation
co-exist at promoters and TSS of active genes and H3K4me3 may, in turn, promote downstream
acetylation through recruitment of HATs by the Thryotorax complex [8]. Therefore, there is a syn-
ergy and mutual reinforcement between H3K4 methylation and histone acetylation. We then denote
by DA a nucleosome carrying activating histone modifications, lumping together H3K4 methylation
and H3/H4 acetylation. We instead let DR denote a nucleosome carrying H3K9me3.

De novo establishment: transcriptional activators, while recruiting the TrX complex for H3K4
methylation and/or HATs for acetylation, compete for binding to DNA with PRC2 recruited there
by transcriptional repressors (see [14](Chapter 7) and also [1] (Chapter 6)). This competitive
binding scenario is well captured by the two following reactions, in which activators and repressors
are assumed not to be able to bind concurrently to DNA to enable a modification.
Activating modifications: H3K acetylation and H3K4me3/1. Based on [5](Chapter 21),

sequence-specific transcriptional activators bind DNA and recruit histone acetylases (HATs) such
as the SAGA complex to the promoter, which becomes acetylated. Examples of transcriptional
activators that recruit HATs include Myc, GATA.1,and Gal4 [14](Chapter 7). The deposition
of H3K4me3 then can occur co-transcriptionally as RNAPol II recruits SETs, which methylate
H3K4 [15],[5](Chapter 3), or through the recruitment of SETs and MLL1/2 to chromatin by the
CxxC binding domain that specifically recognizes unmethylated DNA. Due to this binding domain,
H3K4 methylation writers may be hardly recruited to regions with DNA methylation [14](Chapter
7). Finally, MLLs can be recruited to specific promoters by transcriptional activators such as Oct4,
which recruits WRD5 to self-renewal associated gene promoters thus facilitating the recruitment
of MLLs through the Trythorax complex [16]. We abstract these mechanisms by letting WA

denote the writer enzyme, VA denote the reader-writer multiprotein complex, that is, TrX for
H3K4 methylation and p300/CBP for acetylation, and A denote a sequence-specific transcriptional
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activator that can form multimer with n copies (An). Therefore, the establishment of de novo
activating modifications can be modeled by the reactions (1) in which we substitute W with WA

and P with A, obtaining

A + A+ ...
aA−−⇀↽−−
dA

An, An +D
āA−−⇀↽−−
d̄A

C̄A,

D+WA
aAW0−−−⇀↽−−−
dAW

CA
W0

κA
W−−→ DA +WA, C̄A +WA

aAW0 + aAW−−−−−−−⇀↽−−−−−−
dAW

CA
W

κA
W−−→ DA +An +WA.

(7)

Furthermore, denoting with R a sequence-specific transcriptional repressor that can form multimer
with n copies (Rn) and with C̄R the complex between D and the Rn, we assume that the repressor
allows WA to still bind to the nucleosome at a small rate (aAW0) and then we introduce the following
reactions:

C̄R +WA
aAW0−−−⇀↽−−−
dAW

CA
W2

κA
W−−→ DA +Rn +WA. (8)

Repressing modifications: H3K9 methylation. H3K9me3 is established by the writer
action of Suv39H1, which can be recruited to D by sequence-specific TFs. An example of this is
the recruitment of this enzyme to GATA.1 targets by the PU.1 TF, as a means to silence GATA.1
targets and promote the myeloid lineage [17]. In this example, PU.1 binding to GATA.1 targets
results in the exclusion of CBP histone acetyltransferase (although not of GATA.1 itself), which
is recruited to D by GATA.1. Let thus WR denote the writer enzyme and VR denote the reader-
writer multiprotein complex. Then, the de novo establishment of H3K9me3 can be modeled by
the enzymatic reaction (1) with W and P substituted by WR and R, respectively. The obtained
reactions are the following:

R + R + ...
aR−−⇀↽−−
dR

Rn, Rn +D
āR−−⇀↽−−
d̄R

C̄R,

D+WR
aRW0−−−⇀↽−−−
dRW

CR
W0

κR
W−−→ DR +WR, C̄R +WR

aRW0 + aRW−−−−−−−⇀↽−−−−−−
dRW

CR
W

κR
W−−→ DR +Rn +WR.

(9)

Furthermore, we assume that the activator allows WR to still bind to the nucleosome at a small
rate (aRW0) and then we introduce the following reactions:

C̄A +WR
aRW0−−−⇀↽−−−
dRW

CR
W2

κR
W−−→ DR +An +WR. (10)

Other reactions that could potentially occur include WA adding activating histone marks on nucle-
osome with repressive histone marks DR and WR adding repressive histone marks on nucleosome
with activating histone marks DA. Both of these reactions are excluded in light of the following ob-
servations. The first one is excluded because it is known that the Set1/Ash2 HMT that methylates
H3K4 does not do so if the neighboring K9 residue is already methylated [18]. The second reaction
is also excluded because in vitro studies complemented by in vivo experiments showed that histones
with H3K4me3 tend to lack H3K9me2/3 and that H3K4me3 prevents SUV39H1 and other KMTs
for H3K9 from binding H3 [19].

Auto-catalysis: in addition to (2) for both DA and DR, we have to introduce the following
reactions:

C̄R +MA āA−−⇀↽−−
d̄A

CA
M2

κA
M−−→ DA +Rn +MA, C̄A +MR āR−−⇀↽−−

d̄R
CR
M2

κR
M−−→ DR +An +MR, (11)
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in which CA
M2 denotes the complex between C̄R and MA and CR

M2 denotes the complex between C̄A

and MR. The reason is that, even if the DNA wrapped around a nucleosome is bound by An (or
Rn), D is still accessible to the repressive (or activating) modification auto-catalytic process. In
this way, as we did for the single histone modification model, we introduce in the model the fact
that any sequence-specific TF does not sequester D from the auto-catalysis.
Then, the reactions that we have to introduce in order to model the activating histone modifica-

tion auto-catalysis are reactions (2) and the first enzymatic reaction in (11):

DA +VA
aAM−−⇀↽−−
dAM

MA, D+MA āA−−⇀↽−−
d̄A

CA
M

κA
M−−→ DA +MA, (12)

C̄A +MA āA−−⇀↽−−
d̄A

CA
M1

κA
M−−→ DA +An +MA, C̄R +MA āA−−⇀↽−−

d̄A
CA
M2

κA
M−−→ DA +Rn +MA, (13)

and the reactions that we have to introduce in order to model the repressive histone modification
auto-catalysis are reactions (2) and the second enzymatic reaction in (11):

DR +VR
aRM−−⇀↽−−
dRM

MR, D+MR āR−−⇀↽−−
d̄R

CR
M

κR
M−−→ DR +MR, (14)

C̄R +MR āR−−⇀↽−−
d̄R

CR
M1

κR
M−−→ DR +Rn +MR, C̄A +MR āR−−⇀↽−−

d̄R
CR
M2

κR
M−−→ DR +An +MR, (15)

in which we assume that the association and dissociation rate constants of M with D are indepen-
dent of weather D is bound to An (or Rn) or free.

Active and passive erasure: just like a histone mark can recruit, through a reader, protein
writers for the same mark to nearby histones, an activating (repressing) histone mark can recruit
erasers for a repressing (activating) histone mark [20]. Specifically, JMJD2A is an erasers for
H3K9me3/2 and de-methylates H3K9me3/2 through its Jumonji domain while being able to bind
H3K4me3 through the Tudor domain. Therefore, H3K4me3 helps recruit this eraser so that it
can demethylate neighboring H3K9me3 marks. In turn, JARID is an erasers of H3K4me3 and
does so through one of its PHD domains. Through a different PHD domain, it binds H3K9me3.
Therefore, H3K9me3 helps recruit this eraser so that it can demethylate neighboring H3K4me3
marks. Furthermore, the CHD4 subunit of the NuRD (nucleosome remodeling and de-acetylase)
complex contains a domain (a PHD domain) that recognizes H3K9me3 and prefers unmethylated
H3K4. This can give a mechanism through which H3K9me3 recruits HDACs that de-acetylated
nearby histones.
Letting DM and DM̄ represent a nucleosome characterized by a histone modification and a nu-

cleosome characterized by the opposing histone modification, such as H3K9me3 and H3K4me3,
within a gene of interest, we can therefore model the effective erasure as two enzymatic reactions
as follows:

DM + E
aE−−⇀↽−−
dE

CE
κE−−→ D+ E, (16)

DM̄ + E
ae−−⇀↽−−
de

Eact, DM + Eact
aE−−⇀↽−−
dE

CEact

κE−−→ D+ Eact (17)

in which E is a multi-protein complex containing the eraser enzyme, CE denotes the complex be-
tween DM and E, Eact denotes the complex between DM̄ and E, CEact denotes the complex between
DM and Eact, aE , ae and dE , de are the association and dissociation rate constants, respectively,
and κE is the catalytic rate constant. In particular, reaction (16) captures the basal erasure, while
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reactions (17) capture the active erasure of DM̄ on DM.

Additional chemical reactions: there is the possibility that the sequence-specific transcrip-
tional activator multimer An binds to the actively modified nucleosome DA and this will lead to
more efficient recruitment of the basal transcription machinery [1](Chapter 4). Furthermore, Rn

can bind to DA and block the formation of the pre-initiation complex, independent of its ability to
recruit repressive histone modifiers, that is Rn can inhibit transcription even without the need to
recruit epigenetic modifiers. In light of this, we can write the additional set of chemical reactions
that can occur, noting that if some of them are not present we can simply set the corresponding
rate constants to zero:

An +DA
ā
′
A−−⇀↽−−

d̄
′
A

C̄A
A, Rn +DA

ā
′
R−−⇀↽−−

d̄
′
R

C̄A
R, (18)

in which C̄A
A is the complex between DA and An, C̄

A
R is the complex between DA and Rn and ā

′
A,

ā
′
R and d̄

′
A, d̄

′
R are association and dissociation rate constants, respectively. Note that in this set of

reactions, we have not allowed for both An and Rn to bind with closed chromatin DR [21]. As for
the DA, also the marks contained in the complexes C̄A

A and C̄A
R can be actively removed (through

erasers recruited by the repressive histone mark) and passively removed (through dilution due to
DNA replication during S phase [5](Chapter 22). Then,

C̄A
A+EA

aAE−−⇀↽−−
dAE

C̄A
AE

κA
E−−→ D+An+EA, DR+EA aAe−−⇀↽−−

dAe

EA
act, C̄A

A+EA
act

aAE−−⇀↽−−
dAE

C̄A
AEact

κA
E−−→ D+An+EA

act,

(19)

C̄A
R + EA

aAE−−⇀↽−−
dAE

C̄A
RE

κA
E−−→ D+An + EA, C̄A

R + EA
act

aAE−−⇀↽−−
dAE

C̄A
REact

κA
E−−→ D+Rn + EA

act, (20)

C̄A
A

δ−−→ D+An, C̄A
R

δ−−→ D+Rn, (21)

in which C̄A
AE is the complex between C̄A

A and EA, C̄A
AEact

is the complex between C̄A
A and EA

act,

C̄A
RE is the complex between C̄A

R and EA, C̄A
REact

is the complex between C̄A
R and EA

act and aE , ae,
dE , de, κE are defined as it was done in (16). It is important to point out that for simplicity we
consider that the binding of Rn or An to DA does not affect the erasure rate of the mark and this
will not affect the qualitative results we will obtain (if the binding of Rn or An to DA would affect
the erasure rate of the mark, we could consider as erasure rate of DA

tot an average of the different
erasure rates of DA).

Derivation of the model: the species involved are the following: D (unmodified nucleosome),
DR (nucleosome with a repressive histone modification, H3K9me3), and DA (nucleosome with a
activating histone modification, H3K4me3 or H3Kac). In terms of notation, for a species X, we use
nX to denote the number of such a species and use italics, X, to denote concentration (defining

the reaction volume as Ω, X = nX

Ω ). Furthermore, let us distinguish the parameters, the complexes
and the enzymes related to the activating and repressive histone marks with the subscripts “A”
and “R” respectively. By introducing DA

tot = DA + C̄A
A + C̄A

R = “positively modified nucleosome
free or bound by An or Rn”, C

A
Etot = CA

E + C̄A
AE + C̄A

RE = “positively modified nucleosome, free
or bound by An or Rn, bound by the erasure enzyme EA” and CA

Eacttot
= CA

Eact
+ C̄A

AEact
+ C̄A

REact

= “positively modified nucleosome, free or bound by An or Rn, bound by the complex EA
act”, the
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ODE model associated with reactions (7,8,9,10,12-21) is given by

Ȧn = aAA
n − dAAn − δAn − āAAnD + d̄AC̄A + κAWCA

W + κAMCA
M1 + κRMCR

M2

− ā
′
AAnD

A + d̄
′
AC̄

A
A + κAEC̄

A
AE + κAEC̄

A
AEact

+ δC̄A
A

˙̄CA = āAAnD − d̄AC̄A − (aAW0 + aAW )C̄AW
A + dAWCA

W − aRW0C̄AW
R + dRWCR,2

W

− āAC̄AM
A + d̄ACA

M1 − āRC̄AM
R + d̄RCR

M2

ĊA
W0 = aAW0DWA − dAWCA

W0 − κAWCA
W0

ĊA
W = (aAW0 + aAW )C̄AW

A − dAWCA
W − κAWCA

W

ĊA,2
W = aAW0C̄RW

A − dAWCA,2
W − κAWCA,2

W

ṀA = aAMDA
totV

A − dAMMA − āADMA + d̄ACA
M + κAMCA

M − āAC̄AM
A + d̄ACA

M1 + κAMCA
M1

− āAC̄RM
A + d̄ACA

M2 + κAMCA
M2

ĊA
M = āADMA − d̄ACA

M − κAMCA
M

ĊA
M1 = āAC̄AM

A − d̄ACA
M1 − κAMCA

M1

ĊA
M2 = āAC̄RM

A − d̄ACA
M2 − κAMCA

M2

ĖA
act = aAe D

REA − dAe E
A
act − aAED

A
totE

A
act + dAEC

A
Eacttot + κAEC

A
Eacttot

˙̄CA
AE = aAEC̄

A
AE

A − dAEC̄
A
AE − κAEC̄

A
AE

˙̄CA
RE = aAEC̄

A
RE

A − dAEC̄
A
RE − κAEC̄

A
RE

ĊA
Etot = aAED

A
totE

A − dAEC
A
Etot − κAEC

A
Etot

˙̄CA
AEact

= aAEC̄
A
AE

A
act − dAEC̄

A
AEact

− κAEC̄
A
AEact

˙̄CA
REact

= aAEC̄
A
RE

A
act − dAEC̄

A
REact

− κAEC̄
A
REact

ĊA
Eacttot = aAED

A
totE

A
act − dAEC

A
Eacttot − κAEC

A
Eacttot

˙̄CA
A = ā

′
AAnD

A − d̄
′
AC̄

A
A − aAEC̄

A
AE

A + dAEC̄
A
AE − aAEC̄

A
AE

A
act + dAEC̄

A
AEact

− δC̄A
A

˙̄CA
R = ā

′
RRnD

A − d̄
′
RC̄

A
R − aAEC̄

A
RE

A + dAEC̄
A
RE − aAEC̄

A
RE

A
act + dAEC̄

A
REact

− δC̄R
A

Ṙn = aRR
n − dRRn − δRn − āRRnD + d̄RC̄R + κRWCR

W + κRWCR,2
W + κRMCR

M1 + κAMCA
M2

− ā
′
RRnD

A + d̄
′
RC̄

A
R + κAEC̄

A
RE + κAEC̄

A
REact

+ δC̄A
R

˙̄CR = āRRnD − d̄RC̄R − (aRW0 + aRW )C̄RW
R + dRWCR

W − aAW0C̄RW
A + dAWCA,2

W

− āRC̄RM
R + d̄RCR

M1 − āAC̄RM
A + d̄ACA

M2

ĊR
W0 = aRW0DWR − dRWCR

W0 − κRWCR
W0

ĊR
W = (aRW0 + aRW )C̄RW

R − dRWCR
W − κRWCR

W

ĊR,2
W = aRW0C̄AW

R − dRWCR,2
W − κRWCR,2

W

ṀR = aRMDRV R − dRMMR − āRDMR + d̄RCR
M + κRMCR

M − āRC̄RM
R + d̄RCR

M1 + κRMCR
M1

− āRC̄AM
R + d̄RCR

M2 + κRMCR
M2

ĊR
M = āRDMR − d̄RCR

M − κRMCR
M

ĊR
M1 = āRC̄RM

R − d̄RCR
M1 − κRMCR

M1

ĊR
M2 = āRC̄AM

R − d̄RCR
M2 − κRMCR

M2

ĖR
act = aRe D

A
totE

R − dRe E
A
act − aRED

RER
act + dREC

R
E + κREC

R
E

ĊR
E = aRED

RER − dREC
R
E − κREC

R
E

ĊR
Eact

= aRED
RER

act − dREC
R
E − κREC

R
E

(22)
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ḊA
tot = κAW (CA

W0 + CA,2
W ) + κAWCA

W + κAM (CA
M + CA

M1 + CA
M2)− aAED

A
tot(E

A + EA
act)

+ dAE(C
A
Etot + CA

Eacttot)− δDA
tot

ḊR = κRW (CR
W0 + CR,2

W ) + κRWCR
W + κRM (CR

M + CR
M1 + CR

M2 − aRED
R(ER + ER

act)

+ dRE(C
R
E + CR

Eact
)− δDR.

Since the binding reactions are much faster than the other reactions, we set the complexes to their

QSS values by setting Ȧn = ˙̄CA = ĊA
W0 = ĊA

W = ĊA,2
W = ṀA = ĊA

M = ĊA
M1 = ĊA

M2 = ĖA
act =

ĊA
Etot = ĊA

Eacttot
= Ṙn = ˙̄CR = ĊR

W0 = ĊR
W = ĊR,2

W ṀR = ĊR
M = ĊR

M1 = ĊR
M2 = ĖR

act = ĊR
E =

ĊR
Eact

= 0, obtaining

An =
An

KA
, C̄A =

An

KAK̄A
D, CA

W0 =
WA

KA
W0

D, CA
W = (

1

KA
W0

+
1

KA
W

)
AnWA

KAK̄A
D, MA =

DA
totV

A

KA
MM

,

CA
M =

V ADA
totD

KA
MMK̄A

M

=
V ADA

tot

KA
M

D, CA
M1 =

V ADA
tot

KA
M

C̄A =
V AAnDA

tot

KA
MKAK̄A

D, CA
M2 =

V ARnDA
tot

KA
MKRK̄R

D,

EA
act =

DREA

KA
EE

, CA
Etot =

EA

KA
E

DA
tot, CA

Eacttot =
EADR

KA
EEK

A
E

DA
tot =

EADR

KA∗
E

DA
tot,

Rn =
Rn

KR
, C̄R =

Rn

KRK̄R
D, CR

W0 =
WR

KR
W0

D, CR
W = (

1

KR
W0

+
1

KR
W

)
RnWR

KRK̄R
D, MR =

DRV R

KR
MM

,

CR
M =

V RDRD

KR
MMK̄R

M

=
V RDR

KR
M

D, CR
M1 =

V RDR

KR
M

C̄R =
V RRnDR

KR
MKRK̄R

D, CR
M2 =

V RAnDR

KR
MKAK̄A

D,

ER
act =

DA
totE

R

KR
EE

, CR
E =

ER

KR
E

DR, CR
Eact

=
ERDA

tot

KR
EEK

R
E

DR =
ERDA

tot

KR∗
E

DR,

CA
W2 =

RnWA

KRK̄RKA
W

D, CR
W2 =

AnWR

KAK̄AKR
W

D,

(23)
in which we introduce the dissociation constants of the first two reactions in (7), of the first reaction
in (12), of the first two reactions in (9), of the first reaction in (14) and of the first reaction in

(17) (KA = dA

aA
, K̄A = d̄A

āA
, KA

MM =
dAM
aAM

, KR = dR

aR
, K̄R = d̄R

āR
, KR

MM =
dRM
aRM

, KA
EE = dAe

dAe
and

KR
EE = dRe

dRe
, respectively), the M-M constant of the enzymatic reactions in (7), (12), (9), (14)

and in (17) (KA
W0 =

dAW+κA
W

aAW0

, K̄A
M =

d̄A+κA
M

āA
, KR

W0 =
dRW+κR

W

aRW0

, K̄R
M =

d̄R+κR
M

āR
, KA

E =
dAE+κA

E

aAE
and

KR
E =

dRE+κR
E

aRE
) and the constants KA

W =
dAW+κA

W

aAW
and KR

W =
dRW+κR

W

aRW
. Substituting these values in

the last two ODEs of (22), we obtain

ḊA
tot = κAW0(C

A
W0 + CA,2

W ) + κAWCA
W + κAM (CA

M + CA
M1 + CA

M2)− κAE(C
A
Etot + CA

Eacttot)− δDA
tot

= κAW
WA

KA
W0

D + κAW
RnWA

KRK̄RKA
W0

D + κAW (
1

KA
W0

+
1

KA
W

)
AnWA

KAK̄A
D

+ κAM

(
V A

KA
M

DA
totD +

V AAn

KA
MKAK̄A

DA
totD +

V ARn

KA
MKRK̄R

DA
totD

)
− κAE

EA

KA
E

DA
tot − κAE

EA

KA∗
E

DRDA
tot − δDA

tot

=

(
κAW

WA

KA
W0

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
+ κAW

WA

KA
W

An

KAK̄A
+ κAM

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
V A

KA
M

DA
tot

)
D
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−
(
κAE

EA

KA
E

+ κAE
EA

KA∗
E

DR + δ

)
DA

tot (24)

ḊR = κRW (CR
W0 + CR,2

W ) + κRWCR
W + κRM (CR

M + CR
M1 + CR

M2)− κRE(C
R
E + CR

Eact
)− δDR

= κRW
WR

KR
W0

D + κRW
AnWR

KAK̄AKR
W0

D + κRW (
1

KR
W0

+
1

KR
W

)
RnWR

KRK̄R
D

+ κRM

(
V R

KR
M

DRD +
V RRn

KR
MKRK̄R

DRD +
V RAn

KR
MKAK̄A

DRD

)
− κRE

ER

KR
E

DR − κRE
ER

KR∗
E

DA
totD

R − δDR

=

(
κRW

WR

KR
W0

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
+ κRW

WR

KR
W

Rn

KRK̄R
+ κRM

(
1 +

Rn

KRK̄R
+

An

KAK̄A

)
V R

KR
M

DR

)
D

−
(
κRE

ER

KR
E

+ κRE
ER

KR∗
E

DA
tot + δ

)
DR.

D can be obtained by the DNA conservation law

Dtot = D +DA
tot + C̄A + CA

W0 + CA,2
W + CA

W +MA + CA
M + CA

M1 + CA
M2 + CA

Etot + CA
Eacttot + EA

act

+DR + C̄R + CR
W0 + CR,2

W + CR
W +MR + CR

M + CR
M1 + CR

M2 + CR
E + CR

Eact
+ ER

act.
(25)

In particular, if we assume that the sum of the complexes CA
W0, C

A,2
W , CA

W , MA, CA
M , CA

M1, C
A
M2,

CR
W0, C

R,2
W , CR

W , MR, CR
M , CR

M1, C
R
M2, E

A
act, C

A
Etot, C

A
Eacttot

, ER
act, C

R
E , C

R
Eact

is negligible with respect

to D+DA
tot+DR+ C̄A+ C̄R (that is CA

W0+CA,2
W +CA

W +MA+CA
M +CA

M1+CA
M2+CR

W0+CR,2
W +

CR
W +CR

M +CR
M1+CR

M2+EA
act+CA

Etot+CA
Eacttot

+ER
act+CR

E +CR
Eact

≪ D+DA
tot+DR+ C̄A+ C̄R),

(25) can be approximated as

Dtot ≈ D +DA
tot + C̄A +DR + C̄R. (26)

Then, by considering the complexes dynamics to the QSS, D can be written as

D ≈ Dtot −DA
tot −DR

1 + An

KAK̄A
+ Rn

KRK̄R

. (27)

By substituting (27) in equations (24), the ODE model becomes

ḊA =

(
κAW

WA

KA
W0

+ κAW
WA

KA
W

An

KAK̄A

(1 + An

KAK̄A
+ Rn

KRK̄R
)
+ κAM

V A

KA
M

DA

)
(Dtot −DA −DR)

−
(
δ + κAE

EA

KA
E

+ κAE
EA

KA∗
E

DR

)
DA

=
(
kAW0 + kAW + kAMDA

)
(Dtot −DA −DR)− (δ + k̄AE + kAED

R)DA

ḊR =

(
κRW

WR

KR
W0

+ κRW
WR

KR
W

Rn

KRK̄R

(1 + An

KAK̄A
+ Rn

KRK̄R
)
+ κRM

V R

KR
M

DR

)
(Dtot −DA −DR)

−
(
δ + κRE

ER

KR
E

+ κRE
ER

KR∗
E

DA
tot

)
DR

=
(
kRW0 + kRW + kRMDR

)
(Dtot −DA −DR)− (δ + k̄RE + kRED

A)DR

(28)
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in which, with abuse of notation, we indicate DA
tot with DA.

Now, let us define D̄A = DA/Dtot = nA/Dtot, D̄
R = DR/Dtot = nR/Dtot and D̄ = D/Dtot =

nD/Dtot, the normalized time τ = tkAMDtot, the normalized inputs ūA = uA0 + uA with uA0 =
kAW0/(k

A
MDtot), u

A = kAW /(kAMDtot), ū
R = uR0 +uR with uR0 = kRW0/(k

A
MDtot) and uR = kRW /(kAMDtot)

and the non-dimensional parameters ϵ = (δ + k̄AE)/(k
A
MDtot), µ = kRE/k

A
E , with a constant b such

that (δ + k̄RE)/(δ + k̄AE) = bµ, α = kRM/kAM and ϵ′ = kAE/k
A
M . With these definitions and letting

ẋ := dx/dτ , we can rewrite the system model in terms of non-dimensional variables and non-
dimensional parameters as follows:

˙̄DA = (ūA + D̄A)(1− D̄A − D̄R)− (ϵ+ ϵ′D̄R)D̄A

˙̄DR = (ūR + αD̄R)(1− D̄A − D̄R)− µ(bϵ+ ϵ′D̄A)D̄R.
(29)

1.3 DNA methylation: reactions and models

Here, we provide reaction rate and ODE models of DNA methylation, based on the molecular
mechanisms described in [5](Chapter 15) and [14](Chapter 17), using published DNA methylation
models as a starting point [22, 23, 24, 25]. We then amend these models in order to reconcile
inconsistencies between measured in vivo DNA de-methylation time scales [26] and in vitro data
on the kinetics of TET enzymes [27] in light of recent new experimental data uncovering the role
of MBD proteins on the in vivo activity of TET enzymes [28]. Establishment, erasure, and
maintenance: we first start by writing a simple reaction and ODE model of DNA methylation,
including de novo establishment by DNMT3, passive de-methylation through DNA replication, ac-
tive de-methylation through TET enzymes, and maintenance methylation through DNMT1 enzyme
[5](Chapter 15). The model starts with the definition of the molecular species involved, with the
chemical reactions modeling the above processes, the corresponding ODEs, and is consistent with
early models of DNA methylation proposed in the literature [22, 23, 24, 25], but contains a major
addition. Specifically, we introduce a major addition to the model, which has not been considered
before, in light of recent experimental evidence according to which the effective modification rate
by TET enzymes is impacted by MBD proteins [29, 30, 28]. This addition is central to being able
to predict the experimentally observed effects of MBDs knock down on important processes such
as iPSC reprogramming efficiency and kinetics [29, 30].
The objective of the model is to capture the temporal dynamics of the total number of (single

stranded) methylated CpGs within a given gene of interest. In particular, we assume for simplicity
that the DNA wrapped around each nucleosome can have only one CpG and this means that the
total modifiable (single stranded) CpGs coincide with the total number of modifiable nucleosomes,
that is Dtot. Therefore, let us then define D as a nucleosome with unmethylated single CpG in
a gene of interest, DM as a nucleosome with a methylated single CpG in a gene of interest and
consider the model proposed by Laird et al.[31]. In this paper, they described the dynamics of DM

assuming de novo methylation, maintenance methylation and dilution due to DNA replication/
cell division. Based on this and introducing R, that is a sequence-specific repressor that can form
multimer with n copies (Rn), which binds to D, creating the complex C̄

0
R and then recruits DNMT3

writer of DNA methylation denoted by Wd to D, we write the following chemical reactions:

R + R + ...
aR−−⇀↽−−
dR

Rn, Rn +D
āR−−⇀↽−−
d̄R

C̄0
R, (30)

D +Wd
adW0−−−⇀↽−−−
ddW

Cd
W0

κd
W−−→ DM +Wd, C̄0

R +Wd
adW0 + adW−−−−−−−⇀↽−−−−−−

ddW

Cd
W

κd
W−−→ DM +Wd +Rn (31)

11



DM δ
′

−−→ D, (32)

in which Cd
W represents the complex between D and Wd, adW0 adW and ddW are the association and

dissociation rate constants, respectively, and κdW is the catalytic rate constant of the enzymatic
reactions (31). Furthermore, Wd can represent either the DNMT3 enzyme or a complex of the
DNMT3 enzyme with a factor recruiting it to DNA, such as DNMT3L. Concerning reactions (30)
and (31), they represent the DNA methylation de novo establishment. The DNMT3 enzyme can
either bind directly to DNA or can be recruited to specific loci on DNA by sequence-specific TF [32,
33]. Reaction (32) represents passive demethylation, that is, the process by which DNA methylation
is lost due to cell division. Rate constant δ

′
represents the effective passive erasure rate constant

resulting from the balance between the dilution of DNA methylation due to DNA replication
(occurring every T= ln(2)

δ ) and the maintenance process by which DNMT1 copies CpG methylation
on the newly generated DNA strand following the pattern on the mother strand [5](Chapter 15),
[34],[35]). As it was derived in Laird et al [31], one can write δ

′
as follows:

δ
′
= δη. (33)

If there is not maintenance methylation, η = 1 and then δ
′
= δ, that is CpGs will halve at every cell

division, while η = 0 if the maintenance process through DNMT1 enzyme is 100% efficient (all the
CpG methylations are copied on the daughter DNA strand). Therefore, if we have a more efficient
maintenance mechanism, this model leads to a larger half life of DM. As we did for the histone
modification model, we can consider the complexes at their QSS and, defining KR = dR

aR
, K̄R = d̄R

āR

the dissociation constants of the first two reactions in (31), Kd
W0 =

ddW+κd
W0

adW
and Kd

W =
ddW+κd

W

adW
the

M-M constants of the enzymatic reactions in (31), the ODE model corresponding to these reactions
is given by

ḊM = (kW0 + kW )(Dtot −DM )− δ
′
DM , (34)

in which we define kW0 = κdW
W d

Kd
W0

and kW = κdW
W d

Kd
W

Rn

KRK̄R

1+ Rn

KRK̄R

(full derivation below). From this

ODE we can represent the system through the following chemical reactions (depicted in the diagram
of Fig AA in black):

D
kW0−−→ DM, kW0 = κdW

W d

Kd
W0

; (35)

D
kW−−→ DM, kW = κdW

W d

Kd
W

Rn

KRK̄R

1 + Rn

KRK̄R

; (36)

DM δ
′

−−→ D, δ′ = δη; (37)

Derivation of model (34)
The ODE model corresponding to reactions (30)-(32) is given by

Ṙn = aRR
n − dRRn − δRn − āRRnD + d̄RC̄

0
R + κdWCd

W

Ċd
W0 = adW0DW d − ddWCd

W0 − κdWCd
W0

Ċd
W = (adW0 + adW )C̄0

RW
d − ddWCd

W − κdWCd
W

˙̄C0
R = āRRnD − d̄RC̄

0
R − adW C̄0

RW
d + ddWCd

W

ḊM = κdWCd
W0 + κdWCd

W − δ
′
DM .

(38)
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As we did for the histone modification model, since the binding reactions are much faster than the

other reactions, we set Rn, C̄
0
R, C

d
W0 and Cd

W to their QSS (Ṙn = ˙̄C0
R = Ċd

W0 = Ċd
W = 0), obtaining

Rn =
Rn

KR
, C̄0

R =
Rn

KRK̄R
D, Cd

W0 =
W d

Kd
W0

D,

Cd
W = (

1

Kd
W0

+
1

Kd
W

)W dC̄0
R = (

1

Kd
W0

+
1

Kd
W

)
RnW d

KRK̄RKd
W

D.

in which Kd
W0 =

ddW+κd
W

adW
and Kd

W =
ddW+κd

W

adW
, with ddW , adW , adW0, κ

d
W defined as done in (31). Then,

substituting these values in the last ODE of (38), we obtain

ḊM = κdWCd
W0 + κdWCd

W − δ
′
DM

=

(
κdW

W d

Kd
W0

+ κdW (
1

Kd
W0

+
1

Kd
W

)
RnW d

KRK̄R

)
D − δ

′
DM

(39)

D can be obtained by the DNA conservation law Dtot = D + DM + C̄0
R + Cd

W0 + Cd
W that, if we

assume that the sum of the complexes Cd
W0 and Cd

W is negligible with respect to D+DM + C̄0
R as

we did for the previous models, can be approximated as

Dtot ≈ D +DM + C̄0
R. (40)

Then, by considering the complexes dynamics to the QSS, D can be written as

D ≈ Dtot −DM

1 + Rn

KRK̄R

. (41)

By substituting (41) in (39), the ODE model becomes

ḊM =

(
κdW

W d

Kd
W0

+ κdW
W d

Kd
W

Rn

KRK̄R

1 + Rn

KRK̄R

)
(Dtot −DM )− δ

′
DM

= (kW0 + kW ) (Dtot −DM )− δ
′
DM .

(42)

Here, we provide some estimate of the value of η, and hence of δ
′
. Specifically, we can estimate

these parameters by comparing the kinetics of DNA demethylation in the absence (η = 1) or
presence (η < 1) of DNMT1, both in the absence of DNMT3 (kW = kW0 = 0). Specifically in
[23], the authors transitioned mES cells from serum to 2i conditions and at that time, they also
induced the deletion of DNMT1. Under these perturbations, which largely suppress DNMT3, we
can estimate the half life of methylated CpGs, DM, to be about 1.7 cell divisions with the reported
doubling time of 16 hours, corresponding to δ ≈ 0.024hr−1. This is in contrast to the kinetics
observed in experiments with serum growth conditions and DNMT3a/b knocked off, corresponding
to no de novo establishment (kW0 = kW = 0) but presence of DNA methylation maintenance
through DNMT1 enzyme, leading to δ′ ≈ 0.001 hr−1, giving η ≈ 0.04, corresponding about 96%
efficiency of the maintenance process. Note that the slightly larger half life observed in experiments
than the time of cell division when both DNMT3a/b and DNMT1 are knocked off is potentially
due to residual DNMT1 and DNMT3 and to the fact that DNMT3 can also act as a methylation
maintenance enzyme [36].
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In addition to passive erasure, DNA methylation can be actively removed through the TET
enzymatic pathway [14](Chapter 17). TET1 is an enzyme that binds CpG-rich regions through
its CxxC binding motif, which has a slight preference for unmethylated CpGs. TET2, instead,
specifically recognizes CpG dinucleotides with a substrate preference for 5mC. Both have catalytic
activity and are able to convert 5mC to 5hmC (hydroxilmethylated CpG), then to 5fc (formylcyto-
sine), and finally to 5caC (carbolxylcytosine) [37, 38]. None of these modified forms are recognized
by DNMT1 and therefore they are subject to dilution through DNA replication [14](Chapter 17).
Here, we lump all these three different modified versions of CpGs into a species that we call DM

h ,
which is not subject to the maintenance reaction and only subject to dilution:

Active erasure of DNA methylation:

DM +T
adT−−⇀↽−−
ddT

Cd
T

κd
T−−→ DM

h +T, DM
h

δ−−→ D (43)

in which T represents the TET enzyme or a complex of the TET enzyme with a factor recruiting
it to DNA, Cd

T represents the complex between DM and T, adT and ddT are the association and
dissociation rate constants, respectively, and κdT is the catalytic rate constant of the enzymatic
reaction. If we introduce reaction (43), the ODE model (34) becomes

ḊM = (kW0 + kW )(Dtot −DM −DM
h )− kTD

M − δ′DM

ḊM
h = kTD

M − δDM
h ,

(44)

in which we defined kT = κdT
T
Kd

T

, with Kd
T = ((ddT + κdT )/a

d
T ) the M-M constants of (43) and kW0

and kW are defined as it was done in (34) (full derivation below). From this ODE we can represent
the system through reactions (35), (36), (37) and the following ones corresponding to the TET
pathway (depicted in the diagram of Fig AA in blue):

DM kT−−→ DM
h , kT = κdT

T

Kd
T

;

DM
h

δ−−→ D0.

(45)

Derivation of model (44)
The ODE model corresponding to reactions (30)-(43) is given by

Ṙ = −aRR
n + dRRn

Ċd
W0 = adW0DW d − ddWCd

W0 − κdWCd
W0

Ċd
W = (adW + adW0)C̄

0
RW

d − ddWCd
W − κdWCd

W

˙̄C0
R = āRRnD − d̄RC̄

0
R − adW C̄0

RW
d + ddWCd

W

Ċd
T = adTD

MT − ddTC
d
T − κdTC

d
T

ḊM = κdWCd
W0 + κdWCd

W − δ
′
DM − adTD

MT + ddTC
d
T

ḊM
h = κdTC

d
T − δDM

h .

(46)

Since the binding reactions are much faster than the other reactions, we set Rn, C̄
0
R, C

d
W0, C

d
W and
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Cd
T to their QSS (Ṙn = ˙̄C0

R = Ċd
W0 = Ċd

W = Ċd
M = Ċd

T = 0), obtaining

Rn =
Rn

KR
, C̄0

R =
Rn

KRK̄R
D, Cd

W0 =
W d

Kd
W0

D,

Cd
W = (

1

Kd
W0

+
1

Kd
W

)W dC̄0
R = (

1

Kd
W0

+
1

Kd
W

)
RnW d

KRK̄R
D, Cd

T =
T

Kd
T

DM .

in which Kd
T = ((ddT + κdT )/a

d
T ) is the M-M constant (43), Kd

W0 =
ddW+κd

W0

adW
, Kd

W =
ddW+κd

W

adW
with

ddW , adW , adW0, κ
d
W defined as done in (31). Then, substituting these values in the last two ODEs of

(46), we obtain

ḊM = κdWCd
W0 + κdWCd

W − δ
′
DM − κTC

d
T

=

(
κdW

W d

Kd
W0

+ κdW (
1

Kd
W0

+
1

Kd
W

)
RnW d

KRK̄R

)
D − δ

′
DM − κdT

T

Kd
T

DM

ḊM
h = κdTC

d
T − δDM

h

= κdT
T

Kd
T

DM − δDM
h .

(47)

D can be obtained by the DNA conservation law Dtot = D +DM +DM
h + C̄0

R + Cd
W0 + Cd

W + Cd
T

that, if we assume that the sum of the complexes Cd
W0, C

d
W and Cd

T is negligible with respect to
D +DM +DM

h + C̄0
R as we did before, can be approximated as

Dtot ≈ D +DM +DM
h + C̄0

R. (48)

Then, by considering the complexes dynamics to the QSS, D can be written as

D ≈
Dtot −DM −DM

h

1 + Rn

KRK̄R

. (49)

By substituting (49) in (47), the ODE model becomes

ḊM =

(
κdW

W d

Kd
W0

+ κdW
W d

Kd
W

Rn

KRK̄R

1 + Rn

KRK̄R

)
(Dtot −DM −DM

h )−
(
δ
′
+ κT

T

Kd
T

)
DM

= (kW0 + kW ) (Dtot −DM −DM
h )− (δ

′
+ kT )D

M

ḊM
h = κdT

T

Kd
T

DM − δDM
h = kTD

M − δDM
h .

(50)

The first decay term in the equation of DM in (44) represents active de-methylation through the
action of TET, while the second term is due to inefficient maintenance of the methylation marks
through DNA replication. In vitro characterization of the kinetics of DNMT1 and TET enzymes
have been performed and, although they are not necessarily the same as the kinetics encountered
in vivo, they nevertheless provide a starting point to estimate the order of magnitude of kT .
Specifically, in vivo experimental studies have shown that in the absence of DNMT3 (kW0 =

kW = 0) DNA methylation in ES cells goes from 22% to 0.6% in 216 cell divisions [39], which
corresponds to δ′ + kT = 0.024δ. This would require a value of kT < 0.024δ. This order of magni-
tude is consistent with studies in ES cells estimating the ratio of hydroxilmethylated to methylated
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DNA (kT /δ in our model) to be in the range of 0.018 − 0.04, depending on the TET level [40].
However, this is largely inconsistent with in vitro estimates of the TET enzyme catalytic constant
(κT ), estimated to be greater than 15.6hr−1 ≈ 312δ [27], which cannot lead to kT < 0.024δ unless
TET level in ES cells are at least 10,000X smaller than TET’s M-M constant. This, in turn is
highly unlikely given that ES cells are characterized by considerably high amounts of TET (see
[14](Chapter 17), [41]).

This basic model therefore does not reflect the low effective values of kT encountered in vivo.
More recent experimental data demonstrated that the ability of TET enzymes in vivo to convert
methylated DNA to hydorxilmethylated DNA (that, in our model considering the DNA wrapped
around a nucleosome, coverting DM to DM

h ) is hampered by the binding of MBD proteins, denoted
with B, to methylated DNA. MBD proteins MBD2/1 and MeCP2 recognize single methylated
CpG dinucleotides and recruit both histone modifying and chromatin remodeling complexes to the
methylated sites (see Section 1.4). It was shown that the binding of MBD2 or MeCP2 protein to
methylated DNA protects it from binding by TET1 and that MBD2 KD leads to an increase in
DM

h level [28]. Reversely, MBD proteins cannot bind hydroxylmethylated DNA wrapped around a
nucleosome, DM

h [37]. To reflect these observations, we have to add the following reactions:

Reversible binding of MBD proteins B to DM:

DM +B
adB−−⇀↽−−
ddB

Cd
B

κd
B−−→ C0 +B (51)

in which B represents the MBD protein, Cd
B represents the complex between DM and B, adB and

ddB are the association and dissociation rate constants, respectively, and κdB is the catalytic rate
constant of the enzymatic reaction.

Unbinding reaction:

C0 d−−→ DM (52)

where d is the unbinding rate constant.

Removal of the methylation mark from C0 through dilution:

C0 δ
′

−−→ D (53)

in which δ
′
is defined as it was done in (32).

The ODE model in equations (44) then modifies to

ḊM = (kW0 + kW ) (Dtot −DM −DM
h − C0)− (δ

′
+ kT + kB)D

M + dC0

ḊM
h = kTD

M − δDM
h

Ċ0 = kBD
M − dC0 − δ′C0.

(54)

in which we defined kB = κdB
B
Kd

B

with Kd
B =

ddB+κd
B

adB
, that is the M-M constant of reaction (51) and

kW0, kW and kT are defined as it was done in (44) (full derivation below).

Derivation of model (54)
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The ODE model corresponding to reactions (30), (31), (32), (43), (51), (52), (53) is given by

Ṙ = −aRR
n + dRRn

Ċd
W0 = adW0DW d − ddWCd

W0 − κdWCd
W0

Ċd
W = (adW0 + adW )C̄0

RW
d − ddWCd

W − κdWCd
W

˙̄C0
R = āRRnD − d̄RC̄

0
R − adW C̄0

RW
d + ddWCd

W

Ċd
T = adTD

MT − ddTC
d
T − κdTC

d
T

Ċd
B = adBD

MB − ddBC
d
B − κdBC

d
B

ḊM = κdWCd
W0 + κdWCd

W − δ
′
DM − adTD

MT + ddTC
d
T − adBD

MB + ddBC
d
B + dC0

Ċ0 = κdBC
d
B − dC0 − δ

′
C0

ḊM
h = κdTC

d
T − δDM

h .

(55)

Since the binding reactions are much faster than the other reactions, we set Rn, C̄
0
R, C

d
W0, C

d
W , Cd

T

and Cd
B to their QSS (Ṙn = ˙̄C0

R = Ċd
W0 = Ċd

W = Ċd
M = Ċd

T = Ċd
B = 0), obtaining

Rn =
Rn

KR
, C̄0

R =
Rn

KRK̄R
D,

Cd
W = (

1

Kd
W0

+
1

Kd
W

)W dC̄0
R = (

1

Kd
W0

+
1

Kd
W

)
RnW d

KRK̄R
D,

Cd
W0 =

W d

Kd
W0

D, Cd
T =

T

Kd
T

DM , Cd
B =

B

Kd
B

DM

in which Kd
T =

ddT+κd
T

adT
and Kd

B =
ddB+κd

B

adB
, that are the M-M constants of (43) and (51), respectively,

and Kd
W0 =

ddW+κd
W0

adW
, Kd

W =
ddW+κd

W

adW
, with ddW , adW , adW0, κ

d
W defined as done in (31). Then, the

model (55) becomes

ḊM = κdWCd
W0 + κdWCd

W − δ
′
DM − κTC

d
T − κdBC

d
B + dC0

=

(
κdW

W d

Kd
W0

+ κdW (
1

Kd
W0

+
1

Kd
W

)
RnW d

KRK̄R

)
D − δ

′
DM − κdT

T

Kd
T

DM − κdB
B

Kd
B

DM + dC0

ḊM
h = κdTC

d
T − δDM

h = κdT
T

Kd
T

DM − δDM
h

Ċ0 = κdBC
d
B − dC0 − δ′C0 = κdB

B

Kd
B

DM − dC0 − δ′C0.

(56)

D can be obtained by the DNA conservation law Dtot = D+DM +DM
h + C̄0

R +Cd
W0 +Cd

W +Cd
T +

Cd
B +C0 that, if we assume that the sum of the complexes Cd

W0, C
d
W , Cd

T and Cd
B is negligible with

respect to D +DM +DM
h + C̄0

R + C0 as we did before, can be approximated as

Dtot ≈ D +DM +DM
h + C̄0

R + C0. (57)

Then, by considering the complexes dynamics to the QSS, D can be written as

D ≈
Dtot −DM −DM

h − C0

1 + Rn

KRK̄R

. (58)
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By substituting (58) in (56), the ODE model becomes

ḊM =

(
κdW

W d

Kd
W0

+ κdW
W d

Kd
W

Rn

KRK̄R

1 + Rn

KRK̄R

)
(Dtot −DM −DM

h − C0)

−
(
δ
′
+ κT

T

Kd
T

+ κB
B

Kd
B

)
DM + dC0

= (kW0 + kW ) (Dtot −DM −DM
h − C0)− (δ

′
+ kT + kB)D

M + dC0

ḊM
h = κdT

T

Kd
T

DM − δDM
h = kTD

M − δDM
h

Ċ0 = κdB
B

Kd
B

DM − dC0 − δ′C0 = kBD
M − dC0 − δ′C0.

(59)

By studying these ODEs, we can simplify the MBD proteins binding reactions as follows:

DM kB−−→ C0; kB = κdB
B

Kd
B

;

C0 d−−→ DM; C0 δ
′

−−→ D0.

(60)

The simplified reaction system representing the reactions making up the DNA methylation system,
which account for the mutual protection mechanism between MBD proteins and TET binding to
DNA is shown in Fig AB. Looking at the ODE model (54), we note that kB ≫ d since MBD
proteins are highly expressed in somatic tissues and about half of it is expressed in ES cells [30],
suggesting a large B compared to Kd

B, and MBD and MeCP2 proteins stay bound even to mitotic
chromosomes [42], suggesting d < δ.
Calling the total single methylated CpGs DM

tot = C0 + DM , letting δ̄ = d + δ′, substituting
DM = DM

tot − C0 and setting C0 to its QSS, assuming d sufficiently larger than δ, we obtain the
following ODE model:

ḊM
tot = (kW0 + kW )(Dtot −DM

tot −DM
h )− (δ′ + k

′
T )D

M
tot

ḊM
h = k

′
TD

M
tot − δDM

h ,
(61)

with k
′
T defined as follows:

k
′
T = kT

δ̄

kB + δ̄
. (62)

Letting DM
tot represent any nucleosome with methylated CpG, with or without B bound to it, model

(61) corresponds to the simplified diagram in Fig AC, whose reactions are the following:

D
kW0−−→ DM

tot, kW0 = κdW
W d

Kd
W0

;

D
kW−−→ DM

tot, kW = κdW
W d

Kd
W

Rn

KRK̄R

1 + Rn

KRK̄R

;

DM
tot

k
′
T−−→ DM

h , k
′
T = kT

δ̄

kB + δ̄
, kT = κdT

T

Kd
T

, kB = κdB
B

Kd
B

;

DM
tot

δ
′

−−→ D;

DM
h

δ−−→ D.

(63)
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From here, we observe that the effective active erasure rate constant k
′
T is now decreased compared

to kT and it can be very small if kB is large and δ̄ is small. Then, depending on the value of kB,
this model can now be consistent with experimental data demonstrating that knock down of MBD2
(decreased kB) leads to global increase in hydroxylmethylation DM

h [28] due to an increased k
′
T .

Model (61) can be further simplified. Specifically, since δ
′
+ k

′
T ≪ δ, we can set DM

h at the QSS,

obtaining DM
h =

k
′
T
δ DM

tot. Furthermore, since k
′
T ≪ δ, we have that DM

h ≪ DM
tot. Then, the final

DNA methylation model can be written as follows:

ḊM
tot = (kW0 + kW )(Dtot −DM

tot)− (δ′ + k
′
T )D

M
tot (64)

and it is depicted in the diagram of Fig AD.

1.4 Cooperative interactions between DNAmethylation and repressive H3K9me3
histone modifications: reactions

In order to develop a model that captures how DNA methylation and repressive histone modifi-
cations cooperate, we assume for simplicity that the DNA wrapped around each nucleosome can
have only one CpG. Also, we assume that each nucleosome can have only one histone modification.
Therefore, each nucleosome can either be unmodified, denoted D, or modified with H3K9me3, de-
noted DR

2 , or modified with both H3K9me3 and DNA methylation, denoted DR
12, or modified only

with DNA methylation, denoted by DR
1 .

Now, let us describe the two possible pathways through which D can be modified. Pathway (A)
represents the case in which DNA methylation is initially recruited to D to lead to nucleosome
with DNA methylation, DR

1 . Then, DR
1 recruites, via MBD and MeCP2, proteins Suv39H leading

to a nucleosome characterized by both DNA methylation and H3K9me3, DR
12. DNA methylation is

positively correlated with H3K9 methylation [5](Chapters 6, 22). In fact, MBD proteins recognize
single methylated CpG dinucleotides and recruit both histone modifying and chromatin remod-
eling complexes to the methylated sites. MBD1, in particular, binds to methylated CpG sites
and recruits histone methyltransferases for H3K9, SETDB1 and Suv39H1, which bring H3K9me3
about [43]. Similarly, MeCP2 binds methylated CpGs and recruits histone methylases that lead
to H3K9me3 [44]. On the other hand, DNMT3/1 binds to HP1 protein, which is recruited to D
by H3K9me3, suggesting that H3K9me3 recruits DNA methylation enzymes through HP1 protein
[45]. Pathway (B) is also possible: it represents the case wherein H3K9me3 is specifically recruited
to the nucleosome first and then DNA methylation is non-specifically recruited by H3K9me3. In
practice, both pathways co-exist, that is, although the initial stimulus may be applied through one
of these two pathways only, once there is some of DR

12 in the system, it can be converted back to
D through either pathway. The diagram in which pathway (A) and (B) are concurrently present is
represented in Fig C.
The reactions representing this cross-catalysis mechanism between repressive epigenetic marks

described above are the following:
H3K9me3 recruits DNA methylation. Letting C0

12 represent a nucleosome with both a repressive
histone modification (H3K9me3) and methylated DNA, bound to MBD; DR

12h represent a nucle-
osome with both a repressive histone modification (H3K9me3) and hydroximethylated DNA; Wd

represent the DNMT3 writer of DNA methylation and introducing R, that is a sequence-specific
repressor that can form multimer with n copies (Rn), which binds to D, creating the complex C̄0

R,
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we have the following reactions:

DR
2 +Wd

adM−−⇀↽−−
ddM

M
′
2, DR

12h +Wd
adM−−⇀↽−−
ddM

M
′
12h, DR

12 +Wd
adM−−⇀↽−−
ddM

M
′
12a, C0

12 +Wd
adM−−⇀↽−−
ddM

M
′
12b,

D+M
′
2

ā1−−⇀↽−−
d̄1

C
′
R11

κ
′
M−−→ DR

1 +M
′
2, C̄R +M

′
2

ā1−−⇀↽−−
d̄1

C
′
R1c1

κ
′
M−−→ DR

1 +M
′
2 +Rn,

D+M
′
12h

ā1−−⇀↽−−
d̄1

C
′
R12

κ
′
M−−→ DR

1 +M
′
12h, C̄R +M

′
12h

ā1−−⇀↽−−
d̄1

C
′
R1c2

κ
′
M−−→ DR

1 +M
′
12h +Rn,

D+M
′
12a

ā1−−⇀↽−−
d̄1

C
′
R13a

κ
′
M−−→ DR

1 +M
′
12a, C̄R +M

′
12a

ā1−−⇀↽−−
d̄1

C
′
R1c3a

κ
′
M−−→ DR

1 +M
′
12a +Rn,

D+M
′
12b

ā1−−⇀↽−−
d̄1

C
′
R13b

κ
′
M−−→ DR

1 +M
′
12b, C̄R +M

′
12b

ā1−−⇀↽−−
d̄1

C
′
R1c3b

κ
′
M−−→ DR

1 +M
′
12b +Rn,

DR
2 +M

′
2

ā1−−⇀↽−−
d̄1

C
′
R121

κ
′
M−−→ DR

12 +M
′
2, DR

2 +M
′
12h

ā1−−⇀↽−−
d̄1

C
′
R122

κ
′
M−−→ DR

12 +M
′
12h,

DR
2 +M

′
12a

ā1−−⇀↽−−
d̄1

C
′
R123a

κ
′
M−−→ DR

12 +M
′
12a, DR

2 +M
′
12b

ā1−−⇀↽−−
d̄1

C
′
R123b

κ
′
M−−→ DR

12 +M
′
12b,

(65)
in which M

′
2 is the complex between DR

2 and Wd, M
′
12h denotes the complex between DR

12h and Wd,
M

′
12a denotes the complex between DR

12 and Wd, M
′
12b denotes the complex between C0

12 and Wd,
C

′
R11

denotes the complex between D and M
′
2, C

′
R12

denotes the complex between D and M
′
12h,

C
′
R13a

denotes the complex between D and M
′
12a, C

′
R13b

denotes the complex between D and M
′
12b,

C
′
R1c1

denotes the complex between C̄R and M
′
2, C

′
R1c2

denotes the complex between C̄R and M
′
12h,

C
′
R1c3a

denotes the complex between C̄R and M
′
12a, C

′
R1c3b

denotes the complex between C̄R and

M
′
12b, C

′
R121

denotes the complex between DR
2 and M

′
2, C

′
R122

denotes the complex between DR
2 and

M
′
12h, C

′
R123a

denotes the complex between DR
2 and M

′
12a, C

′
R123b

denotes the complex between DR
2

and M
′
12b, a

d
M , ā1 and ddM , d̄1 are the association and dissociation rate constants, respectively, and

κ
′
M is the catalytic rate constant of the enzymatic reactions.
DNA methylation recruits H3K9me3. Letting C0

1 represent a nucleosome without any histone
modification but with methylated DNA, bound to MBD; DR

1h represent a nucleosome without
any histone modification but with hydroximethylated DNA; WR represent the writer enzyme of
H3K9me3, we have the following reactions:

C0
1 +WR

aRM−−⇀↽−−
dRM

M̄1tot, C0
12 +WR

aRM−−⇀↽−−
dRM

M̄12tot,

D+ M̄1tot
ā2−−⇀↽−−
d̄2

C̄R21
κ̄M−−→ DR

2 + M̄1tot, C̄R + M̄1tot
ā2−−⇀↽−−
d̄2

C̄R2c1
κ̄M−−→ DR

2 + M̄1tot +Rn,

D+ M̄12tot
ā2−−⇀↽−−
d̄2

C̄R22
κ̄M−−→ DR

2 + M̄12tot, C̄R + M̄12tot
ā2−−⇀↽−−
d̄2

C̄R2c2
κ̄M−−→ DR

2 + M̄12tot +Rn,

DR
1 + M̄1tot

ā2−−⇀↽−−
d̄2

C̄R121
κ̄M−−→ DR

12 + M̄1tot, DR
1 + M̄12tot

ā2−−⇀↽−−
d̄2

C̄R122
κ̄M−−→ DR

12 + M̄12tot,

C0
1 + M̄1tot

ā2−−⇀↽−−
d̄2

C̄0
R121

κ̄M−−→ C0
12 + M̄1tot, C0

1 + M̄12tot
ā2−−⇀↽−−
d̄2

C̄0
R122

κ̄M−−→ C0
12 + M̄12tot,

DR
1h + M̄1tot

ā2−−⇀↽−−
d̄2

C̄R12h1
κ̄M−−→ DR

12h + M̄1tot, DR
1h + M̄12tot

ā2−−⇀↽−−
d̄2

C̄R12h2
κ̄M−−→ DR

12h + M̄12tot,

(66)
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in which M̄1tot denotes the complex between C0
1 and WR, M̄12tot denotes the complex between C0

12

and WR, C̄R21 denotes the complex between D and M̄1tot, C̄R22 denotes the complex between D
and M̄12tot, C̄R2c1 denotes the complex between C̄R and M̄1tot, C̄R2c2 denotes the complex between
C̄R and M̄12tot, C̄R121 denotes the complex between DR

1 and M̄1tot, C̄R122 denotes the complex
between DR

1 and M̄12tot, C̄
0
R121

denotes the complex between C0
1 and M̄1tot, C̄

0
R122

denotes the com-

plex between C0
1 and M̄12tot, C̄R12h1 denotes the complex between DR

1h and M̄1tot, C̄R12h2 denotes
the complex between DR

1h and M̄12tot, a
R
M , ā2 and dRM , d̄2 are the association and dissociation rate

constants, respectively, and κ̄M is the catalytic rate constant of the enzymatic reactions.

1.5 Competitive interactions between activating histone modifications and DNA
methylation: reactions

As shown in Fig B, at a high level DNA methylation is correlated with the absence of H3K4
methylation [5](Chapter 6), as there is a mutual antagonism between these two modifications
as follows. The Cfp1 protein specifically recognizes unmethylated CXXC DNA binding motif and
recruits H3K4-specific lisyne methylases SET1, bringing about H3K4me3 [5](Chapter 1). Similarly,
DNMT3L recognizes the absence of H3K4me3 and docks to the nucleosome DNMT3, bringing
about de novo DNA methylation [5](Chapter 6, Section 3.1). In turn, it is known that proteins
that contain the ADD (ATRX-DNMT3-DNMT3L) domain, that is, proteins of the DNMT3 family,
do not associate with H3K4me3, which thus inhibits de novo DNA methylation [46]. Therefore, we
model these two marks as mutually exclusive and let D represent an unmodified nucleosome, let
DR represent a nucleosome without any histone modification but with CpGme and DA represent a
nucleosome with a activating histone modification (H3K4me3 or H3Kac).
Active erasure of DNA methylation is enhanced by the presence of active marks. TET1 has

enhanced propensity to bind to unmethylated CpGs through the CXXC domain [14](Chapter 17),
[37]). This suggests a potential mechanism by which H3K4me3 in DA recruits TET1, denoted T,
to nearby methylated CpGs, enhancing the erasure of DNA methylation. Denoting the complex
between and with Tact, this process can be described as follows:

DA +T
adt−−⇀↽−−
ddt

Tact, DR +Tact

adT−−⇀↽−−
ddT

Cd
Tact

κd
T−−→ DR

h +Tact. (67)

These reactions have to be added to the DNA methylation erasure process without the presence
of active marks described in (43) and rewritten here with the current notation of the nucleosome
with DNA methylation, DR:

DR +T
adT−−⇀↽−−
ddT

Cd
T

κd
T−−→ DR

h +T, DR
h

δ−−→ D0, (68)

Active erasure of active histone modifications is enhanced by the presence of DNA methylation.
Methylated CpGs recruit MeCP2 proteins, which associate with HDACs to establish histone de-
acetylation and further chromatin compaction [5](Chapter 15), [43, 47, 48]. Similarly, methylated
CpGs also recruit MBD2, which interacts with the NuRD complex to promote de-acetylation [43],
[5](Chapter 21). These interactions can be modeled by a recruitment of erasers of the activating
histone marks by methylated CpGs. That is, similar to what done for the competition between
opposing histone marks, we have the following reactions for the active erasure of DR on DA:

DR + EA aAe−−⇀↽−−
dAe

EAd
act, DA + EAd

act

aAE−−⇀↽−−
dAE

CAd
E

κA
E−−→ D+ EAd

act. (69)
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1.6 Derivation of the complete model

By combining the competition interactions between activating and repressive marks of Figs 1C and
B with the cooperation pathways among repressive marks of Fig C, we obtain the overall chromatin
modification interactions, whose pictorial representation and interaction diagram are shown in Figs
1D and 3A, respectively. To realize the model, we assume that the DNA wrapped around each nu-
cleosome can have only one CpG and that each nucleosome cannot be characterized by more than
one modified histone simultaneously. Furthermore, as we saw in Section 1.5, activating histone
modifications are anti-correlated with DNA methylation and then we assume that a nucleosome
characterized by a activating histone modification cannot acquire CpG methylation. Conversely, as
we saw in Section 1.4, repressive histone modifications are positively correlated with DNA methy-
lation and then we assume that a nucleosome characterized by a repressive histone modification
can acquire CpG methylation, and viceversa. Therefore, the species involved are the following:
D (unmodified nucleosome), DR

1 (nucleosome without any histone modification but with CpGme),
DR

2 (nucleosome with a repressive histone modification, H3K9me3, but without methylated CpG),
DR

12 (nucleosome with both H3K9me3 and CpGme) and DR
A (nucleosome with a activating histone

modification, H3K4me3 or H3Kac). In terms of notation, for a species X, we use nX to denote the
number of such a species and use italics, X, to denote concentration (defining the reaction volume

as Ω, X = nX

Ω ).

The reactions considered are the following:

� reactions (1), (16), (4) and the first reaction in (14), in which we substitute P, Pn, C̄P , W,

CW0, CW , DM , M, E and CE with R, Rn, C̄
0
R1, W

R, CR
W2, D

R
2 , M

R, ER and CR
E2, respectively;

� reactions (10), in which we substitute DR with DR
2 , respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
2 , E

R, ER
act1 , C

R
E2act1

and DA;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
2 , E

R, ER
act2 , C

R
E2act2

and C̄
A
A, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
2 , E

R, ER
act3 , C

R
E2act3

and C̄
A
R, respectively;

� reactions (16), (4) and the first reaction in (14), in which we substitute D, DM , M, E and CE

with DR
1 , D

R
12, M

R
12, E

R and CR
E12, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
1 , E

R, ER
act1 , C

R
E12act1

and DA, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
1 , E

R, ER
act2 , C

R
E12act2

and C̄
A
A, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
1 , E

R, ER
act3 , C

R
E12act3

and C̄
A
R, respectively;
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� reactions (16), (4) and the first reaction in (14), in which we substitute D, DM , M, E and CE

with DR
1h, D

R
12h, M

R
12h, E

R and CR
E12h, respectively;

� reaction (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
1h, ER, ER

act1 ,
CR
E12hact1

and DA, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
1h, ER, ER

act2 ,

CR
E12hact2

and C̄
A
A, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DR
1h, ER, ER

act3 ,

CR
E12hact3

and C̄
A
R, respectively;

� reactions (16), (4) and the first reaction in (14), in which we substitute D, DM , M, E and CE

with C0
1, C

0
12, M

R0
12 , E

R and CR0
E12, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with C0
1, E

R, ER
act1 , C

R0
E12act1

and DA, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with C0
1, E

R, ER
act2 , C

R0
E12act2

and C̄
A
A, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with C0
1, E

R, ER
act3 , C

R0
E12act3

and C̄
A
R, respectively;

� reactions (14) and (15), in which we substitute DR, MR, CR
M , C̄R, C

R
M1, C̄A and CR

M2 with

DR
2 , M

R, CR
M21

, C̄
0
R1, C

R
M2c1

, C̄A and CR
M2ac1

, respectively;

� reactions (14) and (15), in which we substitute DR, MR, CR
M , C̄R, C

R
M1, C̄A and CR

M2 with

DR
2 , M

R
12, C

R
M22

, C̄
0
R1, C

R
M2c2

, C̄A and CR
M2ac2

, respectively;

� reactions (14) and (15), in which we substitute DR, MR, CR
M , C̄R, C

R
M1, C̄A and CR

M2with

DR
2 , M

R
12h, C

R
M23

, C̄
0
R1, C

R
M2c3

, C̄A and CR
M2ac3

, respectively;

� reactions (14) and (15), in which we substitute DR, MR, CR
M , C̄R, C

R
M1, C̄A and CR

M2 with

DR
2 , M

R0
12 , C

R
M24

, C̄
0
R1, C

R
M2c4

, C̄A and CR
M2ac4

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1 , D
R
12, M

R

and CR
M121

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1 , D
R
12, M

R
12

and CR
M122

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1 , D
R
12, M

R
12h

and CR
M123

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1 , D
R
12, M

R0
12

and CR
M124

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1h, D
R
12h, M

R

and CR
M12h1

, respectively;
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� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1h, D
R
12h, M

R
12

and CR
M12h2

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1h, D
R
12h, M

R
12h

and CR
M12h3

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with DR

1h, D
R
12h, M

R0
12

and CR
M12h4

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with C0

1, C
0
12, M

R

and CR0
M121

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with C0

1, C
0
12, M

R
12

and CR0
M122

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with C0

1, C
0
12, M

R
12h

and CR0
M123

, respectively;

� the second reaction in (14), in which we substitute D, DR, MR and CR
M with C0

1, C
0
12, M

R0
12

and CR0
M124

, respectively;

� reactions (30), (31), (32), (51), (52), (53) and (68), in which we substitute DM , C̄
0
R,C

d
W0, C

d
W ,

Cd
T , C

d
B1, D

M
h and C0 with DR

1 , C̄
0
R1, C

d
W10, C

d
W1, C

d
T1, C

d
B1, D

R
1h and C0

1, respectively;

� reactions (10), in which we substitute WR, CR,2
W , and DR with W d, Cd,2

W1 and DR
1 , respectively;

� reactions (67), in which we substitute Tact, D
R, Cd

Tact
and DR

h with Tact1 , D
R
1 , C

d
T1act1

and

DR
1h, respectively;

� reactions (67), in which we substitute DA, Tact, D
R, Cd

Tact
and DR

h with C̄
A
A, Tact2 , D

R
1 , C

d
T1act2

and DR
1h, respectively;

� reactions (67), in which we substitute DA, Tact, D
R, Cd

Tact
and DR

h with C̄
A
R, Tact3 , D

R
1 , C

d
T1act3

and DR
1h, respectively;

� reactions (32), (51), (52), (53) and (68) in which we substitute D, DM , Cd
T , C

d
B1, D

M
h and C0

with DR
2 , D

R
12, C̄

0
R112, C

d
T12, C

d
B12, D

R
12h and C0

12, respectively;

� reactions (67), in which we substitute Tact, D
R, Cd

Tact
and DR

h with Tact1 , D
R
12, C

d
T12act1

and

DR
12h, respectively;

� reactions (67), in which we substitute DA, Tact, DR, Cd
Tact

and DR
h with C̄

A
A, Tact2 , DR

12,

Cd
T12act2

and DR
12h, respectively;

� reactions (67), in which we substitute DA, Tact, DR, Cd
Tact

and DR
h with C̄

A
R, Tact3 , DR

12,

Cd
T12act3

and DR
12h, respectively;

� reactions (65), (66);

� reactions (1), (16) and (4), in which we substitute P, Pn, C̄P , W, CW , DM , E and CE with
A, An, C̄A, W

A, CA
W , DA, EA and CA

E , respectively;
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� reactions (65), (66);

� reactions (8), in which we substitute C̄R with C̄
0
R1, respectively;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DA, EA, EA
act1 , C

A
Eact1

and DR
2 ;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DA, EA, EA
act2 , C

A
Eact2

and DR
12;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DA, EA, EA
act3 , C

A
Eact3

and DR
12h;

� reactions (17), in which we substitute DM , E, Eact, CEact and D̄
M

with DA, EA, EA
act4 , C

A
Eact4

and C0
12;

� reactions (12) and (13), in which we substitute MA, CA
M , C̄A, C

A
M1, C̄R and CA

M2 with MA
1 ,

CA
M1

, C̄A, C
A
M11

, C̄
0
R1 and CA

M21
, respectively;

� reactions (12) and (13), in which we substitute DA, MA, CA
M , C̄A, C

A
M1, C̄R and CA

M2 with

C̄
A
A, M

A
2 , C

A
M2

, C̄A, C
A
M12

, C̄
0
R1 and CA

M22
, respectively;

� reactions (12) and (13), in which we substitute DA, MA, CA
M , C̄A, C

A
M1, C̄R and CA

M2 with

C̄
A
R, M

A
3 , C

A
M3

, C̄A, C
A
M13

, C̄
0
R1 and CA

M23
, respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with DR

1 , E
Ad
act1 , D

A and CAd
E1

,
respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with C0

1, E
Ad
act2 , D

A and CAd
E2

,
respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with DR

12, E
Ad
act3 , D

A and CAd
E3

,
respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with C0

12, E
Ad
act4 , D

A and CAd
E4

,
respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with DR

1 , E
Ad
act1 , C̄

A
A and CAd

AE1
,

respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with C0

1, E
Ad
act2 , C̄

A
A and CAd

AE2
,

respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with DR

12, E
Ad
act3 , C̄

A
A and CAd

AE3
,

respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with C0

12, E
Ad
act4 , C̄

A
A and CAd

AE4
,

respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with DR

1 , E
Ad
act1 , C̄

A
R and CAd

RE1
,

respectively;
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� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with C0

1, E
Ad
act2 , C̄

A
R and CAd

RE2
,

respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with DR

12, E
Ad
act3 , C̄

A
R and CAd

RE3
,

respectively;

� reactions (69), in which we substitute DR, EAd
act, D

A and CAd
E with C0

12, E
Ad
act4 , C̄

A
R and CAd

RE4
,

respectively;

Defining DA
tot = DA + C̄

A
A + C̄

A
R, D

R
1tot = DR

1 + C0
1, D

R
12tot = DR

12 + C0
12, C

R
M2 = CR

M21
+ CR

M22
+

CR
M23

+ CR
M24

, CR
M12 = CR

M121
+ CR

M122
+ CR

M123
+ CR

M124
, CR

M12h = CR
M12h1

+ CR
M12h2

+ CR
M12h3

+ CR
M12h4

, CR0
M12 = CR0

M121
+ CR0

M122
+ CR0

M123
+ CR0

M124
, CR

M2c
= CR

M2c1
+ CR

M2c2
+ CR

M2c3
+ CR

M2c4
,

C
′
R1 = C

′
R11

+ C
′
R12

+ C
′
R13a

+ C
′
R13b

, C
′
R1c

= C
′
R1c1

+ C
′
R1c2

+ C
′
R1c3a

+ C
′
R1c3b

, C
′
R12 = C

′
R121

+

C
′
R122

+ C
′
R123

, C̄R2 = C̄R21 + C̄R22 , C̄R2c = C̄R2c1 + C̄R2c2 , C̄R12 = C̄R121 + C̄R122 , C̄
0
R12 = C̄0

R121

+ C̄0
R122

, C̄R12h = C̄R12h1 + C̄R12h2 , M
R
tot = MR + MR

12 + MR
12h + MR0

12 , M
′
= M

′
2 + M

′
12h + M

′
12a

+ M
′
12b, M̄ = M̄1tot + M̄12tot, E

R
act = ER

act1 + ER
act2 + ER

act3 , C
R
E2act

= CR
E2act1

+ CR
E2act2

+ CR
E2act3

,

CR
E12act

= CR
E12act1

+ CR
E12act2

+ CR
E12act3

, CR
E12hact

= CR
E12hact1

+ CR
E12hact2

+ CR
E12hact3

, CR0
E12act

= CR0
E12act1

+ CR0
E12act2

+ CR0
E12act3

, CR
M2ac

= CR
M2ac1

+ CR
M2ac2

+ CR
M2ac3

+ CR
M2ac4

, Tact = Tact1 +

Tact2 + Tact3 , C
d
T1act

= Cd
T1act1

+ Cd
T1act2

+ Cd
T1act3

, Cd
T12act

= Cd
T12act1

+ Cd
T12act2

+ Cd
T12act3

, EA
act

= EA
act1 + EA

act2 + EA
act3 + EA

act4 , C
A
Eact

= CA
Eact1

+ CA
Eact2

+ CA
Eact3

+ CA
Eact4

, CA
M = CA

M1
+ CA

M2
+

CA
M3

, CA
M1 = CA

M11
+ CA

M12
+ CA

M13
, CA

M2 = CA
M21

+ CA
M22

+ CA
M23

, EAd
act = EAd

act1 + EAd
act2 + EAd

act3

+ EAd
act4 , C

Ad
E = CAd

E1
+ CAd

E2
+ CAd

E3
+ CAd

E4
, CAd

AE = CAd
AE1

+ CAd
AE2

+ CAd
AE3

+ CAd
AE4

, CAd
RE = CAd

RE1

+ CAd
RE2

+ CAd
RE3

+ CAd
RE4

, CA
Etot

= CA
E + C̄A

AE + C̄A
RE , C

A
Eacttot

= CA
Eact

+ C̄A
AEact

+ C̄A
REact

, CAd
Etot

= CAd
E + CAd

AE + CAd
RE , the ODE system associated with the reaction system described above and
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shown in Fig 3A is given by

Ȧn = anA − dAAn − δAn − āAAnD + d̄AC̄A

+ κAWCA
W + κAWCA,2

W + κAWCA,2
W + κAMCA

M1 + κ
′
MC

′
R1ac + κ̄M C̄R2ac + κMCR

M2ac

− ā
′
AAnD

A + d̄
′
AC̄

A
A + κAEC̄

A
AE + κAEC̄

A
AEact

+ κAEC̄
Ad
AE + δC̄A

A

Ṙn = aRR
n − dRRn − δRn − āRRnD + d̄RC̄

0
R1 + κdWCd

W1 + κdWCd,2
W

+ κ2WCR
W2 + κ2WCR,2

W + κMCR
M2c + κ

′
MC

′
R1c + κ̄M C̄R2c + κAMCA

M2

− ā
′
RRnD

A + d̄
′
RC̄

A
R + κAEC̄

A
RE + κAEC̄

A
REact

+ κAEC̄
Ad
RE + δC̄A

R

˙̄C0
R1 = āRRnD − d̄RC̄

0
R1 − [(adW0 + adW )C̄0

R1W
d − ddWCd

W1

+ aAW0C̄
0
R1W

A − dAWCA,2
W + (aRW0 + aRW )C̄0

R1W
R − dRWCR

W2

+ āRMR
totC̄

0
R1 − d̄RCR

M2c + ā1C̄
0
R1M

′ − d̄1C
′
R1c + ā2C̄

0
R1M̄ − d̄2C̄R2c

+ āAMAC̄0
R1 − d̄ACA

M2 + ā1C̄
0
R1M

′ − d̄1C
′
R1c + ā2C̄

0
R1M̄ − d̄2C̄R2c ]

Ċd
W10 = adW0DW d − ddWCd

W10 − κdWCd
W10

Ċd
W1 = (adW0 + adW )C̄0

R1W
d − ddWCd

W1 − κdWCd
W1

Ċd,2
W1 = adW0C̄AW

d − ddWCd,2
W1 − κdWCd,2

W1

Ṫact = adtD
A
totT − ddtTact − [adTD

R
1 Tact − ddTC

d
T1act − κdTC

d
T1act

+ adTD
R
12Tact − ddTC

d
T12act − κdTC

d
T12act ]

Ċd
T1 = adTD

R
1 T − ddTC

d
T1 − κdTC

d
T1

Ċd
T1act = adTD

R
1 Tact − ddTC

d
T1act − κdTC

d
T1act

Ċd
B1 = adBD

R
1 B − ddBC

d
B1 − κdBC

d
B1

ĊR
W20 = aRW0DWR − dRWCR

W20 − κ2WCR
W20

ĊR
W2 = aRW C̄0

R1W
R − dRWCR

W2 − κ2WCR
W2

ĊR,2
W = aRW C̄AW

R − dRWCR,2
W − κ2WCR,2

W

ṀR
tot = aRM (DR

2 +DR
12h +DR

12tot)V
R − dRMMR

tot − [āRMR
totD − d̄RCR

M2 − κMCR
M2

+ āRMR
totC̄

0
R1 − d̄RCR

M2c − κMCR
M2c + āRDR

1 M
R
tot − d̄RCR

M12 − κMCR
M12

+ āRC0
1M

R
tot − d̄RCR0

M12 − κMCR0
M12 + āRDR

1hM
R
tot − d̄RCR

M12h − κMCR
M12h]

ĊR
M2 = āRMR

totD − d̄RCR
M2 − κMCR

M2

ĊR
M2c = āRMR

totC̄
0
R1 − d̄RCR

M2c − κMCR
M2c

ĊR
M2ac = āRMR

totC̄A − d̄RCR
M2ac − κMCR

M2ac

ĖR
act = aRe D

A
totE

R − dRe E
A
act − [aRED

R
2 E

R
act − dREC

R
E2 − κREC

R
E2

+ aRED
R
12E

R
act − dREC

R
E12act − κREC

R
E12act + aREC

0
12E

R
act − dREC

R0
E12act − κREC

R0
E12act

+ aRED
R
12hE

R
act − dREC

R
E12hact

− κREC
R
E12hact

]

ĊR
E2 = aRED

R
2 E

R − dREC
R
E2 − κREC

R
E2

ĊR
E2act = aRED

R
2 E

R
act − dREC

R
E2 − κREC

R
E2act ;

Ċd
W120 = adW0D

R
2 W

d − ddWCd
W120 − κdWCd

W120

Ċd
T12 = adTD

R
12T − ddTC

d
T12 − κdTC

d
T12

Ċd
T12act = adTD

R
12Tact − ddTC

d
T12act − κdTC

d
T12act

Ċd
B12 = adBD

R
12B − ddBC

d
B12 − κdBC

d
B12

ĊR
W120 = aRW0D

R
1 W

R − dRWCR
W120 − κ2WCR

W120
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ĊR
M12 = āRDR

1 M
R
tot − d̄RCR

M12 − κMCR
M12

ĊR
E12 = aRED

R
12E

R − dREC
R
E12 − κREC

R
E12

ĊR
E12act = aRED

R
12E

R
act − dREC

R
E12act − κREC

R
E12act

ĊR0
W120 = aRW0C

0
1W

R − dRWCR0
W120 − κ2WCR0

W120

ĊR0
M12 = āRC0

1M
R
tot − d̄RCR0

M12 − κMCR0
M12

ĊR0
E12 = aREC

0
12E

R − dREC
R0
E12 − κREC

R0
E12

ĊR0
E12act = aREC

0
12E

R
act − dREC

R0
E12act − κREC

R0
E12act

ĊR
W12h0 = aRW0D

R
1hW

R − dRWCR
W12h0 − κ2WCR

W12h0

ĊR
M12h = āRDR

1hM
R
tot − d̄RCR

M12h − κMCR
M12h

ĊR
E12h = aRED

R
12hE

R − dREC
R
E12h − κREC

R
E12h

ĊR
E12hact

= aRED
R
12hE

R
act − dREC

R
E12hact

− κREC
R
E12hact

Ṁ
′
= adM (DR

2 +DR
12h +DR

12tot)W
d − ddMM

′

− [ā1DM
′ − d̄1C

′
R1 − κ

′
MC

′
R1

+ ā1C̄
0
R1M

′ − d̄1C
′
R1c − κ

′
MC

′
R1c + ā1D

R
2 M

′ − d̄1C
′
R12 − κ

′
MC

′
R12

+ ā1C̄AM
′ − d̄1C

′
R1ac − κ

′
MC

′
R1ac ]

˙̄M = aRM (C0
1 + C0

12)W
R − dRMM̄ − [ā2DM̄ − d̄2C̄R2 − κ̄M C̄R2

+ ā2C̄
0
R1M̄ − d̄2C̄R2c − κ̄M C̄R2c + ā2D

R
1 M̄ − d̄2C̄R12 − κ̄M C̄R12

+ ā2C
0
1M̄ − d̄2C̄

0
R12 − κ̄M C̄0

R12 + ā2D
R
1hM̄ − d̄2C̄R12h − κ̄M C̄R12h

+ ā2C̄AM̄ − d̄2C̄R2ac − κ̄M C̄R2ac ]

Ċ
′
R1 = ā1DM

′ − d̄1C
′
R1 − κ

′
MC

′
R1

Ċ
′
R1c = ā1C̄

0
R1M

′ − d̄1C
′
R1c − κ

′
MC

′
R1c

Ċ
′
R1ac = ā1C̄AM

′ − d̄1C
′
R1ac − κ

′
MC

′
R1ac

˙̄CR2 = ā2DM̄ − d̄2C̄R2 − κ̄M C̄R2

˙̄CR2c = ā2C̄
0
R1M̄ − d̄2C̄R2c − κ̄M C̄R2c

˙̄CR2ac = ā2C̄AM̄ − d̄2C̄R2ac − κ̄M C̄R2ac

Ċ
′
R12 = ā1D

R
2 M

′ − d̄1C
′
R12 − κ

′
MC

′
R12

˙̄CR12 = ā2D
R
1 M̄ − d̄2C̄R12 − κ̄M C̄R12

˙̄C0
R12 = ā2C

0
1M̄ − d̄2C̄

0
R12 − κ̄M C̄0

R12

˙̄CR12h = ā2D
R
1hM̄ − d̄2C̄R12h − κ̄M C̄R12h

˙̄CA = āAAnD − d̄AC̄A − [(aAW0 + aAW )C̄AW
A − dAWCA

W + āAC̄AM
A − d̄ACA

M1

+ aRW C̄AW
R − dRWCR,2

W + adW0C̄AW
d − ddWCd,2

W1

+ āRC̄AM
R
tot − d̄RCR

M2ac + ā1C̄AM
′ − d̄1C

′
R1ac + ā2C̄AM̄ − d̄2C̄R2ac ]

ĊA
W0 = aAW0DWA − dAWCA

W0 − κAWCA
W0

ĊA
W = (aAW0 + aAW )C̄AW

A − dAWCA
W − κAWCA

W

ĊA,2
W = aAW0C̄

0
R1W

A − dAWCA,2
W − κAWCA,2

W

ṀA = aAMDA
totV

A − dAMMA − [āADMA − d̄ACA
M − κAMCA

M

+ āAC̄AM
A − d̄ACA

M1 − κAMCA
M1 + āAC̄RM

A − d̄ACA
M2 − κAMCA

M2

(70)
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ĊA
M = āADMA − d̄ACA

M − κAMCA
M

ĊA
M1 = āAC̄AM

A − d̄ACA
M1 − κAMCA

M1

ĊA
M2 = āAC̄0

R1M
A − d̄ACA

M2 − κAMCA
M2

ĖA
act = aAe (D

R
2 +DR

12h +DR
12tot)E

A − dAe E
A
act − [aAED

A
totE

A
act − dAEC

A
Eacttot − κAEC

A
Eacttot]

ĖAd
act = aAe (D

R
1tot +DR

12tot)E
A − dAe E

Ad
act − [aAED

A
totE

Ad
act − dAEC

Ad
Etot

− κAEC
Ad
Etot

]

˙̄CA
AE = aAEC̄

A
AE

A − dAEC̄
A
AE − κAEC̄

A
AE

˙̄CA
RE = aAEC̄

A
RE

A − dAEC̄
A
RE − κAEC̄

A
RE

ĊA
Etot = aAED

A
totE

A − dAEC
A
Etot − κAEC

A
Etot

˙̄CA
AEact

= aAEC̄
A
AE

A
act − dAEC̄

A
AEact

− κAEC̄
A
AEact

˙̄CA
REact

= aAEC̄
A
RE

A
act − dAEC̄

A
REact

− κAEC̄
A
REact

ĊA
Eacttot = aAED

A
totE

A
act − dAEC

A
Eacttot − κAEC

A
Eacttot

˙̄CAd
AE = aAEC̄

A
AE

Ad
act − dAEC̄

Ad
AE − κAEC̄

Ad
AE

˙̄CAd
RE = aAEC̄

A
RE

Ad
act − dAEC̄

Ad
RE − κAEC̄

Ad
RE

ĊAd
Etot

= aAED
A
totE

Ad
act − dAEC

Ad
Etot

− κAEC
Ad
Etot

˙̄CA
A = ā

′
AAnD

A − d̄
′
AC̄

A
A − aAEC̄

A
AE

A + dAEC̄
A
AE − aAEC̄

A
AE

A
act + dAEC̄

A
AEact

− aAEC̄
A
AE

Ad
act + dAEC̄

Ad
AE − δC̄A

A

˙̄CA
R = ā

′
RRnD

A − d̄
′
RC̄

A
R − aAEC̄

A
RE

A + dAEC̄
A
RE − aAEC̄

A
RE

A
act + dAEC̄

A
REact

− aAEC̄
A
RE

Ad
act + dAEC̄

Ad
RE − δC̄R

A

ḊR
1 = κdW (Cd

W10 + Cd
W1 + Cd,2

W1) + κ
′
M (C

′
R1 + C

′
R1c + C

′
R1ac)

− δ
′
DR

1 − adBD
R
1 B + ddBC

d
B1 + dC0

1 − adTD
R
1 (T + Tact) + ddT (C

d
T1 + Cd

T1act)− aAe D
R
1 E

A + dAe E
Ad
act1

− [aRW0D
R
1 W

R − dRWCR
W120 + āRDR

1 M
R
tot − d̄RCR

M12 + ā2D
R
1 M̄ − d̄2C̄R12 − κRE(C

R
E12 + CR

E12act)− δDR
12]

Ċ0
1 = κdBC

d
B1 − dC0

1 − δ
′
C0
1 − aRMC0

1W
R + dRMM̄1tot − aAe C

0
1E

A + dAe E
Ad
act2

− [aRW0C
0
1W

R − dRWCR0
W120 + āRC0

1M
R
tot − d̄RCR0

M12 + ā2C
0
1M̄ − d̄2C̄

0
R12 − κRE(C

R0
E12 + CR0

E12act)− δC0
12]

ḊR
1h = κdT (C

d
T1 + Cd

T1act)− δDR
1h

− [aRW0D
R
1hW

R − dRWCR
W12h0 + āRDR

1hM
R
tot − d̄RCR

M12h

+ ā2D
R
1hM̄ − d̄2C̄R12h − κRE(C

R
E12h + CR

E12hact
)− δDR

12h]

ḊR
2 = κ2W (CR

W20 + CR
W2 + CR,2

W ) + κM (CR
M2 + CR

M2c + CR
M2ac) + κ̄M (C̄R2 + C̄R2c + C̄R2ac)

− aRED
R
2 (E

R + ER
act) + dRE(C

R
E2 + CR

E2act)− δDR
2 − aAe D

R
2 E

A + dAe E
A
act1

− [adW0D
R
2 W

d − ddWCd
W120 + aRMDR

2 W
R − dRMMR + ā1D

R
2 M

′ − d̄1C
′
R12 − δ′DR

12 − δDR
12h − δ

′
C0
12]

ḊR
12 = κ2WCR

W120 + κMCR
M12 + κ̄M C̄R12 − aRED

R
12(E

R + ER
act) + dRE(C

R
E12 + CR

E12act)− δDR
12

+ κdWCd
W120 + κ

′
MC

′
R12 − δ′DR

12 − adBD
R
12B + ddBC

d
B12 + dC0

12

− aAe D
R
12E

A + dAe E
A
act2 − aAe D

R
12E

A + dAe E
Ad
act4

− adTD
R
12(T + Tact)− ddT (C

d
T12 + Cd

T12act)− aRMDR
12W

R + dRMMR
12

Ċ0
12 = κdBC

d
B12 − dC0

12 − δ
′
C0
12 − aRMC0

12W
R + dRMM̄12tot

− aAe C
0
12E

A + dAe E
A
act4 − aAe C

0
12E

A + dAe E
Ad
act3

+ [κ2WCR0
W120 + κMCR0

M12 + κ̄M C̄0
R12 − aREC

0
12(E

R + ER
act) + dRE(C

R0
E12 + CR0

E12act)

− δC0
12 − aRMC0

12W
R + dRMMR0

12 ]

ḊR
12h = κdT (C

d
T12 + Cd

T12act]
)− δDR

12h

+ [κ2WCR
W12h0 + κMCR

M12h + κ̄M C̄R12h − aRED
R
12h(E

R + ER
act) + dRE(C

R
E12h + CR

E12hact
)

− δDR
12h − aRMDR

12hW
R + dRMMR

12h]− aAe D
R
12hE

A + dAe E
A
act3
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ḊA
tot = κAW (CA

W0 + CA
W + CA,2

W ) + κAM (CA
M + CA

M1 + CA
M2)− aAMDA

totW
A + dAMMA − aRe D

A
totE

R

+ dRe E
A
act − aAED

A
tot(E

A + EA
act + EAd

act) + dAE(C
A
Etot

+ CA
Eacttot + CAd

Etot
)− δDA.

All the reaction rate constants involved are defined as it was done in (1), (4), (12), (13), (14), (15),
(16), (17), (30), (31), (32), (51), (52), (53) and (68), (67), (69). Since the binding reactions are
much faster than the other reactions, we set the complexes dynamics to the QSS, that is we set

Ȧn = Ṙn = ˙̄C0
R1 = Ċd,2

W1 = Ċd
W10 = Ċd

W1 = Ṫact = Ċd
T1 = Ċd

T1act
= Ċd

B1 = ĊR
W20 = ĊR

W2 = ĊR,2
W =

ṀR
tot = ĊR

M2 = ĊR
M2c

= ĊR
M2ac

= ĖR
act = ĊR

E2 = ĊR
E2act

= Ċd
W120 = Ċd

T12 = Ċd
T12act

= Ċd
B12 =

ĊR
W120 = ĊR

M12 = ĊR
E12 = ĊR

E12act
= ĊR0

W120 = ĊR0
M12 = ĊR0

E12 = ĊR0
E12act

= ĊR
W12h0 = ĊR

M12h =

ĊR
E12h = ĊR

E12hact
= Ṁ

′
= ˙̄M = Ċ

′
R1 = Ċ

′
R1c

= Ċ
′
R1ac

= ˙̄CR2 = ˙̄CR2c = ˙̄CR2ac = Ċ
′
R12 = ˙̄CR12 =

˙̄C0
R12 = ˙̄CR12h = ˙̄CA = ĊA

W0 = ĊA
W2 = ĊA

W = ṀA = ĊA
M = ĊA

M1 = ĊA
M2 = ĖA

act = ĖAd
act = ĊA

Etot =
ĊA
Eacttot

= ĊAd
Etot

= 0, obtaining

Rn =
Rn

KR
, C̄0

R1 =
Rn

KRK̄R
D, An =

An

KA
, C̄A =

An

KAK̄A
D, Cd

W10 =
adw0W

dD

ddW + κdW
=

W d

Kd
W0

D,

Cd
W1 =

(adW0 + adW )W dC̄0
R1

ddW + κdW
= (

1

Kd
W0

+
1

Kd
W

)W dC̄0
R1 = (

1

Kd
W0

+
1

Kd
W

)
W dRn

KRK̄R
D,

Cd,2
W1 =

adW0W
dC̄A

ddW + κdW
=

W d

Kd
W0

C̄A =
W dAn

Kd
W0KAK̄A

D,

CR
W20 =

aRW0W
RD

dRW + κ2W
=

WR

KR
W0

D, Tact =
adtD

A
totT

ddt
=

DA
totT

KTT
,

CR
W2 =

(aRW0 + aRW )WRC̄0
R1

dRW + κ2W
= (

1

KR
W0

+
1

KR
W

)WRC̄0
R1 = (

1

KR
W0

+
1

KR
W

)
WRRn

KRK̄R
D,

CR,2
W =

aRW0W
RC̄A

dRW + κ2W
=

WR

KR
W0

C̄A =
WRAn

KR
W0KAK̄A

D,

Cd
B1 =

adBBDR
1

ddB + κdB
=

B

Kd
B

DR
1 , Cd

T1 =
adTTD

R
1

ddT + κdT
=

T

Kd
T

DR
1 , Cd

T1act =
Tact

Kd
T

DR
1 ,

Cd
W120 =

adw0W
dDR

2

ddW + κdW
=

W d

Kd
W0

DR
2 , Cd

B12 =
adBBDR

12

ddB + κdB
=

B

Kd
B

DR
12, Cd

T12 =
adTTD

R
12

ddT + κdT
=

T

Kd
T

DR
12,

Cd
T1act =

Tact

Kd
T

DR
1 =

TDA
tot

KTTKd
T

DR
1 =

TDA
tot

K∗
T

DR
1 , Cd

T12act =
Tact

Kd
T

DR
12 =

TDA
tot

K∗
T

DR
12,

MR
tot =

aRMV R(DR
2 +DR

12h +DR
12tot)

dRM
=

V R(DR
2 +DR

12h +DR
12tot)

KR
MM

CR
M2 =

āRMR
totD

d̄R + κM
=

V R(DR
2 +DR

12h +DR
12tot)

K̄R
MKR

MM

D =
V R(DR

2 +DR
12h +DR

12tot)

KR
M

D,

CR
M2c =

āRMR
totC̄

0
R1

d̄R + κM
=

V R(DR
2 +DR

12h +DR
12tot)

K̄R
MKR

MM

C̄0
R1 =

RnV R(DR
2 +DR

12h +DR
12tot)

KRK̄RKR
M

D,

CR
M2ac =

āRMR
totC̄A

d̄R + κM
=

V R(DR
2 +DR

12h +DR
12tot)

K̄R
MKR

MM

C̄A =
AnV R(DR

2 +DR
12h +DR

12tot)

KAK̄AKR
M

D,
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ER
act =

aRe D
A
totE

R

dRe
=

DA
totE

R

KR
EE

, CR
E2 =

aREE
RDR

2

dRE + κRE
=

ER

KR
E

DR
2 , CR

E12 =
aREE

RDR
12

dRE + κRE
=

ER

KR
E

DR
12,

CR
E2act =

ER
act

KR
E

DR
2 =

ERDA
tot

KR
EEK

R
E

DR
2 =

ERDA
tot

KR∗
E

DR
2 , CR

E12act =
ER

act

KR
E

DR
12 =

ERDA
tot

KR∗
E

DR
12,

CR
W120 =

aRW0W
RDR

1

dRW + κ2W
=

WR

KR
W0

DR
1 , CR0

W120 =
aRW0W

RC0
1

dRW + κ2W
=

WR

KR
W0

C0
1 ,

CR
M12 =

āRMR
totD

R
1

d̄RM + κM
=

V R(DR
2 +DR

12h +DR
12tot)

K̄R
MKR

MM

DR
1 =

V R(DR
2 +DR

12h +DR
12tot)

KR
M

DR
1 ,

CR0
M12 =

āRMR
totC

0
1

d̄RM + κM
=

V R(DR
2 +DR

12h +DR
12tot)

K̄R
MKR

MM

C0
1 =

V R(DR
2 +DR

12h +DR
12tot)

KR
M

C0
1 ,

CR0
E12 =

aREE
RC0

12

dRE + κRE
=

ER

KR
E

C0
12, CR

E12h =
aREE

RDR
12h

dRE + κRE
=

ER

KR
E

DR
12h, CR

W12h0 =
aRW0W

RDR
1h

dRW + κ2W
=

WR

KR
W0

DR
1h,

CR0
E12 =

ER
act

KR
E

C0
12 =

ERDA
tot

KR
EEK

R
E

C0
12 =

ERDA
tot

KR∗
E

C0
12, CR

E12h =
ER

act

KR
E

DR
12h =

ERDA
tot

KR∗
E

DR
12h,

CR
M12h =

āRMR
totD

R
1h

dRM + κM
=

V R((DR
2 +DR

12h +DR
12tot)

K̄R
MKR

MM

DR
1h =

V R(DR
2 +DR

12h +DR
12tot)

KR
M

DR
1h,

M
′
=

adMW d(DR
2 +DR

12h +DR
12tot)

ddM
=

W d(DR
2 +DR

12h +DR
12tot)

Kd
MM

,

C
′
R1 =

ā1DM
′

d̄1 + κ
′
M

=
W d(DR

2 +DR
12h +DR

12tot)

K̄R
1 K

d
MM

D =
W d(DR

2 +DR
12h +DR

12tot)

K
′
M

D,

C
′
R1c =

ā1C̄
0
R1M

′

d̄1 + κ
′
M

=
W d(DR

2 +DR
12h +DR

12tot)

K̄R
1 K

d
MM

C̄0
R1 =

RnW d(DR
2 +DR

12h +DR
12tot)

KRK̄RK
′
M

D,

C
′
R1ac =

ā1C̄AM
′

d̄1 + κ
′
M

=
W d(DR

2 +DR
12h +DR

12tot)

K̄R
1 K

d
MM

C̄A =
AnW d(DR

2 +DR
12h +DR

12tot)

KAK̄AK
′
M

D,

M̄ =
aRMWR(C0

1 + C0
12)

dRM
=

WR(C0
1 + C0

12)

KR
MM

,

C̄R2 =
ā2DM̄

d̄2 + κ̄M
=

WR(C0
1 + C0

12)

KR
2 K

R
MM

D =
WR(C0

1 + C0
12)

K̄M
D,

C̄R2c =
ā2C̄

0
R1M̄

d̄2 + κ̄M
=

WR(C0
1 + C0

12)

KR
2 K

R
MM

C̄0
R1 =

RnWR(C0
1 + C0

12)

KRK̄RK̄M
D,

C̄R2c =
ā2C̄AM̄

d̄2 + κ̄M
=

WR(C0
1 + C0

12)

KR
2 K

R
MM

C̄A =
AnWR(C0

1 + C0
12)

KAK̄AK̄M
D,

C
′
R12 =

ā1D
R
2 M

′

d̄1 + κ
′
M

=
W d(DR

2 + C̄0
R112 +DR

12h +DR
12tot)

K̄R
1 K

d
MM

DR
2 =

W d(DR
2 + C̄0

R112 +DR
12h +DR

12tot)

K
′
M

DR
2 ,

C̄R12 =
ā2D

R
1 M̄

d̄2 + κ̄M
=

WR(C0
1 + C0

12)

KR
2 K

R
MM

DR
1 =

WR(C0
1 + C0

12)

K̄M
DR

1 ,
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C̄0
R12 =

ā2C
0
1M̄

d̄2 + κ̄M
=

WR(C0
1 + C0

12)

KR
2 K

R
MM

C0
1 =

WR(C0
1 + C0

12)

K̄M
C0
1 ,

C̄R12h =
ā2D

R
1hM̄

d̄2 + κ̄M
=

WR(C0
1 + C0

12)

KR
2 K

R
MM

DR
1h =

WR(C0
1 + C0

12)

K̄M
DR

1h,

CA
W =

(aAW0 + aAW )WAC̄A

dAW + κAW
= (

1

KA
W0

+
1

KA
W

)WAC̄A = (
1

KA
W0

+
1

KA
W

)
WAAn

KAK̄A
D,

CA
W0 =

aAW0W
AD

dAW + κAW
=

WA

KA
W0

D, CA
W2 =

aAW0W
AC̄0

R1

dAW + κAW
=

WAC̄0
R1

KA
W0

=
WARn

KA
W0KRK̄R

D,

MA =
aAMWADA

tot

dAM
=

WADA
tot

KA
MM

, CA
M =

āAMAD

d̄A + κAM
=

WADA
tot

K̄A
MKA

MM

D =
WADA

tot

KA
M

D,

CA
M1 =

āAMAC̄A

d̄A + κAM
=

WADA
tot

K̄A
MKA

MM

C̄A =
AnWADA

tot

KAK̄AKA
M

D,

CA
M2 =

āAMAC̄0
R1

d̄A + κAM
=

WADA
tot

K̄A
MKA

MM

C̄0
R1 =

RnWADA
tot

KRK̄RKA
M

D,

EA
act =

aAe (D
R
2 +DR

12h +DR
12tot)E

A

dAe
=

(DR
2 +DR

12h +DR
12tot)E

A

KA
EE

,

EAd
act =

aAe (D
R
1tot +DR

12tot)E
A

dAe
=

(DR
1tot +DR

12tot)E
A

KA
EE

, CA
Etot

=
aAEE

ADA
tot

dAE + κAE
=

EA

KA
E

DA
tot,

CA
Eacttot =

EA
act

KA
E

DA
tot =

EA(DR
2 +DR

12h +DR
12tot)

KA
EEK

A
E

DA
tot =

EA(DR
2 +DR

12h +DR
12tot)

KA∗
E

DA
tot,

CAd
Etot

=
EAd

act

KA
E

DA
tot =

EA(DR
1tot +DR

12tot)

KA
EEK

A
E

DA
tot =

EA(DR
1tot +DR

12tot)

KA∗
E

DA
tot,

Substituting the QSS values in the ODEs and defining C0
tot = C0

1 + C0
12 and DR

htot = DR
1h +DR

12h,
model (70) becomes

ḊR
1tot = (κdW

W d

Kd
W0

(
1 +

An

KAK̄A

)
+ κdW (

1

Kd
W0

+
1

Kd
W

)
W dRn

KRK̄R

+ κ
′
M

W d

K
′
M

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
(DR

2 +DR
12h +DR

12tot))D − δ
′
DR

1tot − (κdT
T

Kd
T

+ κdT
TDA

tot

K∗
T

)DR
1

− (κ2W
WR

KR
W0

+ κM
WR

KR
M

(DR
2 +DR

12h +DR
12tot) + κ̄M

WR

K̄M
(C0

1 + C0
12))D

R
1tot

+ (δ + κRE
ER

KR
E

+ κRE
ERDA

tot

KR∗
E

)DR
12tot

ḊR
1h = (κdT

T

Kd
T

+ κdT
TDA

tot

K∗
T

)DR
1 − δDR

1h

− (κ2W
WR

KR
W0

+ κM
WR

KR
M

(DR
2 +DR

12h +DR
12tot) + κ̄M

WR

K̄M
(C0

1 + C0
12))D

R
1h

+ (δ + κRE
ER

KR
E

+ κRE
ERDA

tot

KR∗
E

)DR
12h
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ḊR
2 = (κ2W

WR

KR
W0

(
1 +

An

KAK̄A

)
+ κ2W (

1

KR
W0

+
1

KR
W

)
WRRn

KRK̄R

+ κM
WR

KR
M

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
(DR

2 +DR
12h +DR

12tot)

+ κ̄M
WR

K̄M

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
(C0

1 + C0
12))D − (δ + κRE

ER

KR
E

+ κRE
ERDA

tot

KR∗
E

)DR
2

− [(κdW
W d

Kd
W0

+ κ
′
M

W d

K
′
M

(DR
2 +DR

12h +DR
12tot))D

R
2 − δ

′
DR

12tot − δDR
12h]

ḊR
12tot = (κ2W

WR

KR
W0

+ κM
WR

KR
M

(DR
2 +DR

12h +DR
12tot) + κ̄M

WR

K̄M
(C0

1 + C0
12))D

R
1tot (71)

− (δ + κRE
ER

KR
E

+ κRE
ERDA

tot

KR∗
E

)DR
12tot + (κdW

W d

Kd
W0

+ κ
′
M

W d

K
′
M

(DR
2 +DR

12h +DR
12))D

R
2

− δ
′
DR

12tot − (κdT
T

Kd
T

+ κdT
TDA

tot

K∗
T

)DR
12

ḊR
12h = (κdT

T

Kd
T

+ κdT
TDA

tot

K∗
T

)DR
12 − δDR

12h

+ [(κ2W
WR

KR
W0

+ κM
WR

KR
M

(DR
2 +DR

12h +DR
12tot) + κ̄M

WR

K̄M
(C0

1 + C0
12))D

R
1h

− (δ + κRE
ER

KR
E

+ κRE
ERDA

tot

KR∗
E

)DR
12h]

Ċ0
tot = κdB

B

Kd
B

(DR
1 +DR

12)− dC0
tot − δ

′
C0
tot

ḊR
htot = (κdT

T

Kd
T

+ κdT
TDA

tot

K∗
T

)(DR
1 +DR

12)− δDR
htot

ḊA
tot = (κAW

WA

KA
W0

(
1 +

Rn

KRK̄R

)
+ κAW (

1

KA
W0

+
1

KA
W

)
WAAn

KAK̄A
+ κAM

WA

KA
M

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
DA

tot)D

− (δ + κAE
EA

KA
E

+ κAE
EA(DR

2 +DR
12h +DR

12tot)

KA∗
E

+ κAE
EA(DR

1tot +DR
12tot)

KA∗
E

)DA
tot,

in which DR
1tot = DR

1 + C0
1 and DR

12tot = DR
12 + C0

12, as defined at the beginning of the section.
Furthermore, we make a variable substitution, by introducing Y1 = DR

1tot + DR
12tot = “total con-

centration of nucleosomes characterized by methylated DNA”, Y2 = DR
2 +DR

12h +DR
12tot = “total

concentration of nucleosomes characterized by H3K9me3” and Ytot = DR
1tot+DR

2 +DR
12h+DR

12tot =
“total concentration of nucleosomes characterized by at least one between methyalated DNA and
H3K9me3”. The model can be rewritten as following:
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Ẏ1 = (κdW
W d

Kd
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

)

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
+ (κdW

W d

Kd
W0

+ κ
′
M

W d

K
′
M

(Y2))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D +DR

2

)
− δ

′
Y1 − κdT (

T

Kd
T

+
TDA

tot

K∗
T

)(DR
1 +DR

12)

Ẏ2 = (κ2W
WR

KR
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

)

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
+ (κ2W

WR

KR
W0

+ κM
WR

KR
M

(Y2) + κ̄M
WR

K̄M
(C0

tot))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D +DR

1tot +DR
1h

)
− (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))Y2

Ẏtot = (κdW
W d

Kd
W0

+ κdW
W d

Kd
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

+ κ
′
M

W d

K
′
M

(Y2) + κ2W
WR

KR
W0

+ κ2W
WR

KR
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

+ κM
WR

KR
M

(Y2) + κ̄M
WR

K̄M
(C0

tot))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
− δ

′
(Ytot − Y2)− κdT (

T

Kd
T

+
TDA

tot

K∗
T

)(DR
1 +DR

12)− (δ + κRE(
ER

KR
E

+
ERDA

tot

KR∗
E

))(Ytot − Y1)

Ċ0
tot = κdB

B

Kd
B

(DR
1 +DR

12)− dC0
tot − δ

′
C0
tot

ḊR
1h = κdT (

T

Kd
T

+
TDA

tot

K∗
T

)DR
1 − δDR

1h

− [(κ2W
WR

KR
W0

+ κM
WR

KR
M

(Y2) + κ̄M
WR

K̄M
(C0

tot))D
R
1h − (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))DR
12h]

ḊR
12h = κdT (

T

Kd
T

+
TDA

tot

K∗
T

)DR
12 − δDR

12h

+ [(κ2W
WR

KR
W0

+ κM
WR

KR
M

(Y2) + κ̄M
WR

K̄M
(C0

tot))D
R
1h − (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))DR
12h]

ḊR
htot = κdT (

T

Kd
T

+
TDA

tot

K∗
T

)(DR
1 +DR

12)− δDR
htot

ḊA
tot = (κAW

WA

KA
W0

+ κAW
WA

KA
W

An

KAK̄A

1 + An

KAK̄A
+ Rn

KRK̄R

+ κAM
WA

KA
M

DA
tot)

(
(1 +

An

KAK̄A
+

Rn

KRK̄R
)D

)
− (δ + κAE(

EA

KA
E

+
EAY2

KA∗
E

+
EAY1

KA∗
E

))DA
tot.

(72)

Assuming d ≫ δ, we can set C0
tot at its QSS (that is C0

1 =
κd
B

d+δ′
B
Kd

B

(DR
1 + DR

12)) and so, since

Y1 = DR
1tot +DR

12tot = DR
1 +DR

12 + C0
tot, we can express express (DR

1 +DR
12) as function of Y1 and
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C0
tot. Then, defining kB = κdB

B
Kd

B

, δ̄ = d+ δ′ and κ̄M1 = κ̄M
kB

kB+δ̄
, equations (72) become

Ẏ1 = (κdW
W d

Kd
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

)

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
+ (κdW

W d

Kd
W0

+ κ
′
M

W d

K
′
M

(Y2))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D +DR

2

)
− (δ

′
+ κdT

δ̄

kB + δ̄
(
T

Kd
T

+
TDA

tot

K∗
T

))Y1

= k1W

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
+ (k1W0 + k

′
M )(Y2)

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D +DR

2

)
− (δ

′
+ κdT

δ̄

kB + δ̄
(
T

Kd
T

+
TDA

tot

K∗
T

))Y1

Ẏ2 = (κ2W
WR

KR
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

)

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
+ (κ2W

WR

KR
W0

+ κM
WR

KR
M

(Y2) + κ̄M1
WR

K̄M
(Y1))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D +DR

1tot +DR
1h

)
− (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))Y2

= k2W

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
+ (k2W0 + kM (Y2) + k̄M (Y1))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D +DR

1tot +DR
1h

)
− (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))Y2

Ẏtot = (κdW
W d

Kd
W0

+ κdW
W d

Kd
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

+ κ
′
M

W d

K
′
M

(Y2) + κ2W
WR

KR
W0

+ κ2W
WR

KR
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

+ κM
WR

KR
M

(Y2) + κ̄M1
WR

K̄M
(Y1))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
− (δ

′
+ κdT

δ̄

kB + δ̄
(
T

Kd
T

+
TDA

tot

K∗
T

))(Ytot − Y2)− (δ + κRE(
ER

KR
E

+
ERDA

tot

KR∗
E

))(Ytot − Y1)

= (k1W0 + k1W + k
′
M (Y2) + k2W0 + k2W + kM (Y2) + k̄M (Y1))

((
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D

)
− (δ

′
+ κdT

δ̄

kB + δ̄
(
T

Kd
T

+
TDA

tot

K∗
T

))(Ytot − Y2)− (δ + κRE(
ER

KR
E

+
ERDA

tot

KR∗
E

))(Ytot − Y1)

ḊR
1h = κdT (

T

Kd
T

+
TDA

tot

K∗
T

)DR
1 − δDR

1h

− [(κ2W
WR

KR
W0

+ κM
WR

KR
M

(Y2) + κ̄M1
WR

K̄M
(Y1))D

R
1h − (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))DR
12h]

= κdT (
T

Kd
T

+
TDA

tot

K∗
T

)DR
1 − δDR

1h − [(k2W0 + kM (Y2) + k̄M (Y1))D
R
1h − (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))DR
12h]

(73)
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ḊR
12h = κdT (

T

Kd
T

+
TDA

tot

K∗
T

)DR
12 − δDR

12h

+ [(κ2W
WR

KR
W0

+ κM
WR

KR
M

(Y2) + κ̄M1
WR

K̄M
(Y1))D

R
1h − (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))DR
12h]

= κdT (
T

Kd
T

+
TDA

tot

K∗
T

)DR
12 − δDR

12h + [(k2W0 + kM (Y2) + k̄M (Y1))D
R
1h − (δ + κRE(

ER

KR
E

+
ERDA

tot

KR∗
E

))DR
12h]

ḊR
htot = κdT

δ̄

kB + δ̄
(
T

Kd
T

+
TDA

tot

K∗
T

)Y1 − δDR
htot

ḊA
tot = (κAW

WA

KA
W0

+ κAW
WA

KA
W

An

KAK̄A

1 + An

KAK̄A
+ Rn

KRK̄R

+ κAM
WA

KA
M

DA
tot)

(
(1 +

An

KAK̄A
+

Rn

KRK̄R
)D

)
− (δ + κAE(

EA

KA
E

+
EAY2

KA∗
E

+
EAY1

KA∗
E

))DA
tot

= (kAW0 + kAW + kAMDA
tot)

(
(1 +

An

KAK̄A
+

Rn

KRK̄R
)D

)
(δ + κAE(

EA

KA
E

+
EAY2

KA∗
E

+
EAY1

KA∗
E

))DA
tot.

D can be obtained by the DNA conservation law

Dtot = D + C̄0
R1 + Cd,2

W1 + Cd
W10 + Cd

W1 + Cd
T1 + Tact + Cd

T1act + Cd
B1 + CR

W20 + CR,2
W + CR

W2 +MR
tot + CR

M2

+ CR
M2c + CR

M2ac + CR
E2 + ER

act + CR
E2act +DR

2 + Cd
W120 + Cd

T12 + Cd
T12act + Cd

B12 +DR
1tot + CR

W120

+ CR
M12 + CR

E12 + CR
E12act +DR

1h + CR
W12h0 + CR

M12h + CR
E12h + CR

E12hact
+ CR0

W120 + CR0
M12 + CR0

E12

+ CR0
E12act +M

′
+ M̄ + C

′
R1 + C

′
R1c + C

′
R1ac + C̄R2 + C̄R2c + C̄R2ac + C

′
R12 + C̄R12 + C̄0

R12

+ C̄R12h +DR
12tot +DR

12h + C̄A + CA
W + CA

W0 + CA,2
W +MA + CA

M + CA
M1 + CA

M2 + EAd
act + EA

act

+ CA
Etot

+ CA
Eacttot + CAd

Etot
+DA

tot.
(74)

If we assume that the sum of the complexes Cd
W10, C

d,2
W1, C

d
W1, C

d
T1, Tact, C

d
T1act

, Cd
B1, C

R
W20 CR,2

W ,

CR
W2, M

R
tot, C

R
M2, C

R
M2c

, CR
M2ac

, CR
E2, E

R
act, C

R
E2act

, Cd
W120, C

d
T12, C

d
T12act

, Cd
B12, C

R
W120, C

R
M12, C

R
E12,

CR
E12act

, CR
W12h0, C

R
M12h, C

R
E12h, C

R
E12hact

, CR0
M12, C

R0
W120, C

R0
E12, C

R0
E12act

, M
′
, M̄ , C

′
R1, C

′
R1c

, C
′
R1ac

,

C̄R2, C̄R2c , C̄R2ac , C
′
R12, C̄R12, C̄

0
R12, C̄R12h, C

A
W0, C

A,2
W , CA

W , MA, CA
M , CA

M1, C
A
M2, E

Ad
act, E

A
act, C

A
Etot

,

CA
Eacttot

and CAd
Etot

is negligible with respect toD+C̄0
R1+C̄A+DR

2 +DR
1tot+DR

1h+DR
12tot+DR

12h+DA
tot,

Dtot can be approximated as

Dtot ≈ D + C̄0
R1 + C̄A +DR

2 +DR
1tot +DR

1h +DR
12tot +DR

12h

=

(
1 +

An

KAK̄A
+

Rn

KRK̄R

)
D +DR

2 +DR
1tot +DR

1h +DR
12tot +DR

12h

(75)

in which the last equality is obtained by considering the complexes dynamics to the QSS. Then,
defining k

′∗
T as

k
′∗
T = κdT

δ̄

kB + δ̄

T

K∗
T

, (76)

equations (73) become

Ẏ1 = k1W (Dtot − (Ytot +DR
1h)−DA

tot) + (k1W0 + k
′
MY2)(Dtot − (Y1 +DR

htot)−DA
tot)

− (δ
′
+ κdT

δ̄

kB + δ̄
(
T

Kd
T

+
TDA

tot

K∗
T

))Y1
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= k1W (Dtot − Ytot −DA
tot) + (k1W0 + k

′
MY2)(Dtot − Y1 −DA

tot)− (δ
′
+ k

′
T + k

′∗
T D

A
tot)Y1

Ẏ2 = k2W (Dtot − (Ytot +DR
1h)−DA

tot) + (k2W0 + kMY2 + k̄MY1)(Dtot − Y2 −DA
tot)

− (δ + κRE(
ER

KR
E

+
ERDA

tot

KR∗
E

))Y2

= k2W (Dtot − Ytot −DA
tot) + (k2W0 + kM (Y2) + k̄M (Y1))(Dtot − Y2 −DA

tot)− (δ + k̄RE + kRED
A
tot)Y2

Ẏtot = (k1W0 + k1W + k
′
MY2 + k2W0 + k2W + kMY2 + k̄MY1)(Dtot − (Ytot +DR

1h)−DA
tot) (77)

− (δ
′
+ κdT

δ̄

kB + δ̄
(
T

Kd
T

+
TDA

tot

K∗
T

))(Ytot − Y2)− (δ + κRE(
ER

KR
E

+
ERDA

tot

KR∗
E

))(Ytot − Y1)

= (k1W0 + k1W + k
′
MY2 + k2W0 + k2W + kMY2 + k̄M (Y1))(Dtot − Ytot −DA

tot)

− (δ
′
+ k

′
T + k

′∗
T D

A
tot)(Ytot − Y2)− (δ + k̄RE + kRED

A
tot)(Ytot − Y1)

ḊA
tot = (kAW0 + kAW + kAMDA

tot)(Dtot − (Ytot +DR
1h)−DA

tot)− (δ + κAE(
EA

KA
E

+
EAY2

KA∗
E

+
EAY1

KA∗
E

))DA
tot

= (kAW0 + kAW + kAMDA
tot)(Dtot − Ytot −DA

tot)− (δ + k̄AE + kAEY2 + kAEY1)D
A
tot

in which, in the first equation, we safely neglect DR
htot because we assume that k

′
T ≪ δ, which

ensures that DR
htot is well approximated by its quasi-steady state DR

htot = (k
′
T /δ)Y1 and hence it is

also negligible compared to Y1. Furthermore, since DR
1h < DR

htot and Y1 < Ytot, we can also neglect
DR

1h with respect to Ytot in all the ODEs. In conclusion, the ODE model is given by

Ẏ1 = k1W (Dtot − Ytot −DA
tot) + (k1W0 + k

′
M )Y2(Dtot − Y1 −DA

tot)− (δ
′
+ k

′
T + k

′∗
T D

A
tot)Y1

Ẏ2 = k2W (Dtot − Ytot −DA
tot) + (k2W0 + kMY2 + k̄MY1)(Dtot − Y2 −DA

tot)− (δ + k̄RE + kRED
A
tot)Y2

Ẏtot = (k1W0 + k1W + k
′
MY2 + k2W0 + k2W + kMY2 + k̄MY1)(Dtot − Ytot −DA

tot)

− (δ
′
+ k

′
T + k

′∗
T D

A
tot)(Ytot − Y2)− (δ + k̄RE + kRED

A
tot)(Ytot − Y1)

ḊA
tot = (kAW0 + kAW + kAMDA

tot)(Dtot − Ytot −DA
tot)− (δ + k̄AE + kAEY2 + kAEY1)D

A
tot

(78)
or, expressed in DR

1tot, D
R
12tot, D

R
2tot = DR

2 +DR
12h and DA

tot variables,

ḊR
1 = (k1W0 + k1W + k

′
M (DR

2 +DR
12))D + (δ + k̄RE + kRED

A)DR
12

− (k2W0 + kM (DR
2 +DR

12) + k̄M (DR
1 +DR

12) + δ
′
+ k

′
T + k

′∗
T D

A)DR
1

ḊR
2 = (k2W0 + k2W + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12))D + (δ

′
+ k

′
T + k

′∗
T D

A)DR
12

− (k1W0 + k
′
M (DR

2 +DR
12) + δ + k̄RE + kRED

A)DR
2

ḊR
12 = (k1W0 + k

′
M (DR

2 +DR
12))D

R
2 + (k2W0 + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12))D

R
1

− (δ
′
+ k

′
T + k

′∗
T D

A + δ + k̄RE + kRED
A)DR

12

ḊA = (kAW0 + kAW + kAMDA)D − (δ + k̄AE + kAE(D
R
2 +DR

12) + kAE(D
R
1 +DR

12))D
A

(79)

in which, with abuse of notation, we indicate DR
1tot, D

R
2tot, D

R
12tot and DA

tot with DR
1 , D

R
2 , D

R
12 and

DA, respectively, and D = Dtot −DR
1 −DR

2 −DR
12 −DA.

Now, let us define D̄A = DA/Dtot = nA/Dtot, D̄
R
1 = DR

1 /Dtot = nR
1 /Dtot, D̄

R
2 = DR

2 /Dtot =
nR
2 /Dtot, D̄

R
12 = DR

12/Dtot = nR
12/Dtot, D̄ = D/Dtot = nD/Dtot, the normalized time τ = tkAMDtot,

the normalized inputs ūA = uA0 +uA with uA0 = kAW0/(k
A
MDtot), u

A = kAW /(kAMDtot), ū
R
1 = uR10+uR1

with uR10 = k1W0/k
A
MDtot and uR1 = k1W /(kAMDtot), ū

R
2 = uR20 + uR2 with uR20 = k2W0/(k

A
MDtot) and

uR2 = k2W /(kAMDtot), and the non-dimensional parameters ϵ = (δ + k̄AE)/(k
A
MDtot), µ = kRE/k

A
E ,

37



with a constant b such that (δ + k̄RE)/(δ + k̄AE) = bµ, µ
′
= (k

′∗
T )/(k

A
E), with a constant β such that

(δ
′
+ k

′
T )/(δ + k̄AE) = βµ

′
, α = kM/kAM , ᾱ = k̄M/kAM , α

′
= k

′
M/kAM , and ϵ′ = kAE/k

A
M . With these

definitions and letting ẋ := dx/dτ , we can rewrite the system model in terms of non-dimensional
variables and non-dimensional parameters as follows:

˙̄DR
1 = (ūR1 + α

′
(D̄R

2 + D̄R
12))(1− D̄R

1 − D̄R
2 − D̄R

12 − D̄A) + µ(bϵ+ ϵ
′
D̄A)D̄R

12

− (uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + µ
′
(βϵ+ ϵ

′
D̄A))D̄R

1

˙̄DR
2 = (ūR2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))(1− D̄R

1 − D̄R
2 − D̄R

12 − D̄A) + µ
′
(βϵ+ ϵ

′
D̄A)D̄R

12

− (uR10 + α
′
(D̄R

2 + D̄R
12) + µ(bϵ+ ϵ

′
D̄A))D̄R

2

˙̄DR
12 = (uR10 + α

′
(D̄R

2 + D̄R
12))D̄

R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− (µ′(βϵ+ ϵ
′
D̄A) + µ(bϵ+ ϵ

′
D̄A))D̄R

12

˙̄DA = (uA0 + uA + D̄A)(1− D̄R
1 − D̄R

2 − D̄R
12 − D̄A)− (ϵ+ ϵ

′
(D̄R

2 + D̄R
12) + ϵ

′
(D̄R

1 + D̄R
12))D̄

A.
(80)

1.7 Expressions of the kA
W , k1

W and k2
W

In the derivation of the model (79), we obtain the following expressions of kAW , k1W and k2W :

kAW = κAW
WA

KA
W

An

KAK̄A

1 + An

KAK̄A
+ Rn

KRK̄R

= κAW
WA

KA
W

An

KAA

1 + An

KAA
+ Rn

KRR

,

k1W = κdW
W d

Kd
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

= κdW
W d

Kd
W

Rn

KRR

1 + An

KAA
+ Rn

KRR

,

k2W = κ2W
WR

KR
W

Rn

KRK̄R

1 + An

KAK̄A
+ Rn

KRK̄R

= κ2W
WR

KR
W

Rn

KRR

1 + An

KAA
+ Rn

KRR

,

(81)

in which A = nAct

Ω , R = nRep

Ω , with Ω the reaction volume and nAct (nRep) the number of molecules
of the activator A (the repressor R), and with KAA = KAK̄A and KRR = KRK̄R. Then, assuming
that A and R bind DNA with cooperativity 1, expressions (81) can be re-written as follows:

kAW =
k̃AW
Ω

nAct

1 + nAct

KAAΩ + nRep

KRRΩ

, (82)

k1W =
k̃1W
Ω

nRep

1 + nAct

KAAΩ + nRep

KRRΩ

,

k2W =
k̃2W
Ω

nRep

1 + nAct

KAAΩ + nRep

KRRΩ

.

(83)

with k̃AW = κAW
WA

KA
WKAA

, k̃1W = κdW
W d

Kd
WKRR

and k̃2W = κ2W
WR

KR
WKRR

.

Now let us define uA, uR1 and uR2 as uA = kAW /(kAMDtot), uR1 = k1W /(kAMDtot) and uR2 =
k2R/(k

A
MDtot), respectively. Then, if we assume nAct/Ω ≪ KAA and nRep/Ω ≪ KRR, uA, uR1

and uR2 can be written as

uA =
k̃AWnAct

ΩkAMDtot
=

k̃AWnAct

kAMDtot
=

k̃AW
kAM

Ā = ũAĀ, (84)
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uR1 =
k̃1WnRep

ΩkAMDtot
=

k̃1WnRep

kAMDtot
=

k̃1W
kAM

R̄ = ũR1 R̄,

uR2 =
k̃2WnRep

ΩkAMDtot
=

k̃2WnRep

kAMDtot
=

k̃2W
kAM

R̄ = ũR2 R̄,

(85)

in which we define Ā := nAct/Dtot, R̄ := nRep/Dtot, ũ
A = k̃AW /kAM , ũR1 = k̃1W /kAM and ũR2 = k̃2W /kAM .

1.8 Summary of the assumptions considered in the models derivation

� We lump together the two methylation states (me2 and me3) for simplicity because both
of them are associated with gene repression. This will not affect the type of qualitative
predictions that we seek to make in this paper.

� A nucleosome cannot be characterized by more than one modified histone simultaneously.

� We assume for simplicity that the DNA wrapped around each nucleosome can have only one
modifiable CpG.

� We assume that the sequence-specific TF does not sequester D from the writer enzyme re-
cruited during the de novo establishment phase [1](Chapter 6), [3, 4]. Similarly, we assumed
that the sequence-specific TF does not sequester D from the writer enzyme recruited via the
read-write mechanism.

� Activating histone modifications are anti-correlated with DNA methylation (see Section 1.5)
and then we assume that a nucleosome characterized by an activating histone modification
cannot acquire CpG methylation.

� Repressive histone modifications can co-exist correlated with DNA methylation (see Section
1.4) and then we assume that a nucleosome characterized by a repressive histone modification
can acquire CpG methylation, and viceversa.

� The binding reactions are much faster than the other reactions and thus we set the interme-
diate complexes dynamics to the QSS [49].

� The rate constant kAE of the enzymatic reactions erasing H3K4me3/ac, is independent of which
repressive chromatin modification is recruiting the erasers. This assumption is not affecting
the qualitatively results related to the effect of the repressive marks on the erasure and then
on the memory of the active state.

� The rate constant kM of the enzymatic reactions writing H3K9me3 when recruited by H3K9me3
itself is independent of whether the recruiting nucleosome has both H3K9me3 and CpGme or
only H3K9me3. This assumption is not affecting the qualitatively results related to the effect
of the auto-catalysis of H3K9me3 on the memory of the repressive state.

� The rate constant k̄M of the enzymatic reactions writing H3K9me3 when recruited by CpGme
is independent of whether the recruiting nucleosome has both H3K9me3 and CpGme or only
CpGme. This assumption is not affecting the qualitatively results related to the effect of the
cooperative interactions between repressive marks on the epigenetic cell memory.

� The rate constant of the enzymatic reactions writing H3K9me3 on either D or DR
1 are equal

and equal to kM when recruited by H3K9me3 itself or equal to k̄M when recruited by CpGme.
If this assumption were not true, there would be some differences in the relative amount of
DR

2 and DR
12, but the qualitatively results would not change.
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� The rate constant k
′
M of the enzymatic reactions writing CpGme when recruited by H3K9me3

is independent of whether the recruiting nucleosome has both H3K9me3 and CpGme or only
H3K9me3. This assumption is not affecting the qualitatively results related to the effect of
the cooperative interactions between repressive marks on the epigenetic cell memory.

� The rate constant of the enzymatic reactions writing CpGme on either D or on DR
2 are equal

and equal to k
′
M . If this assumption were not true, there would be some differences in the

relative amount of DR
1 and DR

12, but the qualitatively results would not change.

� The rate constant of the enzymatic reactions erasing H3K9me3 on either DR
2 or DR

12 are equal
and equal to kRE . If this assumption wer not true, there would be some differences in the
relative amount of DR

2 and DR
12, but the qualitatively results would not be different.

� The rate constant of the enzymatic reactions erasing CpGme on either DR
1 or DR

12 are equal
and equal to k

′∗
T . If this assumption wer not true, there would be some differences in the

relative amount of DR
1 and DR

12, but the qualitatively results would not be different.

� If a repressive modification is present on the nucleosome, TFs cannot bind and then the only
de novo establishment that can occur is due to non-specific enzyme recruitment (Section 4).

� For the model of kAW , k1W and k2W we assume that activator A and repressor R bind DNA with
cooperativity 1 and that activators and repressors interfere with each other by competing for
promoter binding. The formulas obtained can be written as (82),(83). Different forms of kAW ,
k1W and k2W can be obtained without without major changes in the model as long as they are
increasing with A and decreasing with R.

2 Detailed analysis of the histone modification circuit model (Fig
1C)

2.1 Deterministic analysis

For the deterministic analysis of (29) we consider no external inputs (ūA = uA0 and ūR = uR0 small)
and we determine the number of stable non-zero steady states that the system admits as functions of
the key parameters ϵ, ϵ

′
and µ. This is one of the key features to analyze an ODE model witnessing

epigenetic cell memory because a non-zero stable steady state for the unstimulated system indicates
that the system is able to keep in memory this state theoretically for an indefinite time [49].
For this analysis, we can rewrite system (29) as follows:

˙̄DA = (uA0 + D̄A)(1− D̄A − D̄R)− (ϵ+ ϵ′D̄R)D̄A

˙̄DR = (uR0 + αD̄R)(1− D̄A − D̄R)− µ(bϵ+ ϵ′D̄A)D̄R.
(86)

in which uA0 , u
R
0 ≪ 1. Since uA0 and uR0 are much smaller than 1, this can be viewed as a regular

perturbation problem [50]. In particular, let uA0 = uR0 = u0, ν = u0 and x = (D̄A, D̄R), then the
above system can be described as

ẋ = f(x, ν). (87)

On this system, we are interested in characterizing the steady states (the locally unique solutions
to f(x, ν) = 0) with x ≥ 0. Since ν ≪ 1, we can determine the steady states of our system by
studying the locally unique solutions to f(x, 0) = 0. In particular, let us define x̄i ≥ 0 a value of x
such that f(x̄i, 0) = 0. Then we can exploit the Implicit Function Theorem (IFT) [51] that allows
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us to claim that if ∂f(x,ν)
∂x |x=x̄i,ν=0 is non-singular, then there is a local continuous function γi(ν)

such that γi(0) = x̄i and f(γi(ν), ν) = 0 in a neighborhood around ν = 0. For our system (86),
when we set u0 = 0, we have four steady states:

x̄1 = (0, 0),

x̄2 = (0, 1− µbϵ

α
),

x̄3 = (1− ϵ, 0),

x̄4 = (
ϵ′(α− µbϵ) + ϵ(α− µb)

αϵ′ + µϵ′(1 + ϵ′)
,
µϵ′(1− ϵ) + ϵ(µb− α)

αϵ′ + µϵ′(1 + ϵ′)
).

(88)

Now, in order to verify for which steady states the conditions of the IFT hold, we evaluate the
Jacobian ∂f(x,ν)

∂x , with ν = u0 and x = (D̄A, D̄R):

J =

(
(1− D̄A − D̄R)− (u0 + D̄A)− (ϵ+ ϵ′D̄R) −(1 + ϵ′)D̄A − u0

−(α+ µϵ′)D̄R − u0 α(1− D̄A − D̄R)− (u0 + αD̄R)− µ(bϵ+ ϵ′D̄A)

)
.

(89)
In particular for x̄1 the conditions of the IFT hold if ϵ ̸= 1 and ϵ ̸= α

µb , for x̄2 the conditions of

the IFT hold if ϵ ̸= α
µb and µ ̸= α(ϵ

′
+ϵ)

bϵ(ϵ′+1)
= µ2, for x̄3 the conditions of the IFT hold if ϵ ̸= 1 and

µ ̸= ϵα
ϵ′ (1−ϵ)+ϵb

= µ1 and x̄4 the conditions of the IFT hold if µ ̸= µ1 and µ ̸= µ2. If the conditions

hold for all the steady states, this means that system (86) with u0 small also has four equilibria
which are close to those in (88). In particular they can be approximated as [51]

γi = x̄i − ν[
∂f(x, ν)

∂x
|x=x̄i,ν=0]

−1∂f(x, ν)

∂ν
|x=x̄i,ν=0 = x̄i + νx̄1i , (90)

in which we define x̄1i = −[∂f(x,ν)∂x |x=x̄i,ν=0]
−1 ∂f(x,ν)

∂ν |x=x̄i,ν=0. Now, for the first three steady states
γi with i = 1, 2, 3, we determine the sign of x̄i and x̄1i to check if they are in the positive quadrant.
In particular, we obtain that

γ1 ≥ 0 if ϵ > max{1, α
µb

}

γ2 ≥ 0 if ϵ <
α

µb
, µ <

α(ϵ
′
+ ϵ)

bϵ(ϵ′ + 1)
= µ2

γ3 ≥ 0 if ϵ < 1, µ >
ϵα

ϵ′(1− ϵ) + ϵb
= µ1.

(91)

Concerning the fourth steady state, we have to check when x̄4 is in the positive and does not collide
with one of the two steady states x̄1 and x̄2 (find the conditions such that x̄4 ≥ 0, x̄4 ̸= x̄2 and
x̄4 ̸= x̄3). In particular, this is verified when µ > µ1, µ < µ2.
Concerning the study of the stability of these equilibria, we exploit the fact that the eigenvalues of

a square real or complex matrix depend continuously on its entries [52, 53]. Thanks to this property,
it is possible to claim that, introducing the parameter ν defined over an open set Ω ⊂ R and a
matrix A(ν), if the entries of A(ν) are continuous, then the spectrum of the matrix, sp(A(ν)), is
continuous. This means that, given ν0 ∈ Ω and given λ̄ ∈ sp(A(ν0)) with multiplicity m as a root of
the characteristic polynomial of A(ν0), for any sufficiently small r > 0, there exists a neighborhood
U of ν0 in Ω such that, for all ν ∈ U , the matrix A(ν) has m eigenvalues (counting multiplicities) in
B(λ̄, r) [53]. Then, since the Jacobian (89) is continuous in x and ν and since we showed with the
IFT that the steady states are continuous function of ν, we can claim that sp(J(ν)) is continuous.
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This allows us to determine the stability conditions of x̄i (conditions under which the eigenvalues
of the Jacobian J with u0 = 0 and x = x̄i have negative real part) and then to extend, for a
sufficiently small u0, these conditions to the steady states of our original system.
In particular, if we set x = x̄1 in the Jacobian (89) with u0 = 0, the matrix eigenvalues are

λ̄1 = 1− ϵ and λ̄2 = α− µbϵ and then this steady state is stable only if ϵ >max{1, α
µb}.

If we set x = x̄2 in (89) with u0 = 0, the Jacobian’s eigenvalues are λ̄1 = (1−D̄R
ss)−(ϵ+ϵ′D̄R

ss) and
λ̄2 = α(1−D̄R

ss)−αD̄R
ss−µbϵ, with D̄R

ss = 1−(µb/α)ϵ. Studying the sign of λ̄2, it is possible to notice
that, if (D̄R

ss, D̄
A
ss)2 exists (that is, if µb

α ϵ < 1), λ̄2 = µbϵ− α(1− (µb/α)ϵ) + µbϵ = −α(1− (µb/α)ϵ)
is always negative. Concerning λ̄1, it is negative if

µ < µ2. (92)

If we set x = x̄3 in the Jacobian (89) with u0 = 0, the Jacobian’s eigenvalues are λ̄1 = (1− D̄A
ss)−

D̄A
ss−ϵ and λ̄2 = α(1−D̄A

ss)−(µbϵ+µϵ′DA
ss) with D̄A

ss = 1−ϵ. Studying the sign of the eigenvalues,
it is possible to notice that, if (DR

ss, D
A
ss)3 exists (if ϵ < 1), λ̄1 = −(1− ϵ) is always negative and λ̄2

is negative if
µ > µ1, (93)

with µ1 defined as done in (91). Furthermore, by comparing the formulas of µ1 and µ2 defined as
done in (91), it is possible to calculate that, if ϵ < 1, µ1 is always lower than µ2. If we set x = x̄4
in (89) with u0 = 0, it is possible to show that, when it is in the positive quadrant, it has never
both eigenvalues with negative real part. To summarize, this analysis shows that, for a sufficiently
small u0,

� System (86) is characterized by a unique stable steady state γ1 = (D̄A
ss, D̄

R
ss)1 ≈ (0, 0) if

ϵ > max{1, α
µb};

� System (86) is characterized by a unique stable steady state γ2 = (D̄A
ss, D̄

R
ss)2 ≈ (0, 1− µbϵ

α ) if
1 < ϵ < α

µb and µ < µ2 or ϵ < min{1, α
µb} and µ < µ1;

� System (86) is characterized by a unique stable steady state γ3 = (D̄A
ss, D̄

R
ss)3 ≈ (1 − ϵ, 0) if

α
µb < ϵ < 1 and µ > µ1 or ϵ < min{1, α

µb} and µ > µ2;

� System (86) is characterized by two stable steady states γ2 ≈ (0, 1− µbϵ
α ) and γ3 ≈ (1− ϵ, 0)

if ϵ < min{1, α
µb} and µ1 < µ < µ2.

This implies that, for having non-zero stable steady states, ϵ has to be sufficiently small and
then, depending on the value of µ, we can have either one or two non-zero stable steady states.
Furthermore, if ϵ ≪ min{1, α

µb}, (D
A
ss, D

R
ss)2 ≈ (0, 1) and (DA

ss, D
R
ss)3 ≈ (1, 0), that is, at these

states, the gene is either almost fully modified with repressive marks or activating marks. The
results of this deterministic analysis are shown in Fig D, in which we plot the system nullclines

( ˙̄DA = 0 and ˙̄DR = 0) for all the qualitatively different parameter regimes.

2.2 Model reduction of the 2D model

In order to reduce the system, let us re-write model (28), writing explicitly the ODE for D:

ḊA = (kAW0 + kAW + kAMDA)D − (δ + k̄AE + kAED
R)DA

ḊR = (kRW0 + kRW + kRMDR)D − (δ + k̄RE + kRED
A)DR

Ḋ = (δ + k̄RE + kRED
A)DR + (δ + k̄AE + kAED

R)DA − (kAW0 + kAW + kAMDA + kRW0 + kRW + kRMDR)D
(94)
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with initial condition such that Dtot = D+DA +DR. Now, let us introduce the new time variable
τ̄ = tDtotk

A
E in the system written above, obtaining

ϵ
′ dD̄A

dτ̄
= (uA0 + uA + D̄A)D̄ − ϵ′(c+ D̄R)D̄A

ϵ
′ dD̄R

dτ̄
= (uR0 + uR + αD̄R)D̄ − µϵ′(cb+ D̄A)D̄R

ϵ
′ dD̄

dτ̄
= ϵ

′
[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]− (uA0 + uA + D̄A + uR0 + uR + αD̄R)D̄.

(95)

in which each species is normalized with respect to Dtot (X̄ := X/Dtot), in which we introduce
c = ϵ

ϵ′ and all the other parameters are defined as done in (29). Based on the results of [54], it is
possible to obtain a reduced version of this type of system if certain conditions are satisfied. In
particular, given a general dynamical system dx

dt = f(x, t) with x ∈ Rn, let us define a smooth
surface S in Rn × R as integral manifold of the system if any trajectory of the system that has at
least one point in common with S lies entirely on S [55, 56]. Now, let us consider the system:

ϵ
′
ẋ = f1(x, y2, t, ϵ

′
)

ϵ
′
ẏ2 = f2(x, y2, t, ϵ

′
)

(96)

with x ∈ Rm and y2 ∈ Rn. If the matrix A(x, y2, t) given by

A(x, y2, t) =

(
∂f1
∂x

∂f1
∂y2

∂f2
∂x

∂f2
∂y2

)
=

(
f1x f1y2
f2x f2y2

)
(97)

with ϵ
′
= 0 is singular on some subspace of Rm × Rn × R, system (96) is referred to as singular

singularly perturbed system [54]. Let us introduce the following conditions [54]:

� C1: the equation f2(x, y2, t, 0) = 0 has a smooth isolated root y2 = ϕ(x, t) with x ∈ Rm,
t ∈ R and f2(x, ϕ(x, t), t, 0) = 0;

� C2: the matrix A, defined in (97), with y2 = ϕ(x, t) and ϵ
′
= 0 has a m-dimensional kernel

and m corresponding linearly independent eigenvectors, and the matrix

B(x, y2 = ϕ(x, t), t, ϵ
′
= 0) =

∂f2(x, ϕ(x, t), t, 0)

∂y2
(98)

has n eigenvalues λi(x, t) such that Reλi(x, t) ≤ −2α, with α > 0;

� C3: in the domain

Ω = {(x, y2, t, ϵ
′
)|x ∈ Rm, ||y2 − ϕ(x, t)|| ≤ ρ, t ∈ R, 0 ≤ ϵ

′ ≤ ϵ
′
0}

the function f1 and f2 and the matrix A are continuously differentiable (k + 2) times, with
k ≥ 0 for some positive ϵ

′
0 and ρ.

Then, by introducing the change of variable y2 = y1 + ϕ(x, t) in (96), we obtain

ϵ
′
ẋ = C(x, t)y1 + F1(x, y1, t) + ϵ

′
X(x, y1, t, ϵ

′
)

ϵ
′
ẏ1 = B(x, t)y1 + F2(x, y1, t) + ϵ

′
Y (x, y1, t, ϵ

′
),

(99)
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in which
C(x, t) = f1y2(x, ϕ(x, t), t, 0), B(x, t) = f2y2(x, ϕ(x, t), t, 0),

F1(x, y1, t) = f1(x, y1 + ϕ(x, t), t, 0)− C(x, t)y1,

F2(x, y2, t) = f2(x, y1 + ϕ(x, t), t, 0)−B(x, t)y1,

ϵ
′
X(x, y1, t, ϵ

′
) = f1(x, y1 + ϕ(x, t), t, ϵ

′
)− f1(x, y1 + ϕ(x, t), t, 0)

ϵ
′
Y (x, y1, t, ϵ

′
) = f2(x, y1 + ϕ(x, t), t, ϵ

′
)− f2(x, y1 + ϕ(x, t), t, 0).

(100)

with Fi (i=1,2) satisfying ||Fi(x, y1, t)|| = O(||y1||2) and ϵ
′−1Fi(x, ϵ

′
y, t) continuous in Ω, with Ω

defined in condition C3 [54]. At this point we can apply Theorem 7.1 in [54], which allows us to
claim that if conditions C1 - C3 are satisfied, then there exists ϵ

′
1, 0 < ϵ

′
1 < ϵ

′
0, such that, for

any ϵ
′ ∈ (0, ϵ

′
1), system (99) has a unique slow integral manifold y1 = ϵ

′
h(x, t, ϵ

′
) exponentially

attractive and the motion along this manifold is described by the equation:

˙̄x = X1(x̄, t, ϵ
′
) (101)

in whichX1(x̄, t, ϵ
′
) = C(x̄, t)h(x̄, t, ϵ

′
)+X(x̄, ϵ

′
h, t, ϵ

′
)+ϵ

′−1F1(x̄, ϵ
′
h, t) and the function h(x, t, ϵ

′
) is

k times continuously differentiable with respect to x and t [54, 57]. Since the slow integral manifold
is exponentially attractive for a sufficiently small ϵ

′
, then, for any solution x(t), y1(t), x(t0) =

x0, y1(t0) = y10 of (99) with |y10 − ϵ
′
h(x0, t0, ϵ

′
)| sufficiently small, we have a solution of (101) such

that

x(t) = x̄(t) + ζ1(t), y1(t) = ϵ
′
h(x̄(t), t, ϵ

′
) + ζ2(t), (102)

with ζi(t) = O(e−(α/ϵ
′
)(t−t0)), i = 1, 2, and t ≥ t0 ([54], [58], [59](Chapter 6). This allows us

to determine the behavior of the trajectories of the original system near the integral manifold by
analyzing the behavior of the trajectories of the reduced system (101).
In order to find h(x, t, ϵ

′
), it is important to note that the change of variable y = y1/ϵ

′
allows us

to re-write (99) in the standard singular perturbation form:

ẋ = X̃(x, y, t, ϵ
′
), x ∈ Rm, t ∈ R,

ϵ
′
ẏ = Ỹ (x, y, t, ϵ

′
), x ∈ Rn,

(103)

in which X̃(x, y, t, ϵ
′
) = C(x, t)y + ϵ

′−1F1(x, ϵ
′
y, t) + X(x, ϵ

′
y, t, ϵ

′
), Ỹ (x, y, t, ϵ

′
) = B(x, t)y +

ϵ
′−1F2(x, ϵ

′
y, t) + Y (x, ϵ

′
y, t, ϵ

′
). Since Fi (i=1,2) satisfy ||Fi(x, y1, t)|| = O(||y1||2) in Ω, then

ϵ
′−1Fi(x, ϵ

′
y, t) are well defined as ϵ

′
approaches zero [54]. Then, being conditions C1 - C3 satisfied,

it is possible to show that, defining y = h0(x, t) the smooth isolated root of Ỹ (x, y, t, 0) = 0, the
eigenvalues λi of the matrix (∂Ỹ /∂y)(x, h0(x, t), t, 0) satisfy the inequality Re(λi) ≤ −2α, with
α > 0. Then the integral manifold y = y1/ϵ

′
= h(x, t, ϵ

′
) can be calculated as asymptotic expansion

in integer powers of ϵ
′
, h(x, t, ϵ

′
) = h0(x, t) + ϵ

′
h1(x, t) + ...+ ϵ

′khk(x, t) + ..., whose coefficients are
smooth function with bounded norm [56] and they can be found substituting the expansion in the
second equation of (103), obtaining [54]

ϵ
′ ∂h

∂t
+ ϵ

′ ∂h

∂x
X̃(x, h, t, ϵ

′
) = Ỹ (x, h, t, ϵ

′
). (104)

Now, it is possible to show that system (95) is a singular singularly perturbed system. Defining

x =

(
D̄A

D̄R

)
, y2 = D̄,

f1 =

(
(uA0 + uA + D̄A)D̄ − ϵ′(c+ D̄R)D̄A

(uR0 + uR + αD̄R)D̄ − µϵ′(cb+ D̄A)D̄R

)
,

f2 = ϵ
′
[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]− (uA0 + uA + D̄A + uR0 + uR + αD̄R)D̄,

(105)
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it is possible to show that ϕ(x) = 0 and that the matrix A as defined in (97) with D̄ = 0 and ϵ
′
= 0

can be written as follows:

A(x) =

0 0 (uA + uA0 + D̄A)
0 0 (uR + uR0 + αD̄R)
0 0 −(uA + uA0 + D̄A + uR + uR0 + αD̄R)

 . (106)

This matrix has two zero eigenvalues and two corresponding linearly independent eigenvectors.
Furthermore, the matrix B defined in (98) can be written as B = −(uA+uA0 +D̄A+uR+uR0 +αD̄R)
and, in the case where no inputs are applied (uA = uR = 0), it has always negative real part if
uR0 +uA0 ≥ l with l > 0. To find the slow integral manifold and the reduced system, let us introduce
in (95) the change of variable D̃ = D̄/ϵ

′
, obtaining

dD̄A

dτ̄
= (uA0 + uA + D̄A)D̃ − (c+ D̄R)D̄A

dD̄R

dτ̄
= (uR0 + uR + αD̄R)D̃ − µ(cb+ D̄A)D̄R

ϵ
′ dD̃

dτ̄
= [µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]− (uA0 + uA + D̄A + uR0 + uR + αD̄R)D̃.

(107)

To calculate the slow integral manifold, let us construct the asymptotic expansion of D̃:

D̃ = h(D̄A, D̄R, ϵ
′
) = h0(D̄

A, D̄R) + ϵ
′
h1(D̄

A, D̄R) +O(ϵ
′2
). (108)

Substituting (108) in the last ODE of (107), we obtain

ϵ
′ dh

dτ̄
= ϵ

′
(
∂h

∂D̄A

dD̄A

dτ̄
+

∂h

∂D̄R

dD̄R

dτ̄
) = [µ(cb+D̄A)D̄R+(c+D̄R)D̄A]−(uA0 +uA+D̄A+uR0 +uR+αD̄R)h.

(109)
To calculate h0 and h1 we equate the terms on the left and right hand side multiplied by the same
power of ϵ

′
, obtaining

h0 =
[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]

(uA0 + uA + D̄A + uR0 + uR + αD̄R)
,

h1 = −
∂h0

∂D̄R ((u
R
0 + uR + αD̄R)h0 − µ(cb+ D̄A)D̄R) + ∂h0

∂D̄A ((u
A
0 + uA + D̄A)h0 − (c+ D̄R)D̄A)

(uA0 + uA + D̄A + uR0 + uR + αD̄R)
.

(110)
Since ∂h0

∂D̄R and ∂h0

∂D̄A are bounded (and then ϵ
′ ∂h0

∂D̄R , ϵ
′ ∂h0

∂D̄A ≪ 1 for a sufficiently small ϵ
′
), substituting

(110) into (108), we obtain

D̃ =
[µ(cb+ D̄A)D̄R + (c+ D̄R)D̄A]

(uA0 + uA + D̄A + uR0 + uR + αD̄R)
. (111)

Now, substituting (111) into (107), we obtain the reduced system as follows:

dD̄A

dτ̄
=

(
µ(cb+ D̄A)(uA + D̄A)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄R

−
(

(c+ D̄R)(uR0 + uR + αD̄R)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄A

dD̄R

dτ̄
=

(
(c+ D̄R)(uR0 + uR + αD̄R)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄A

−
(

µ(cb+ D̄A)(uA0 + uA + D̄A)

(uA0 + uA + D̄A) + (uR0 + uR + αD̄R)

)
D̄R.

(112)
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Summing the two ODEs written above, it is possible to notice that dD̄A

dτ̄ + dD̄R

dτ̄ = 0, that is

D̄A + D̄R = constant. In particular, since D̄A + D̄R + D̄ = 1 and D̄ = 0 for ϵ
′
= 0, we have that

D̄A + D̄R = 1 for ϵ
′
= 0.

We further validated via simulation that system (112) is a proper reduction of the full system
(95) when ϵ

′
is small. We perform simulations of both systems for different values of ϵ

′
and initial

conditions, showing that the trajectories of D̄R and D̄A of the full and reduced systems become
closer as ϵ

′
decreases (Fig E).

It is important to point out that in the reduction we let ϵ = cϵ
′
, with c = O(1), implying that as

ϵ
′
decreases also ϵ decreases. Given the definition of ϵ and ϵ

′
, it is reasonable that, if the specifically

recruited erasure reaction is slow compared to the auto and cross-catalysis reactions, then also the
basal erasure reaction due to non-specific binding of enzymes and dilution is slow compared to
the auto and cross-catalysis reactions. This is consistent with the fact that the rates of enzymatic
reactions where enzyme-substrate binding is highly specific tend to be larger than the rates of
enzymatic reactions occurring though non-specific enzyme substrate binding and to removal due
to simple dilution from cell growth.
Now, multiplying both sides by Dtot(k

A
EDtot), system (112) can be rewritten in a dimensional

form:

ḊA =

(
(kAW0 + kAW + kAMDA)(δ + k̄RE + kRED

A)

(kAW0 + kAW + kAMDA) + (kRW0 + kRW + kRMDR)

)
DR

−
(

(kRW0 + kRW + kRMDR)(δ + k̄AE + kAED
R)

(kAW0 + kAW + kAMDA) + (kRW0 + kRW + kRMDR)

)
DA

ḊR =

(
(kRW0 + kRW + kRMDR)(δ + k̄AE + kAED

R)

(kAW0 + kAW + kAMDA) + (kRW0 + kRW + kRMDR)

)
DA

−
(

(kAW0 + kAW + kAMDA)(δ + k̄RE + kRED
A)

(kAW0 + kAW + kAMDA) + (kRW0 + kRW + kRMDR)

)
DR,

(113)

or, since DR +DA = Dtot, it can be written as

ḊR =

(
(kRW0 + kRW + kRMDR)(δ + k̄AE + kAED

R)

(kAW0 + kAW + kAM (Dtot −DR)) + (kRW0 + kRW + kRMDR)

)
(Dtot −DR)

−
(
(kAW0 + kAW + kAM (Dtot −DR))(δ + k̄RE + kRE(Dtot −DR))

(kAW0 + kAW + kAM (Dtot −DR)) + (kRW0 + kRW + kRMDR)

)
DR.

(114)

Finally, the system can also be represented through the following simplified chemical reactions:

DA kAR−−→ DR, kAR =

(
(kRW0 + kRW + kRMDR)(δ + k̄AE + kAED

R)

(kAW0 + kAW + kAMDA) + (kRW0 + kRW + kRMDR)

)
,

DR kRA−−→ DA, kRA =

(
(kAW0 + kAW + kAMDA)(δ + k̄RE + kRED

A)

(kAW0 + kAW + kAMDA) + (kRW0 + kRW + kRMDR)

)
.

(115)

2.3 Derivation of stationary distribution formula

Since nR + nA = Dtot, the reduced chemical reaction system (115) can be represented by a one-
dimensional Markov chain in which the state x represents the total number of repressive histone
modifications, that is, x = nR. In particular, the state x can vary between zero and Dtot. Further-
more, let us define the transition rate from state x = i to state x = j as qi,j [60]. Specifically, qi,j
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for our Markov chain takes the following form:

qx,(x+1) =

 (kRW0 + kRW +
kRM
Ω x)(δ + k̄AE +

kAE
Ω x)

(kAW0 + kAW +
kAM
Ω (Dtot − x)) + (kRW0 + kRW +

kRM
Ω x)

 (Dtot − x),

qx,(x−1) =

(kAW0 + kAW +
kAM
Ω (Dtot − x))(δ + k̄RE +

kRE
Ω (Dtot − x))

(kAW0 + kAW +
kAM
Ω (Dtot − x)) + (kRW0 + kRW +

kRM
Ω x)

x,

(116)

for x ∈ [0,Dtot] [49, 60]. Since this Markov chain is irreducible and reversible, we can apply detailed
balance [60] to determine an analytical expression for the stationary probability distribution π(x).
According to detailed balance, for each state x, the product of π(x) and the rate qx,(x−1) is equal
to the product of π(x− 1) and the rate q(x−1),x, that is π(x)qx,(x−1) = π(x− 1)q(x−1),x or

π(x) =
q(x−1),x

qx,(x−1)
π(x− 1). (117)

Applying this equality recursively we are able to express π(x) for any state x as a function of π(0).
In order to derive this formula, let us consider a particular state x = x̄. Formula (117) allows us
to express π(x̄) as a function of π(x̄− 1), that is

π(x̄) =
q(x̄−1),x̄

qx̄,(x̄−1)
π(x̄− 1). (118)

Since (117) holds for any state x, it can be rewritten also for state x = x̄− 1, obtaining

π(x̄− 1) =
q(x̄−2),(x̄−1)

q(x̄−1),(x̄−2)
π(x̄− 2). (119)

If we substitute in (118) π(x̄− 1) obtained in (119), we obtain an expression for π(x̄) as a function
of π(x̄− 2):

π(x̄) =
q(x̄−1),x̄

qx̄,(x̄−1)

q(x̄−2),(x̄−1)

q(x̄−1),(x̄−2)
π(x̄− 2). (120)

Applying (117) recursively for each state x ∈ [1, x̄] we then obtain an expression for π(x̄) as a
function of π(0):

π(x̄) =
q(x̄−1),x̄

qx̄,(x̄−1)

q(x̄−2),(x̄−1)

q(x̄−1),(x̄−2)

q(x̄−3),(x̄−2)

q(x̄−2),(x̄−3)

q(x̄−4),(x̄−3)

q(x̄−3),(x̄−4)
...
q1,2
q2,1

q0,1
q1,0

π(0). (121)

Since this derivation does not depend on the specific initial state x̄ we choose, formula (121) can
be rewritten for a generic state x as follows:

π(x) =

x∏
i=1

q(i−1),i

qi,(i−1)
π(0). (122)

Now, in order to find an analytical expression for π(0), we use
∑Dtot

j=0 π(j) =
∑Dtot

j=1

(∏j
i=1

q(i−1),i

qi,(i−1)

)
π(0)+

π(0) = 1 so that we can express π(0) as follows:

π(0) =
1(

1 +
∑Dtot

j=1

(∏j
i=1

q(i−1),i

qi,(i−1)

)) . (123)
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Substituting in (122) the π(0) expression obtained in (123), the stationary probability distribution
π(x) can finally be expressed as

π(x) =
x∏

i=1

q(i−1),i

qi,(i−1)
π(0) =

∏x
i=1

q(i−1),i

qi,(i−1)(
1 +

∑Dtot
j=1

(∏j
i=1

q(i−1),i

qi,(i−1)

)) (124)

for any x ∈ [1,Dtot]. Now, let us compute
∏x

i=1
q(i−1),i

qi,(i−1)
for our system by writing explicitly the

expression for the rates and rearranging properly the terms. In particular, for any x ∈ [1,Dtot− 1],
it can be written as

x∏
i=1

q(i−1),i

qi,(i−1)
=

(
Dtot

x

)1 + x

kRM
Ω − kAM

Ω
kAM
Ω Dtot + kAW0 + kAW + kRW0 + kRW

 ·

·
x−1∏
i=1

 (kRW0 + kRW +
kRM
Ω i)(δ + k̄AE +

kAE
Ω i)

(kAW0 + kAW +
kAM
Ω (Dtot − i))(δ + k̄RE +

kRE
Ω (Dtot − i))

 ·

·
(kRW0 + kRW )(δ + k̄AE)

(kAW0 + kAW +
kAM
Ω (Dtot − x))(δ + k̄RE +

kRE
Ω (Dtot − x))

=

(
Dtot

x

)(
1 +

x

Dtot

α− 1

1 + uA0 + uA + uR0 + uR

)
·

·
x−1∏
i=1

(
(uR0 + uR + α i

Dtot
)(ϵ+ ϵ

′ i
Dtot

)

(uA0 + uA + (Dtot−i)
Dtot

)µ(bϵ+ ϵ′ (Dtot−i)
Dtot

)

)
·

· (uR0 + uR)ϵ

(uA0 + uA + (Dtot−x)
Dtot

)µ(bϵ+ ϵ′ (Dtot−x)
Dtot

)
,

(125)

in which the final formula has been obtained by dividing numerator and denominator by (
kAMDtot

Ω )
in each of the factors. For x = Dtot it can be written as

Dtot∏
i=1

q(i−1),i

qi,(i−1)
=

1 + Dtot

kRM
Ω − kAM

Ω
kAM
Ω Dtot + kAW0 + kAW + kRW0 + kRW

 ·

·
Dtot−1∏
i=1

 (kRW0 + kRW +
kRM
Ω i)(δ + k̄AE +

kAE
Ω i)

(kAW0 + kAW +
kAM
Ω (Dtot − i))(δ + k̄RE +

kRE
Ω (Dtot − i))

 (kRW0 + kRW )(δ + k̄AE)

(kAW0 + kAW )(δ + k̄RE)

=

(
1 +

α− 1

1 + uA0 + uA + uR0 + uR

)
·

·
Dtot−1∏
i=1

(
(uR0 + uR + α i

Dtot
)(ϵ+ ϵ

′ i
Dtot

)

(uA0 + uA + (Dtot−i)
Dtot

)µ(bϵ+ ϵ′ (Dtot−i)
Dtot

)

)
uR0 + uR

(uA0 + uA)µb
,

(126)

in which the final formula has been obtained by dividing numerator and denominator by (
kAMDtot

Ω )

in each of the factors. Then, assuming that ϵ
′ ̸= 0, equations (125) and (126) show that, in the

limiting condition where ϵ → 0,
∏x

i=1
q(i−1),i

qi,(i−1)
tends to zero unless x = Dtot. This implies that the
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stationary probability is such that

lim
ϵ→0

π(x) = πϵ0(x) =


1

1+P if x = 0

0 if x ̸= 0,Dtot

P
1+P if x = Dtot

with

P =
(uA0 + uA + uR0 + uR + α)(uR0 + uR)

(uA0 + uA + uR0 + uR + 1)(uA0 + uA)b

Dtot−1∏
i=1

(
uR0 + uR + α i

Dtot

uA0 + uA + Dtot−i
Dtot

)(
1

µ

)Dtot

. (127)

This implies that, if ϵ tends to zero, π(x) → 0 except for x = Dtot (fully repressed gene state)
and x = 0 (fully active gene state), that is, the probability of finding the system in one of the
intermediate states is almost zero. Furthermore, given the expression for P in (127), it is possible
to notice that if µ ≪ 1, πϵ0(0) → 0 and πϵ0(Dtot) → 1 and this implies that, under these parameter
conditions, the probability of finding the gene in an active state is close to zero. However, this
stationary probability distribution can be modified by varying the input stimuli (uA and uR). In
particular, increasing uR leads πϵ0(Dtot) to increase and πϵ0(0) to decrease. By contrast, increasing
uA is going to lead to πϵ0(Dtot) → 0 and πϵ0(0) → 1 and, looking at the expression for P (127), for
smaller µ, it is required a larger uA to decrease πϵ0(Dtot) to the same level.

2.4 Derivation of time to memory loss formula for the 2D model

Let us define the time to memory loss of the fully repressed gene state, τ0Dtot
, as the expected

value of the first time at which the state x of the Markov chain hits 0, starting from x = Dtot. In
particular, we define the hitting time of x = 0 starting from x = i as t0i := [ inf{t ≥ 0 : x(t) = 0
with x(0) = i} with i ∈ [0,Dtot]]. Then, the time to memory loss of the fully repressed gene state
can be defined as the expected value of t0Dtot

, that is, τ0Dtot
= E(t0Dtot

). In order to compute τ0Dtot

we use first step analysis [61], which allows us to evaluate the vector of expected hitting times
τ0 = (τ0i : i ∈ [0,Dtot]) as the solution of the following system of equations{

τ0i = 0 if i = 0

−
∑Dtot

j=0 qi,jτ
0
j = 1 if i ̸= 0,

(128)

with qi,j defined as the rate of going from state i to state j. In our one-dimensional Markov chain
the state i can only go either to i + 1 or to i − 1. Then, defining qi,i+1 = αi, γi = qi,i−1 and

qi,i = −qi = −
∑Dtot

j=0,j ̸=i qi,j with qi defined as the rate of leaving state i [61] and then rewriting qi,i
as −(αi + γi), each equation of system (128) can be expressed as

τ0i =
1

αi + γi
+

αi

αi + γi
τ0i+1 +

γi
αi + γi

τ0i−1, if i ∈ [1,Dtot − 1] (129)

τ0Dtot
=

1

γDtot

+ τ0Dtot−1. (130)

In particular, we can rearrange (129) as αi(τ
0
i − τ0i+1) = 1 + γi(τ

0
i−1 − τ0i ) and, defining ∆τ0i =

(τ0i − τ0i+1), (129) can be rewritten as

∆τ0i =
1

αi
+

γi
αi

∆τ0i−1. (131)
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In equation (131), we can express ∆τ0i as a function of ∆τ0i−1 and thus, applying (131) recursively,
we can express ∆τ0i as a function of ∆τ00 as follows:

∆τ0i =
i∑

j=1

1

αj

rj
ri

+
∆τ00
ri

, (132)

in which rj =
α1α2...αj

γ1γ2...γj
. In order to evaluate the time to memory loss of the fully repressed gene

state τ0Dtot
, we apply

∑Dtot−1
i=1 to the left and right-hand side of (132), that is

∑Dtot−1
i=1

(
∆τ0i

)
=∑Dtot−1

i=1

(∑i
j=1

1
αj

rj
ri

+
∆τ00
ri

)
, in which the left-hand side can be explicitly expressed as

Dtot−1∑
i=1

(
∆τ0i

)
= ∆τ01 +∆τ02 + ...+∆τ0Dtot−1 = τ01 − τ02 + τ02 − τ03 + ...+ τ0Dtot−1 − τ0Dtot

= τ01 − τ0Dtot

from which, solving for τ0Dtot
, we obtain

τ0Dtot
= τ01 −

Dtot−1∑
i=1

 i∑
j=1

1

αj

rj
ri

− τ01
ri

 . (133)

At this point, we need to evaluate τ01 . To this end, we rewrite equation (132) for i = Dtot:

τ0Dtot−1 − τ0Dtot
=

Dtot−1∑
j=1

1

αj

rj
rDtot−1

− τ01
rDtot−1

, (134)

in which we have substituted ∆τ0Dtot−1 with τ0Dtot−1 − τ0Dtot
and ∆τ00 with τ00 − τ01 = −τ01 (τ00 = 0 as

given in (128)). Now, τ0Dtot−1− τ0Dtot
can be expressed as − 1

γDtot
(it can be obtained by rearranging

(130)) and then τ01 can be written as

τ01 =

Dtot−1∑
j=1

rj
αj

+
rDtot−1

γDtot

. (135)

Finally, plugging this expression for τ01 into (133), we obtain the expression for the time to memory
loss of the fully repressed gene state τ0Dtot

as a function of the system parameters:

τ0Dtot
=

Dtot−1∑
i=1

ri
αi

+
rDtot−1

γDtot

−
Dtot−1∑
i=1

 i∑
j=1

1

αj

rj
ri

−
Dtot−1∑
j=1

1

αj

rj
ri

− rDtot−1

γDtotri


=

Dtot−1∑
i=1

ri
αi

+
rDtot−1

γDtot

+

Dtot−2∑
i=1

Dtot−1∑
j=i+1

1

αj

rj
ri

+

Dtot−1∑
i=1

rDtot−1

γDtotri

=
rDtot−1

γDtot

(
1 +

Dtot−1∑
i=1

1

ri

)
+

Dtot−1∑
i=1

ri
αi

+

Dtot−2∑
i=1

Dtot−1∑
j=i+1

1

αj

rj
ri

=
rDtot−1

γDtot

(
1 +

Dtot−1∑
i=1

1

ri

)
+

1

γ1
+

Dtot−1∑
i=2

ri−1

γi

1 +

i−1∑
j=1

1

rj

 .

(136)
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In particular, for our Markov chain, αi and γi are given by

αi =

 (kRW0 + kRW +
kRM
Ω i)(δ + k̄AE +

kAE
Ω i)

(kAW0 + kAW +
kAM
Ω (Dtot − i)) + (kRW0 + kRW +

kRM
Ω i)

 (Dtot − i)

=

 (kRW0 + kRW +
kRM
Ω i)(ϵ+ ϵ

′ i
Dtot

)

(uA0 + uA + (Dtot−i)
Dtot

) + (uR0 + uR + α i
Dtot

)

 (Dtot − i)

γi =

(kAW0 + kAW +
kAM
Ω (Dtot − i))(δ + k̄RE +

kRE
Ω (Dtot − i))

(kAW0 + kAW +
kAM
Ω (Dtot − i)) + (kRW0 + kRW +

kRM
Ω i)

 i

=

(kAW0 + kAW +
kAM
Ω (Dtot − i))µ(bϵ+ ϵ

′ (Dtot−i)
Dtot

)

(uA0 + uA + (Dtot−i)
Dtot

) + (uR0 + uR + α i
Dtot

)

 i,

(137)

in which the final expressions are obtained by multiplying and dividing the intermediate expression

by
kAMDtot

Ω . In the absence of external input stimuli and assuming that ϵ
′ ̸= 0, it is possible to notice

that, for ϵ ≪ 1, the dominant term of τ0Dtot
is the first addend in (136). Then, by normalizing the

time to memory loss with respect
kAMDtot

Ω (τ̄0Dtot
= τ0Dtot

kAMDtot

Ω ), τ0Dtot
in the regime ϵ ≪ 1 can be

re-written as follows:

τ̄0Dtot
= τ̄R ≈ KR

µϵ

(
1 +

Dtot−1∑
i=1

Ki
R

hi1(µ)

)
, (138)

with hi1 an increasing function, hi1(0) = 0, KR and Ki
R functions independent of ϵ and µ, and in

which we redefine τ̄0Dtot
as τ̄R to simplify the notation.

In a similar way we can determine the time to memory loss of the fully active gene state, τDtot
0 ,

that is the expected value of the first time at which the state x of the Markov chain hits Dtot,
starting from x = 0. In particular, defining r̃j =

γDtot−1γDtot−2...γDtot−j

αDtot−1αDtot−2...αDtot−j
, τDtot

0 can be written as

follows:

τDtot
0 =

r̃Dtot−1

α0

1 +

Dtot−1∑
j=1

1

r̃i

+
1

αDtot−1
+

Dtot−1∑
i=2

 r̃i−1

αDtot−i

1 +
i−1∑
j=1

1

r̃j

 . (139)

Also in this case, in the absence of external input stimuli and assuming that ϵ
′ ̸= 0, it is possible to

notice that, for ϵ ≪ 1, the dominant term of τDtot
0 is the first addend in (139). Then, by normalizing

the time to memory loss with respect
kAMDtot

Ω (τ̄Dtot
0 = τDtot

0
kAMDtot

Ω ), τDtot
0 in the regime ϵ ≪ 1 can

be re-written as follows:

τ̄Dtot
0 = τ̄A ≈ KA

ϵ

(
1 +

Dtot−1∑
i=1

hi2(µ)

Ki
A

)
, (140)

with hi2 an increasing function, hi2(0) = 0, KA and Ki
A functions independent of ϵ and µ, and in

which we redefine τ̄Dtot
0 as τ̄A to simplify the notation.
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3 Detailed analysis of the chromatin modification circuit model
(Fig 1D)

3.1 Estimation of µ
′

By analyzing experimental data available in the literature, it was possible to show that the pa-
rameter µ

′
is small. In fact, in ES cells for example, in vivo experimental studies have shown

that in the absence of DNMT3 (k1W0 = k1W = 0) DNA methylation goes from 22% to 0.6% in
216 cell divisions [39], which corresponds to δ′ + k

′
T = 0.024δ. This means that, in our model,

βµ
′
=

δ
′
+k

′
T

δ+k̄AE
≤ δ

′
+k

′
T

δ = 0.024. Now, let us rewrite explicitly β:

β =
kAEDtot

δ + k̄AE

δ
′
+ k

′
T

k
′∗
T Dtot

=

kAEDtot

δ+k̄AE

k
′∗
T Dtot

δ′+k
′
T

. (141)

Then, assuming that the ratio between specifically recruited erasure rate constant and basal erasure
rate constant has the same order of magnitude for any chromatin modification (that is the numerator
and denominator of β have the same order of magnitude), we can conclude that, in this case,
µ

′ ≤ 0.024.

3.2 Model reduction of the 4D model

Before reducing the system (79), we define c =
δ+k̄AE
kAEDtot

, µ =
kRE
kAE

with the constant b such that

bcµ =
δ+k̄RE
kAEDtot

, µ
′
=

k
′∗
T

kAE
with the constant β such that βcµ

′
=

δ
′
+k

′
T

kAEDtot
. System (79) can thus be

rewritten as follows:

ḊR
1 = (k1W + k1W0 + k

′
M (DR

2 +DR
12))D + kAEDtotµ

(
bc+

DA

Dtot

)
DR

12

− (k2W0 + kM (DR
2 +DR

12) + k̄M (DR
1 +DR

12) + kAEDtotµ
′
(
βc+

DA

Dtot

)
)DR

1

ḊR
2 = (k2W + k2W0 + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12))D + kAEDtotµ

′
(
βc+

DA

Dtot

)
DR

12

− (k1W0 + k
′
M (DR

2 +DR
12) + kAEDtotµ

(
bc+

DA

Dtot

)
)DR

2

ḊR
12 = (k1W0 + k

′
M (DR

2 +DR
12))D

R
2 + (k2W0 + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12))D

R
1 (142)

− kAEDtot(µ

(
bc+

DA

Dtot

)
+ µ

′
(
βc+

DA

Dtot

)
)DR

12

Ḋ = kAEDtot

(
µ

′
(
βc+

DA

Dtot

)
DR

1 + µ

(
bc+

DA

Dtot

)
DR

2 +

(
bA +

Y1
Dtot

+
DR

2 +DR
12

Dtot

)
DA

)
− (k2W + k2W0 + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12) + k1W + k1W0 + k

′
M (DR

2 +DR
12) + kAW + kAW0 + kAMDA)D

ḊA = (kAW + kAW0 + kAMDA)D

− kAEDtot

(
bA +

DR
1 +DR

12

Dtot
+

DR
2 +DR

12

Dtot

)
DA,

with initial condition such that Dtot = D+DA+DR
2 +DR

1 +DR
12. In order to reduce the system, we

consider the system in the parameter regime where ϵ
′ ≪ 1, that is the specifically recruited erasure
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reaction is slow compared to the auto and cross-catalysis reactions. Biophysically, in this regime,
the reactions represented by the label REi in Fig 3A become slower compared to those represented
by the label Ci. In this regime, by reducing ϵ, also the reactions represented by the label BEi in the
diagram in Fig 3A become slower compared to the ones represented by the label Ci. Specifically,
this means that, whenever a nucleosome is characterized by either DNA methylation or H3K9me3
histone modification, it tends to acquire the other repressive modification much faster than loosing
the modification that already characterizes it. Then we introduce the time variable τ̄ = tDtotk

A
E

and, in order to rewrite the model in terms of non-dimensional variables, we divide both sides of
the ODEs (142) by Dtot, obtaining

dD̄R
1

dτ̄
=

k1W + k1W0 + k
′
M (DR

2 +DR
12)

kAEDtot
D̄ + µ

(
bc+ D̄A

)
D̄R

12

− (
k2W0 + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12)

kAEDtot
+ µ

′
(
βc+ D̄A

)
)D̄R

1

dD̄R
2

dτ̄
=

k2W + k2W0 + kM (DR
2 +DR

12) + k̄M (DR
1 +DR

12)

kAEDtot
D̄ + µ

′
(
βc+ D̄A

)
D̄R

12

− (
k1W0 + k

′
M (DR

2 +DR
12)

kAEDtot
+ µ

(
bc+ D̄A

)
)D̄R

2

dD̄R
12

dτ̄
=

k1W0 + k
′
M (DR

2 +DR
12)

kAEDtot
D̄R

2 +
k2W0 + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12)

kAEDtot
D̄R

1 (143)

− (µ
(
bc+ D̄A

)
+ µ

′
(
βc+ D̄A

)
)D̄R

12

dD̄

dτ̄
=
(
µ

′
(
βc+ D̄A

)
D̄R

1 + µ
(
bc+ D̄A

)
D̄R

2 +
(
c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12)
)
D̄A
)

−
(k2W + k2W0 + kM (DR

2 +DR
12) + k̄M (DR

1 +DR
12) + k1W + k1W0 + k

′
M (DR

2 +DR
12) + kAW + kAW0 + kAMDA)

kAEDtot
D̄

dD̄A

dτ̄
=

kAW + kAW0 + kAMDA

kAEDtot
D̄ −

(
c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12)
)
D̄A,

in which each species is normalized with respect to Dtot (X̄ := X/Dtot). Furthermore, we rewrite
the following terms as a function of ϵ

′
:

k1W + k1W0 + k
′
M (DR

2 +DR
12)

kAEDtot
=

uR1 + uR10 + α
′
(D̄R

2 + D̄R
12)

ϵ′
,

k2W + k2W0 + kM (DR
2 +DR

12) + k̄M (DR
1 +DR

12)

kAEDtot
=

uR2 + uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12)

ϵ′
,

kAW + kAW0 + kAMDA

kAEDtot
=

uA + uA0 + D̄A

ϵ′
,

(144)
in which the final expressions are obtained by multiplying and dividing the first expressions by
kAMDtot

Ω and all the parameters in the final formulas are defined as in system Main Text: Eqs (3).
By substituting (144) in the equations (143), the ODE system (143) becomes

ϵ
′ dD̄A

dτ̄
= (uA + uA0 + D̄A)D̄ − ϵ

′ (
c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12)
)
D̄A

ϵ
′ dD̄R

12

dτ̄
= (uR10 + α

′
(D̄R

2 + D̄R
12))D̄

R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1
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− ϵ
′
(µ
(
bc+ D̄A

)
+ µ

′
(
βc+ D̄A

)
)D̄R

12

ϵ
′ dD̄R

1

dτ̄
= (uR1 + uR10 + α

′
(D̄R

2 + D̄R
12))D̄ + ϵ

′
µ
(
bc+ D̄A

)
D̄R

12

− ((uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12)) + ϵ
′
µ

′
(
βc+ D̄A

)
)D̄R

1 (145)

ϵ
′ dD̄R

2

dτ̄
= (uR2 + uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄ + ϵ

′
µ

′
(
βc+ D̄A

)
D̄R

12

− ((uR10 + α
′
(D̄R

2 + D̄R
12)) + ϵ

′
µ
(
bc+ D̄A

)
)D̄R

2

ϵ
′ dD̄

dτ̄
= ϵ

′
(
µ

′
(
βc+ D̄A

)
D̄R

1 + µ
(
bc+ D̄A

)
D̄R

2 +
(
c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12)
)
D̄A
)

− (uR2 + uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + uR1 + uR10 + α
′
(D̄R

2 + D̄R
12) + uA + uA0 + D̄A)D̄.

It is possible to show that this system satisfies the conditions C1, C2, C3 listed in Section 2.2 and
hence that (145) is a singular singularly perturbed system [56]. In particular, defining

x =

(
D̄A

D̄R
12

)
, y2 =

D̄R
1

D̄R
2

D̄

 ,

f1 =


(uA + uA0 + D̄A)D̄ − ϵ

′ (
c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12)
)
D̄A

(uR10 + α
′
(D̄R

2 + D̄R
12))D̄

R
2 + (uR20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

−ϵ
′
(µ
(
bc+ D̄A

)
+ µ

′
(
βc+ D̄A

)
)D̄R

12

 ,

f2 =



(uR1 + uR10 + α
′
(D̄R

2 + D̄R
12))D̄ + ϵ

′
µ
(
bc+ D̄A

)
D̄R

12

−((uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12)) + ϵ
′
µ

′
(
βc+ D̄A

)
)D̄R

1

(uR2 + uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12))D̄ + ϵ
′
µ

′
(
βc+ D̄A

)
D̄R

12

−((uR10 + α
′
(D̄R

2 + D̄R
12)) + ϵ

′
µ
(
bc+ D̄A

)
)D̄R

2

ϵ
′
(
µ

′
(
βc+ D̄A

)
D̄R

1 + µ
(
bc+ D̄A

)
D̄R

2 +
(
c+ (D̄R

1 + D̄R
12) + (D̄R

2 + D̄R
12)
)
D̄A
)

−(uR2 + uR20 + α(D̄R
2 + D̄R

12) + ᾱ(D̄R
1 + D̄R

12) + uR1 + uR10 + α
′
(D̄R

2 + D̄R
12) + uA + uA0 + D̄A)D̄


,

(146)
it is possible to show that ϕ(x) = (0, 0, 0) and that the matrix A as defined in (97) with D̄ = D̄R

1 =
D̄R

2 = 0 and ϵ
′
= 0 can be written as follows:

A(x) =

(
02,2 Ā2,3

03,2 Ā3,3

)
(147)

with

Ā2,3 =

(
0 0 (uA + uA0 + D̄A)

(uR20 + (α+ ᾱ)D̄R
12) (uR10 + α

′
D̄R

12)

)
(148)
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Ā3,3 =



−(uR20 + (α+ ᾱ)D̄R
12) 0 (uR1 + uR10 + α

′
D̄R

12)

0 −(uR10 + α
′
D̄R

12) (uR2 + uR20 + (α+ ᾱ)D̄R
12)

0 0 −(uA + uA0 + D̄A)

−(uR1 + uR10 + uR2 + uR20 + (α+ ᾱ+ α
′
)D̄R

12)

 .

(149)
Matrix A has two zero eigenvalues and two corresponding linearly independent eigenvectors. Fur-
thermore, the matrix B defined in (98) can be written as Ā3,3 and it has three eigenvalues always
characterized by negative real part if uR10, u

R
20, u

A
0 ≥ l with l > 0. To find the slow integral manifold

and the reduced system defined in (96), we follow the procedure explained in Section 2.2: we first
introduce in (145) the change of variable D̃ = D̄/ϵ

′
, D̃R

1 = D̄R
1 /ϵ

′
and D̃R

2 = D̄R
2 /ϵ

′
, obtaining

ϵ
′ dD̃R

1

dτ̄
= (uR1 + uR10 + α

′
(ϵ

′
D̃R

2 + D̄R
12))D̃ + µ

(
bc+ D̄A

)
D̄R

12

− ((uR20 + α(ϵ
′
D̃R

2 + D̄R
12) + ᾱ(ϵ

′
D̃R

1 + D̄R
12)) + ϵ

′
µ

′
(
βc+ D̄A

)
)D̃R

1

ϵ
′ dD̃R

2

dτ̄
= (uR2 + uR20 + α(ϵ

′
D̃R

2 + D̄R
12) + ᾱ(ϵ

′
D̃R

1 + D̄R
12))D̃ + µ

′
(
βc+ D̄A

)
D̄R

12

− ((uR10 + α
′
(ϵ

′
D̃R

2 + D̄R
12)) + ϵ

′
µ
(
bc+ D̄A

)
)D̃R

2

ϵ
′ dD̃

dτ̄
=
(
µ

′
(
βc+ D̄A

)
ϵ
′
D̃R

1 + µ
(
bc+ D̄A

)
ϵ
′
D̃R

2 +
(
c+ (ϵ

′
D̃R

1 + D̄R
12) + (ϵ

′
D̃R

2 + D̄R
12)
)
D̄A
)
(150)

− (uR2 + uR20 + α(ϵ
′
D̃R

2 + D̄R
12) + ᾱ(ϵ

′
D̃R

1 + D̄R
12) + uR1 + uR10 + α

′
(ϵ

′
D̃R

2 + D̄R
12) + uA + uA0 + D̄A)D̃

dD̄R
12

dτ̄
= (uR10 + α

′
(ϵ

′
D̃R

2 + D̄R
12))D̃

R
2 + (uR20 + α(ϵ

′
D̃R

2 + D̄R
12) + ᾱ(ϵ

′
D̃R

1 + D̄R
12))D̃

R
1

− (µ
(
bc+ D̄A

)
+ µ

′
(
βc+ D̄A

)
)D̄R

12

dD̄A

dτ̄
= (uA + uA0 + D̄A)D̃ −

(
c+ (ϵ

′
D̃R

1 + D̄R
12) + (ϵ

′
D̃R

2 + D̄R
12)
)
D̄A.

It is important to point out that in the reduction we let ϵ = cϵ
′
, with c = O(1), implying that as ϵ

′

decreases also ϵ decreases. Given the definition of ϵ and ϵ
′
, it is reasonable that, if the specifically

recruited erasure reaction is slow compared to the auto and cross-catalysis reactions, then also the
basal erasure reaction due to non-specific binding of enzymes and dilution is slow compared to
the auto and cross-catalysis reactions. This is consistent with the fact that the rates of enzymatic
reactions where enzyme-substrate binding is highly specific tend to be larger than the rates of
enzymatic reactions occurring though non-specific enzyme substrate binding and to removal due
to simple dilution from cell growth.
Then, to calculate the slow integral manifold, let us construct the asymptotic expansion of D̃,

D̃R
1 and D̃R

2 :

D̃ = h0(D̄
A, D̄R

12, ϵ
′
) = h00(D̄

A, D̄R
12) + ϵ

′
h01(D̄

A, D̄R
12) +O(ϵ

′2
),

D̃R
1 = h1(D̄

A, D̄R
12, ϵ

′
) = h10(D̄

A, D̄R
12) + ϵ

′
h11(D̄

A, D̄R
12) +O(ϵ

′2
),

D̃R
2 = h2(D̄

A, D̄R
12, ϵ

′
) = h20(D̄

A, D̄R
12) + ϵ

′
h21(D̄

A, D̄R
12) +O(ϵ

′2
).

(151)
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Substituting (151) in the first three ODEs of (150), we obtain

ϵ
′ dh1
dτ̄

= ϵ
′
(
∂h1
∂D̄A

dD̄A

dτ̄
+

∂h1

∂D̄R
12

dD̄R
12

dτ̄
)

= (uR1 + uR10 + α
′
(ϵ

′
h2 + D̄R

12))h0 + µ
(
bc+ D̄A

)
D̄R

12

− ((uR20 + α(ϵ
′
h2 + D̄R

12) + ᾱ(ϵ
′
h1 + D̄R

12)) + ϵ
′
µ

′
(
βc+ D̄A

)
)h1

ϵ
′ dh2
dτ̄

= ϵ
′
(
∂h2
∂D̄A

dD̄A

dτ̄
+

∂h2

∂D̄R
12

dD̄R
12

dτ̄
)

= (uR2 + uR20 + α(ϵ
′
h2 + D̄R

12) + ᾱ(ϵ
′
h1 + D̄R

12))h0 + µ
′
(
βc+ D̄A

)
D̄R

12 (152)

− ((uR10 + α
′
(ϵ

′
h2 + D̄R

12)) + ϵ
′
µ
(
bc+ D̄A

)
)h2

ϵ
′ dh0
dτ̄

= ϵ
′
(
∂h0
∂D̄A

dD̄A

dτ̄
+

∂h0

∂D̄R
12

dD̄R
12

dτ̄
)

=
(
µ

′
(
βc+ D̄A

)
ϵ
′
h1 + µ

(
bc+ D̄A

)
ϵ
′
h2 +

(
c+ (ϵ

′
h1 + D̄R

12) + (ϵ
′
h2 + D̄R

12)
)
D̄A
)

− (uR2 + uR20 + α(ϵ
′
h2 + D̄R

12) + ᾱ(ϵ
′
h1 + D̄R

12) + uR1 + uR10 + α
′
(ϵ

′
h2 + D̄R

12) + uA + uA0 + D̄A)h0.

To calculate hi0 and hi1, with i = 0, 1, 2, we equate the terms on the left and right hand side of the
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equations multiplied by the same power of ϵ
′
, obtaining

h00 =
(c+ 2D̄R

12)D̄
A

uR2 + uR20 + αD̄R
12 + ᾱD̄R

12 + uR1 + uR10 + α′D̄R
12 + uA + uA0 + D̄A

,

h10 =
(uR1 + uR10 + α

′
D̄R

12)h00 + µ
(
bc+ D̄A

)
D̄R

12

uR20 + (α+ ᾱ)D̄R
12

,

h20 =
(uR2 + uR20 + αD̄R

12 + ᾱD̄R
12)h00 + µ

′
(
βc+ D̄A

)
D̄R

12

uR10 + α′D̄R
12

,

(
∂h00
∂D̄A

((uA + uA0 + D̄A)h00 − (c+ 2D̄R
12)D̄

A)

+
∂h00

∂D̄R
12

((uR10 + α
′
D̄R

12)h20 + (uR20 + (α+ ᾱ)D̄R
12)h10 − (µ

(
bc+ D̄A

)
+ µ

′
(
βc+ D̄A

)
)D̄R

12))

= µ
′
(
βc+ D̄A

)
h10 + µ

(
bc+ D̄A

)
h20 + (h10 + h20)D̄

A − (α
′
h20 + (α+ ᾱ)h10)h00

− (uR2 + uR20 + αD̄R
12 + ᾱD̄R

12 + uR1 + uR10 + α
′
D̄R

12 + uA + uA0 + D̄A)h01,

(
∂h10
∂D̄A

((uA + uA0 + D̄A)h00 − (c+ 2D̄R
12)D̄

A)

+
∂h10

∂D̄R
12

((uR10 + α
′
D̄R

12)h20 + (uR20 + (α+ ᾱ)D̄R
12)h10 − (µ

(
bc+ D̄A

)
+ µ

′
(
βc+ D̄A

)
)D̄R

12))

= α
′
h20h00 + (uR1 + uR10 + α

′
D̄R

12)h01 − (αh20 + ᾱh10)h10 − (uR20 + (α+ ᾱ)D̄R
12)h11,

(
∂h20
∂D̄A

((uA + uA0 + D̄A)h00 − (c+ 2D̄R
12)D̄

A)

+
∂h20

∂D̄R
12

((uR10 + α
′
D̄R

12)h20 + (uR20 + (α+ ᾱ)D̄R
12)h10 − (µ

(
bc+ D̄A

)
+ µ

′
(
βc+ D̄A

)
)D̄R

12))

= (αh20 + ᾱh10)h00 + (uR2 + uR20 + (α+ ᾱ)D̄R
12)h01 − α

′
h220 − (uR10 + α

′
D̄R

12)h21.

(153)

Since ∂hi0

∂D̄R
12

and ∂hi0

∂D̄A are bounded for any i = 0, 1, 2 (that is, ϵ
′ ∂hi0

∂D̄R
12
, ϵ

′ ∂hi0

∂D̄A ≪ 1 for a sufficiently
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small ϵ
′
), by solving (153) for h00, h10, h20, h01, h11, h21 we obtain

h00 =
(c+ 2D̄R

12)D̄
A

uR2 + uR20 + αD̄R
12 + ᾱD̄R

12 + uR1 + uR10 + α′D̄R
12 + uA + uA0 + D̄A

h10 =
(uR1 + uR10 + α

′
D̄R

12)h00 + µ
(
bc+ D̄A

)
D̄R

12

uR20 + (α+ ᾱ)D̄R
12

h20 =
(uR2 + uR20 + αD̄R

12 + ᾱD̄R
12)h00 + µ

′
(
βc+ D̄A

)
D̄R

12

uR10 + α′D̄R
12

h01 =
(µ(cb+ D̄A)h20 + µ

′
(βc+ D̄A)h10)

uR2 + uR20 + αD̄R
12 + ᾱD̄R

12 + uR1 + uR10 + α′D̄R
12 + uA + uA0 + D̄A

h11 =
(uR1 + uR10 + α

′
D̄R

12)h01 − (αh20 + ᾱh10 + µ
′
(βc+ D̄A))h10

uR20 + (α+ ᾱ)D̄R
12

h21 =
(uR2 + uR20 + (α+ ᾱ)D̄R

12)h01 − (α
′
h220 + µ(bc+ D̄A))h20

uR10 + α′D̄R
12

.

(154)

Substituting h00, h01, h10, h11, h20 and h21 into (151) and (151) into (150), we obtain the reduced
system as follows:

dD̄A

dτ̄
=

(
ϵ
′
(µ(bc+ D̄A)µ

′
(βc+ D̄A))K̄(uA + uA0 + D̄A)

uA + uA0 + D̄A + u2R + uR20 + uR1 + uR10 + (α+ ᾱ+ α′)D̄R
12

)
D̄R

12

−

(
(c+ 2D̄R

12)(u
2
R + uR20 + uR1 + uR10 + (α+ ᾱ+ α

′
)D̄R

12)

uA + uA0 + D̄A + u2R + uR20 + uR1 + uR10 + (α+ ᾱ+ α′)D̄R
12

)
D̄A

dD̄R
12

dτ̄
=

(
(c+ 2D̄R

12)(u
2
R + uR20 + uR1 + uR10 + (α+ ᾱ+ α

′
)D̄R

12)

uA + uA0 + D̄A + u2R + uR20 + uR1 + uR10 + (α+ ᾱ+ α′)D̄R
12

)
D̄A

−

(
ϵ
′
(µ(bc+ D̄A)µ

′
(βc+ D̄A))K̄(uA + uA0 + D̄A)

uA + uA0 + D̄A + u2R + uR20 + uR1 + uR10 + (α+ ᾱ+ α′)D̄R
12

)
D̄R

12,

(155)

with K̄ = 1
uR
10+α′D̄R

12

+ 1
uR
20+(α+ᾱ)D̄R

12
. Summing the two ODEs written above, it is possible to notice

that dD̄A

dτ̄ +
dD̄R

12
dτ̄ = 0, that is D̄A+D̄R

12 = constant. In particular, since D̄A+D̄R
12+D̄+D̄R

1 +D̄R
2 = 1

and D̄ = D̄R
1 = D̄R

2 = 0 for ϵ′ = 0, we have that D̄A + D̄R
12 = 1, for ϵ′ = 0.

We further validate via simulation that system (155) is a proper reduction of the full system
(145) when ϵ

′
is small. We perform simulations of both system for different values of ϵ

′
and initial

conditions, showing that the trajectories of D̄R
12 and D̄A of the full and reduced systems become

closer as ϵ
′
decreases (Fig J). Finally, multiplying both sides of the ODEs in (155) by Dtot(k

A
EDtot),
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system (155) can be rewritten in a dimensional way:

ḊA =

(
(δ + k̄RE + kRED

A)(δ
′
+ k

′
T + k

′∗
T D

A)K̄dim(kAW0 + kAW + kAMDA)

kAW0 + kAW + kAMDA + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k
′
M )DR

12

)
DR

12

−

(
(δ + k̄AE + 2kAED

R
12)(k

2
W0 + k2W + k1W0 + k1W + (kM + k̄M + k

′
M )DR

12)

kAW0 + kAW + kAMDA + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k
′
M )DR

12

)
DA

ḊR
12 =

(
(δ + k̄AE + 2kAED

R
12)(k

2
W0 + k2W + k1W0 + k1W + (kM + k̄M + k

′
M )DR

12)

kAW0 + kAW + kAMDA + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k
′
M )DR

12

)
DA

−

(
(δ + k̄RE + kRED

A)(δ
′
+ k

′
T + k

′∗
T D

A)K̄dim(kAW0 + kAW + kAMDA)

kAW0 + kAW + kAMDA + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k
′
M )DR

12

)
DR

12,

(156)

with K̄dim = 1

k1W0+k
′
MDR

12

+ 1
k2W0+(kM+k̄M )DR

12
, or, since DR +DA = Dtot, it can be written as

ḊR
12 =

(
(δ + k̄AE + 2kAED

R
12)(k

2
W0 + k2W + k1W0 + k1W + (kM + k̄M + k

′
M )DR

12)

kAW0 + kAW + kAM (Dtot −DR
12) + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k

′
M )DR

12

)
(Dtot −DR

12)

−

(
(δ + k̄RE + kRE(Dtot −DR

12))(δ
′
+ k

′
T + k

′∗
T (Dtot −DR))K̄dim(kAW0 + kAW + kAM (Dtot −DR

12))

kAW0 + kAW + kAM (Dtot −DR
12) + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k

′
M )DR

12

)
DR

12.

(157)
The system is one-dimensional and it can be represented through the following simplified chemical
reactions:

DA kAR−−→ DR
12, kAR =

(
(δ + k̄AE + 2kAED

R
12)(k

2
W0 + k2W + k1W0 + k1W + (kM + k̄M + k

′
M )DR

12)

kAW0 + kAW + kAMDA + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k
′
M )DR

12

)
,

DR
12

kRA−−→ DA, kRA =

(
(δ + k̄RE + kRED

A)(δ
′
+ k

′
T + k

′∗
T D

A)K̄dim(kAW0 + kAW + kAMDA)

kAW0 + kAW + kAMDA + k2W0 + k2W + k1W0 + k1W + (kM + k̄M + k
′
M )DR

12

)
.

(158)

3.3 Derivation of stationary probability distribution formula

Following the same procedure we used in Section 2.3 for system (115), the reduced chemical reaction
system (158) can be represented by a one-dimensional Markov chain in which the state x represents
the total number of DR

12, that is, x = nR
12. In particular, the state x can vary between zero and

Dtot. Furthermore, the transition rate from state i to state j, qi,j , for our Markov chain can be
defined as follows:

qx,(x+1) =

 (δ + k̄AE + 2
kAE
Ω x)(k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω x)

kAW0 + kAW +
kAM
Ω (Dtot − x) + k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω x

 (Dtot − x),

qx,(x−1) =

(δ + k̄RE +
kRE
Ω (Dtot − x))(δ

′
+ k

′
T +

k
′∗
T
Ω (Dtot − x))K̄dim(kAW0 + kAW +

kAM
Ω (Dtot − x))

kAW0 + kAW +
kAM
Ω (Dtot − x) + k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω x

x,

(159)
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in which we have used DA = nA/Ω and DR
12 = nR

12/Ω, with Ω the volume of the reactions and
K̄dim = 1

k1W0+
k
′
M
Ω

x

+ 1

k2W0+
(kM+k̄M )

Ω
x
, for x ∈ [0,Dtot] [49]. Since this Markov chain is irreducible

and reversible, we can apply detailed balance [60] to determine an analytical expression for the
stationary probability distribution π(x) as a function of π(0):

π(x) =
x∏

i=1

q(i−1),i

qi,(i−1)
π(0). (160)

Now, introducing

K̄j =
1

uR10 + α′ j
Dtot

+
1

uR20 + (α+ ᾱ) j
Dtot

, (161)

let us compute
∏x

i=1
q(i−1),i

qi,(i−1)
for our system by writing explicitly the expression for the transition

rates and rearranging properly the terms. In particular, for any x ∈ [1,Dtot − 1],
∏x

i=1
q(i−1),i

qi,(i−1)
in

(160) can be written as

x∏
i=1

q(i−1),i

qi,(i−1)
=

(
Dtot

x

)1 + x
kM
Ω + k̄M

Ω +
k
′
M
Ω − kAM

Ω
kAM
Ω Dtot + kAW0 + kAW + k1W0 + k1W + k2W0 + k2W

 ·

·
x−1∏
i=1

 (δ + k̄AE + 2
kAE
Ω i)(k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω i)

(δ + k̄RE +
kRE
Ω (Dtot − i))(δ′ + k

′
T +

k
′∗
T
Ω (Dtot − i))K̄dimi

(kAW0 + kAW +
kAM
Ω (Dtot − i))

 ·

·
(δ + k̄AE)(k

2
W0 + k2W + k1W0 + k1W )

(δ + k̄RE +
kRE
Ω (Dtot − x))(δ′ + k

′
T +

k
′∗
T
Ω (Dtot − x))K̄dimx(k

A
W0 + kAW +

kAM
Ω (Dtot − x))

=

(
Dtot

x

)(
1 +

x

Dtot

(α+ ᾱ+ α
′
)− 1

1 + uA0 + uA + uR10 + uR1 + uR20 + u2R

)
·

·
x−1∏
i=1

(
(ϵ+ 2ϵ

′ i
Dtot

)(uR10 + uR1 + uR20 + u2R + (α+ ᾱ+ α
′
) i
Dtot

)

µ(bϵ+ ϵ′ (Dtot−i)
Dtot

)µ′(βϵ+ ϵ′ (Dtot−i)
Dtot

)K̄i(uA0 + uA + (Dtot−i)
Dtot

)

)
·

·
ϵ(uR10 + uR1 + uR20 + u2R)

µ(bϵ+ ϵ′ (Dtot−x)
Dtot

)µ′(βϵ+ ϵ′ (Dtot−x)
Dtot

)K̄x(uA0 + uA + (Dtot−x)
Dtot

)
,

(162)
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in which the final expression has been obtained by dividing numerator and denominator by (
kAMDtot

Ω )
in each of the factors. For x = Dtot expression (162) can be written as

Dtot∏
i=1

q(i−1),i

qi,(i−1)
=

1 + x
kM
Ω + k̄M

Ω +
k
′
M
Ω − kAM

Ω
kAM
Ω Dtot + kAW0 + kAW + k1W0 + k1W + k2W0 + k2W

 ·

·
Dtot−1∏
i=1

 (δ + k̄AE + 2
kAE
Ω i)(k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω i)

(δ + k̄RE +
kRE
Ω (Dtot − i))(δ′ + k

′
T +

k
′∗
T
Ω (Dtot − i))K̄dimDtot

(kAW0 + kAW +
kAM
Ω (Dtot − i))

 ·

·
(δ + k̄AE)(k

2
W0 + k2W + k1W0 + k1W )

(δ + k̄RE)(δ
′ + k

′
T )K̄dimi

(kAW0 + kAW )

=

(
1 +

(α+ ᾱ+ α
′
)− 1

1 + uA0 + uA + uR10 + uR1 + uR20 + u2R

)
·

·
Dtot−1∏
i=1

(
(ϵ+ 2ϵ

′ i
Dtot

)(uR10 + uR1 + uR20 + u2R + (α+ ᾱ+ α
′
) i
Dtot

)

µ(bϵ+ ϵ′ (Dtot−i)
Dtot

)µ′(βϵ+ ϵ′ (Dtot−i)
Dtot

)K̄i(uA0 + uA + (Dtot−i)
Dtot

)

)
·

·
ϵ(uR10 + uR1 + uR20 + u2R)

µ(bϵ)µ′(βϵ)K̄Dtot(u
A
0 + uA)

,

(163)

in which the final expression has been obtained by dividing numerator and denominator by (
kAMDtot

Ω )

in each of the factors. Now, in order to find an expression for π(0), we use
∑Dtot

j=0 π(j) =
∑Dtot

j=1

(∏j
i=1

q(i−1),i

qi,(i−1)

)
π(0)

+π(0) = 1 and then we can express π(0) as follows:

π(0) =
1(

1 +
∑Dtot

j=1

(∏j
i=1

q(i−1),i

qi,(i−1)

)) . (164)

Substituting in (160) the π(0) expression obtained in (164), the stationary probability π(x) can
finally be expressed as

π(x) =
x∏

i=1

q(i−1),i

qi,(i−1)
π(0) =

∏x
i=1

q(i−1),i

qi,(i−1)(
1 +

∑Dtot
j=1

(∏j
i=1

q(i−1),i

qi,(i−1)

)) , (165)

for x ∈ [1,Dtot]. Then, assuming that ϵ
′ ̸= 0, comparing (162) and (163) it is possible to notice

that in the condition ϵ ≪ 1,
∏j

i=1
q(i−1),i

qi,(i−1)
≪
∏Dtot

i=1
q(i−1),i

qi,(i−1)
for any j ∈ [1,Dtot−1]. This implies that,

when ϵ ≪ 1,
∑Dtot

j=0 π(j) = 1 can be approximated as follows:

1 =

Dtot∑
j=0

π(j) =

Dtot∑
j=1

(
j∏

i=1

q(i−1),i

qi,(i−1)

)π(0) + π(0) ≈
Dtot∏
i=1

q(i−1),i

qi,(i−1)
π(0) + π(0) (166)

from which

π(0) ≈ 1

1 +
∏Dtot

i=1
q(i−1),i

qi,(i−1)

, (167)

and, from equation (165),

π(Dtot) ≈

∏Dtot
i=1

q(i−1),i

qi,(i−1)

1 +
∏Dtot

i=1
q(i−1),i

qi,(i−1)

. (168)
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Then, the stationary probability is such that, under the condition ϵ ≪ 1, it can be expressed as
follows:

πϵ≪1(x) ≈


1

1+P if x = 0

0 if x ̸= 0,Dtot

P
1+P if x = Dtot

(169)

with

P =
(uA0 + uA + uR10 + uR1 + uR20 + u2R + α+ ᾱ+ α

′
)

(uA0 + uA + uR10 + uR1 + uR20 + u2R + 1)
·

·
Dtot−1∏
i=1

(
2(uR10 + uR1 + uR20 + u2R + (α+ ᾱ+ α

′
) i
Dtot

)

µµ′ϵ′ (Dtot−i)
Dtot

K̄i(uA0 + uA + (Dtot−i)
Dtot

)

)
·
(uR10 + uR1 + uR20 + u2R)

µµ′bβϵK̄Dtot(u
A
0 + uA)

.

(170)

with

K̄Dtot =
1

uR10 + α′ +
1

uR20 + (α+ ᾱ)
. (171)

3.4 Derivation of time to memory loss formula for the 4D model

Now, in order to determine the time to memory loss of the fully repressed gene state, τ0Dtot
, that is,

the expected value of the first time at which the state x hits 0, starting from x = Dtot we can use
the formula (136) derived in Section 2.4, that is

τ0Dtot
=

rDtot−1

γDtot

(
1 +

Dtot−1∑
i=1

1

ri

)
+

1

γ1
+

Dtot−1∑
i=2

ri−1

γi

1 +
i−1∑
j=1

1

rj

 , (172)

with rj =
α1α2...αj

γ1γ2...γj
. In particular, for the Markov chain associated with the one-dimensional reduced

model of the chromatin modification system, introducing K̄i =
1

uR
10+α′ i

Dtot

+ 1
uR
20+(α+ᾱ) i

Dtot

, αi and

γi are given by

αi =

 (δ + k̄AE + 2
kAE
Ω i)(k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω i)

kAW0 + kAW +
kAM
Ω (Dtot − i) + k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω i

 (Dtot − i)

=

 (ϵ+ 2ϵ
′ i
Dtot

)(k2W0 + k2W + k1W0 + k1W +
(kM+k̄M+k

′
M )

Ω i)

uA0 + uA + (Dtot−i)
Dtot

+ uR20 + uR2 + uR10 + uR1 + (α+ ᾱ+ α′) i
Dtot

 (Dtot − i)

γi =

(δ + k̄RE +
kRE
Ω (Dtot − i))(δ

′
+ k

′
T +

k
′∗
T
Ω (Dtot − i))K̄i(k

A
W0 + kAW +

kAM
Ω (Dtot − i))

kAW0 + kAW +
kAM
Ω (Dtot − i) + k2W0 + k2W + k1W0 + k1W +

(kM+k̄M+k
′
M )

Ω i

 i

=

µ(bϵ+ ϵ
′ (Dtot−i)

Dtot
)µ

′
(βϵ+ ϵ

′ (Dtot−i)
Dtot

)K̄i(k
A
W0 + kAW +

kAM
Ω (Dtot − i))

uA0 + uA + (Dtot−i)
Dtot

+ uR20 + uR2 + uR10 + uR1 + (α+ ᾱ+ α′) i
Dtot

 i,

(173)

in which the final expressions are obtained by multiplying and dividing the intermediate formula

by
kAMDtot

Ω . Also in this case, in the absence of external input stimuli and assuming that ϵ
′ ̸= 0, it is

possible to notice that, for ϵ ≪ 1, the dominant term of τ0Dtot
is the first addend in (172). Then, by
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normalizing the time to memory loss with respect
kAMDtot

Ω (τ̄0Dtot
= τ0Dtot

kAMDtot

Ω ), τ0Dtot
in the regime

ϵ ≪ 1 can be re-written as follows:

τ̄0Dtot
= τ̄R ≈ KR

µµ′ϵ2

(
1 +

Dtot−1∑
i=1

Ki
R

hi1(µµ
′)

)
, (174)

with hi1 an increasing function, hi1(0) = 0, KR and Ki
R functions independent of ϵ, µ

′
and µ, and

in which we redefine τ̄0Dtot
as τ̄R to simplify the notation.

Similarly we can determine the time to memory loss of the fully activated gene state, τDtot
0 , by

using the formula (139) derived in Section 2.4, that is

τDtot
0 =

r̃Dtot−1

α0

1 +

Dtot−1∑
j=1

1

r̃i

+
1

αDtot−1
+

Dtot−1∑
i=2

 r̃i−1

αDtot−i

1 +

i−1∑
j=1

1

r̃j

 , (175)

with αi and γi as defined in (173) and r̃j =
γDtot−1γDtot−2...γDtot−j

αDtot−1αDtot−2...αDtot−j
, τDtot

0 . In the absence of external

input stimuli and assuming that ϵ
′ ̸= 0, it is possible to notice that, for ϵ ≪ 1, the dominant term

of τDtot
0 is the first addend in (175). Then, by normalizing the time to memory loss with respect

kAMDtot

Ω (τ̄Dtot
0 = τDtot

0
kAMDtot

Ω ), τDtot
0 in the regime ϵ ≪ 1 can be re-written as follows:

τ̄Dtot
0 = τ̄A ≈ KA

ϵ

(
1 +

Dtot−1∑
i=1

hi2(µµ
′
)

Ki
A

)
, (176)

with hi2 an increasing function, hi2(0) = 0, KA and Ki
A functions independent of ϵ, µ

′
and µ, and

in which we redefine τ̄Dtot
0 as τ̄A to simplify the notation.

3.5 Effect of ϵ
′
on the stationary distributions

From Figs Q-T it is possible to notice that the parameter ϵ
′
does not substantially affect the trend

with which ϵ, µ
′
, µ and the inputs affect the distribution. If ϵ

′ ≫ 1, the only states characterized
by high probability are the ones with either activating or repressive marks. The reason is that in
the parameter regime ϵ

′ ≫ 1 (that is the specifically recruited erasure reaction is fast compared to
the auto and cross-catalysis reactions), since the recruited erasure is very fast, the system tends
to reach a state in which the activating marks erased completely the repressive marks or viceversa
(the states are on the axes). When ϵ

′
decreases compared to ϵ, the peaks of the distribution become

less concentrated and in the extreme case where ϵ′ ≪ ϵ, the distribution becomes unimodal (Fig U)

4 Derivation of the transcriptional regulation model

Transcription from nucleosome state DR. H3K9me3 is recognized and bound to by the chro-
modomain of the HP1α protein, which once bound contributes to nucleosomal compaction [5](Chap-
ter 3) through a mechanism where HP1α dimerizes and cross-links nucleosomes [5](Chapter 1),[62].
Concerning DNA methylation, it has been shown that it is essential for cell differentiation and
embryonic development, playing an important role in mediating gene expression [63]. In particular,
some studies have been conducted in order to determine the DNA methylation level in the region
(1kb-5kb window) around the transcription start sites (TSS), showing a high correlation between
the level of methylated CpG and the gene repression [64]. Consistent with these observations, in
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our model we consider DR
1 , D

R
2 and DR

12 (nucleosome with repressive modifications that lead to
a more compacted structure of the chromatin) to be inaccessible to general TFs, and thus to be
transcriptionally “off” (silent).
Transcription from nucleosome state DA. Transcriptional activators recruit remodeling

complexes, such as the SWI/SNF complex, which become activated by the binding of their bro-
modomain with acetylated lysines. These remodelers open up nucleosomes for RNA pol II and basal
TFs to bind and initiate transcription and then transcript elongation [5](Chapter 21), [1](Chapters
3-5). Histone acetylation is essential for transcriptional machinery to make its way on the DNA
despite the presence of nucleosomes. Also, H3K4me3 can interact with TFIID complex, which
is implicated in the recruitment of transcriptional machinery [14](Chapter 11), thus potentially
enhancing transcription rate. Therefore, the DNA wrapped around a nucleosome with activating
histone modification, DA, will be transcribed by the basal transcriptional machinery as it is largely
accessible to it. Enhanced transcription from DA will occur if An binds, creating the complex C̄A

A,
and recruits to it the basal transcriptional machinery more efficiently [1](Chapter 4).
Transcription from nucleosome state D. Nucleosome state D can also allow some (possibly

zero) basal transcription, lower than the one obtained by DA. In fact D is missing repressive histone
marks and, although not as accessible to basal transcriptional machinery and remodeling factors
as DA, it can in principle still allow for non-specific targeting by chromatin remodelers, many of
which contain DNA-binding domains [65]. This enables the formation of the pre-initiation complex
and consequent transcriptional initiation and elongation [1]. However, it has been shown that, once
RNA Pol II initiates transcription it can recruit SETs, which methylate H3K4 [15], which in turn
can further recruit HATs by the Thryotorax complex [8]. This promotes downstream acetylation
and hence further recruitment of remodeling complexes, thus allowing transcriptional elongation to
proceed [5](Chapter 21). This implies that transcription by RNA Pol II of DNA wrapped around
an unmodified nucleosome, D, occurs concurrently with the deposition of H3K4me3 and hence the
conversion of D to DA. We capture this in our model by allowing protein production only by the
DNA wrapped around a nucleosome with activating histone modification, DA.
In light of these observations, we can write the binding reactions related to C̄A

R and C̄A
R as follows:

An +DA
ā
′
A−−⇀↽−−

d̄
′
A

C̄A
A, Rn +DA

ā
′
R−−⇀↽−−

d̄
′
R

C̄A
R, (177)

in which ā
′
A, ā

′
R, and d̄

′
A, d̄

′
R. Furthermore, denoting the expressed protein with X and lumping

for simplicity transcription and translation in a one-step reaction, we can write the set of gene
expression reactions as follows:

DA αA
b−−→ DA +X, C̄A

A

αA
b + ᾱA

b−−−−−→ C̄A
A +X, DA αA

b−−→ DA +X, C̄A
R

αA
b−−→ C̄A

R +X, (178)

in which αA
b and ᾱA

b are the basal and the active protein production rate constants. The ODE for
X is then given by

Ẋ = αA
b (D

A + C̄A
A + C̄A

R) + ᾱA
b C̄

A
A + αA

b C̄
A
R − γxX (179)

in which γx represent the rate of degradation and dilution of X. Now, let us introduce DA
tot, which

is the total concentration of nucleosome characterized by activating histone modification, free or
bound by An or Rn (DA

tot = DA + C̄A
A + C̄A

R), K
A = dA

aA
and KR = dR

aR
as the dissociation constants

of the first reactions in (7) and (9), respectively, KA
A =

d̄
′
A

ā
′
A

and KA
R =

d̄
′
A

ā
′
A

as the dissociation

constants of the reactions in (177). Then, considering as before the binding reactions much faster

64



than the other reactions and then setting the complexes dynamics to the QSS (C̄A
A = AnDA

KA
A

and

C̄A
R = RnDA

KA
R

), (179) becomes

Ẋ = (αA
b +

ᾱA
b

An

KAKA
A

1 + An

KAKA
A

+ Rn

KRKA
R

)DA − γxX (180)

in which, with abuse of notation, we indicate DA
tot with DA. Defining α0 = αA

b , α1 = ᾱA
b , K

A
AA =

KAK
A
A , K

A
RR = KRK

A
R , we can re-write (180) as follows:

Ẋ = (α0 +
α1

An

KA
AA

1 + An

KA
AA

+ Rn

KA
RR

)DA − γxX = αxD
A − γxX (181)

in which we define αx = α0 +
α1

An

KA
AA

1+ An

KA
AA

+ Rn

KA
RR

. Now, let us define D̄A = DA/Dtot = nA/Dtot,

X̄ = X/Dtot = nX/Dtot, the normalized time τ = tkAMDtot, and the non-dimensional parameters
γ̄x = γx/(k

A
MDtot), ᾱx = αx/(k

A
MDtot). With these definitions and letting ẋ := dx/dτ , we can

rewrite the system model in terms of non-dimensional variables and non-dimensional parameters
as follows:

˙̄X = ᾱxD̄
A − γ̄xX̄. (182)
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5 Figures

(A) (B)

(C) (D)

Figure A: Establishment, erasure, and maintenance of DNA methylation. (A) Diagram repre-
senting the reactions making up the DNA methylation system as consistent with earlier models [31] (black
arrows). The key processes are de novo methylation, maintenance methylation and dilution due to DNA
replication/ cell division. In addition to passive erasure, DNA methylation can be actively removed through
the TET enzymatic pathway [14](Chapter 17) (blue arrows). Here, D represents a nucleosome with the DNA
wrapped around characterized by an unmethylated single CpG, DM represents a nucleosome with the DNA
wrapped around characterized by a methylated single CpG and DM

h represents a nucleosome with the DNA
wrapped around characterized by a hydroxilmethylated CpG which is not recognized by DNMT1. Rate con-
stants are defined in the main text. (B) Diagram representing the reactions making up the DNA methylation
system, accounting for the mutual protection mechanism between MBD proteins and TET binding to DNA.
(C) Simplified diagram shows an effective catalytic rate constant of TET k

′

T which is substantially smaller
than the theoretical one quantified in vitro. (D) Final simplified diagram obtained by introducing the fact
that δ

′
+ k

′

T ≪ δ.
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writers erasers

(A) (B)

Figure B: Competitive interactions between activating histone modifications DA and DNA
methylation DR

1 . (A) Interaction diagram between DR
1 and DA (nucleosome with an activating his-

tone modification, H3K4me3 or H3Kac). DNA methylation recruits erasers of H3K4me3/ac and, in turn,
H3K4me3 recruits TET enzymes for active removal of DNA methylation (see main text). We use colored
dotted lines to depict the recruitment process done by H3K4me3/ac (green lines), and CpGme (orange lines)
and we use dotted black arrows to depict the consequent effect on writing/erasing. The solid black arrow
represents the nucleosome modification. (B) Enzymes that write (writers) and erase (erasers) each modifica-
tion as explained in the main text. The socket on each of these enzymes represents a domain that binds to
protein readers of the corresponding modification, enabling the process by which each modification recruits
writers or erasers to nearby histones.

(A) (B)

Pathway

(A)

Pathway

(B)

writers

Figure C: Cooperative interactions between DNA methylation DR
1 and repressive histone mod-

ification DR
2 . (A) Diagram of the chemical reaction model, in which the two possible cooperation pathways,

described in Section “Models” and Section 1.4, are highlighted. The species involved are D (unmodified nu-
cleosome), DR

1 (nucleosome without any histone modification but with CpGme), DR
2 (nucleosome with a

repressive histone modification, H3K9me3, but without methylated CpG) and DR
12 (nucleosome with both

H3K9me3 and CpGme). We use colored dotted lines to depict the recruitment process done by H3K9me3
(red lines), and CpGme (orange lines) and we use dotted black arrows to depict the consequent effect on
writing. The solid black arrow represents the nucleosome modification. (B) Enzymes that write (writers)
each modification as explained in the main text. The socket on each of these enzymes represents a domain
that binds to protein readers of the corresponding modification, enabling the process by which each modifi-
cation recruits writers to nearby histones.
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Figure D: Competition between activating (Act) and repressive (Rep) histone modifications.
Analysis of number and stability of steady states for the ODE model in (29) with no external input (ūA = uA

0 ,

ūR = uR
0 ). In the plots, the arrows represent the vector field, the green line represents the nullcline ˙̄DR = 0,

the red line represents the nullcline ˙̄DA = 0 and their intersections, highlighted by a circle, represent the
steady states of the system. There are four different plots, one for each qualitatively different parameter
regime: ϵ large (ϵ > max{1, α

µb}), ϵ small - µ intermediate (ϵ < min{1, α
µb}, µ1 < µ < µ2 with µ1 and µ2

defined in (91)), ϵ small - µ small (ϵ < min{1, α
µb}, µ < µ1) and ϵ small - µ large (ϵ < min{1, α

µb}, µ > µ2).
The parameter values of each regime are listed in Table D.

= full system

= reduced system

1 1

0 0
0 0

Figure E: Trajectories of D̄R and D̄A of the full and the reduced system become close as ϵ
′

decreases. Trajectories of D̄R and D̄A of the full system (95), solid lines, and of the reduced system (112),
dashed lines. We set (D̄R(0), D̄A(0)) = (0.3, 0.7) as initial conditions and we use three different values for ϵ

′
,

that is, from the lighter to the darker curve, ϵ
′
= 1, 0.1, 0.01. The values of the other parameters are listed

in Table E.
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Figure F: How the parameters ϵ, µ, uA and uR affect the stationary probability distribution
of the histone modification circuit. The stationary distribution of our system, represented in Fig 1C,
obtained computationally. The stationary distributions are obtained by simulating the system of reactions
listed in the blue box of Fig 2 with the SSA. (A) We consider three values of ϵ (ϵ = 0.4, 0.2, 0.02) and five
values of µ (µ = 10, 1.2, 1, 0.83, 0.1). (B) We consider ϵ = 0.1, two values of µ (µ = 1, 0.83) and, in the plots
above, three values of uA (uA = 0, 0.1, 1) and in the plots below three values of uR (uR = 0, 0.1, 1). The
parameter values of each regime are listed in Table F. For all the simulations we consider α = 1, ϵ

′
= 1 (Figs

H-I show different values of ϵ
′
) and we decrease ϵ by decreasing δ+ k̄AE (similar results can be obtained if we

change ϵ by varying kAM as shown in Fig G).
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Figure G: How the parameter ϵ affects the stationary probability distribution of the histone
modification circuit. The stationary distribution of our system, represented in Fig 1C, obtained compu-
tationally. The stationary distributions are obtained by simulating the system of reactions listed in Table
G with the SSA. In particular, defining the reaction volume as Ω, we consider three different cases, ϵ

′ ≪ 1,
ϵ
′
= 1 and ϵ

′ ≫ 1, and for each case we determine how decreasing ϵ (by decreasing δ + k̄AE or increasing
kAM/Ω) affects the stationary distribution of the system. The parameter values of each regime are listed in

Table G. In particular, for the parameter regime ϵ
′ ≪ 1 we consider ϵ = 0.2, 0.1, 0.02, 0.002 and ϵ

′
= 0.2 for

the distribution in which we decrease δ + k̄AE and ϵ = 0.2, 0.1, 0.02, 0.002 and ϵ
′
= 0.2 for the distribution

in which we increase kAM/Ω; for the parameter regime ϵ
′
= 1 we consider ϵ = 0.4, 0.2, 0.02, 0.002 and ϵ

′
= 1

for both cases and for the parameter regime ϵ
′ ≫ 1 we consider ϵ = 0.5, 0.2, 0.02, 0.002 and ϵ

′
= 10 for both

cases.
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Figure H: How the parameter µ affects the stationary probability distribution of the histone
modification circuit for different values of ϵ

′
. The stationary distribution of our system, represented

in Fig 1C, obtained computationally. The stationary distributions are obtained by simulating the system of
reactions listed in Table H with the SSA. We consider three different cases, ϵ

′ ≪ 1, ϵ
′
= 1 and ϵ

′ ≫ 1, and
for each case we determine, for two values of ϵ (ϵ = 0.2, 0.02), how µ affect the stationary distribution of the
system. In particular, we consider three values of µ (µ = 0.1, 1, 10). The parameter values of each regime
are listed in Table H.
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Figure I: How the parameter uA and uR affect the stationary probability distribution of the
histone modification circuit for different values of ϵ

′
. The stationary distribution of our system,

represented in Fig 1C, obtained computationally. The stationary distributions are obtained by simulating
the system of reactions listed in Table I with the SSA. We consider, for two different regimes of ϵ

′
(ϵ

′
= 0.2

and ϵ
′
= 10), ϵ = 0.1, two values of µ (µ = 1, 0.83) and, in the plots above, three values of uA (uA = 0, 0.1, 1)

and in the plots below three values of uR (uR = 0, 0.1, 1). The parameter values of each regime are listed in
Table I.
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Figure J: Trajectories of D̄R
12 and D̄A of the full and the reduced system are close as ϵ

′
decreases.

Trajectories of D̄R
12 and D̄A of the full system (145), solid lines, and of the reduced system (155), dotted

lines. We set (D̄R
12(0), D̄

A(0)) = (0.7, 0.3) as initial conditions and we use three different values for ϵ
′
, that

is, from the lighter to the darker curve, ϵ
′
= 1, 0.1, 0.01. The values of the other parameters are listed in

Table J.
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Figure K: Bifurcation plots related to system Main Text: Eqs (3) with no external inputs
(uA = uR

1 = uR
2 = 0 and uA

0 = uR
10 = uR

20 = u0 small). Here, defining nR = nR
1 + nR

2 + nR
12, D̄

A := nA/Dtot

and D̄R := nR/Dtot represent the fractions of nucleosomes with activating or repressive modifications within
the gene with a total of Dtot nucleosomes. On the y axis we have D̄A (green) and D̄R (red) and on the x
axis we have µ

′
(log scale). The solid line represents stable steady states, the dotted line represents unstable

steady states and the black circle represents the bifurcation point (saddle-node bifurcation). (A) On the
left side, we realize several bifurcation plots for different values of ϵ (ϵ = 0.1, 1, 10, 100), different values of µ
(µ = 0.1, 1, 10) and different values of ϵ

′
(ϵ

′
= 0.1, 1, 10). (B) On the right side we increase kAM of one order

of magnitude, and this, based on the definition of the dimensionless parameters as done in Main Text: Eqs
(3), leads to decrease ϵ, ϵ

′
, u0, α, α

′
and ᾱ of one order of magnitude. A higher kAM increases the stability

of the active state.
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Figure L: Charts depicting the (ϵ, µ′) combinations that result in a monostable (red, green or
white) or bistable (yellow) system for different values of µ. Here, consider ϵ

′
= 1 and three different

values of µ (µ = 0.1, 1, 10).
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Figure M: Input/output steady state characteristics displaying hysteresis related to system
Main Text: Eqs (3) with uA as input. On the y axis we have D̄A (green) or D̄R (red) and on the x axis
we have the external input uA. In particular, we set uA

0 = uR
10 = uR

20 = u0 = 0.1, uR = 0, as initial conditions
we consider (D̄R, D̄A) = (1, 0) and we realize several I/O plots for three values of µ

′
(µ

′
= 0.1, 1, 10), two

values of µ (µ = 1, 10), two values of ϵ (ϵ = 0.1, 0.05), and three values of ϵ
′
(ϵ

′
= 0.1, 1, 10). All the other

parameters are set equal to 1. In all plots uA := kAW /(kAMDtot), u
R
i := kiW /(kAMDtot) for i ∈ {1, 2}.
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Figure N: Input/output steady state characteristics displaying hysteresis related to system
Main Text: Eqs (3) with uR as input. On the y axis we have D̄A (green) or D̄R (red) and on
the x axis we have the external input uR, with uR defined as uR = uR

1 = uR
2 . In particular, we set

uA
0 = uR

10 = uR
20 = u0 = 0.1, uA = 0, as initial conditions we consider (D̄R, D̄A) = (0, 1) and and we

realize several I/O plots for three values of µ
′
(µ

′
= 0.1, 1, 10), two values of µ (µ = 1, 10), two values of ϵ

(ϵ = 0.1, 0.05), and three values of ϵ
′
(ϵ

′
= 0.1, 1, 10). All the other parameters are set equal to 1. In all

plots uA := kAW /(kAMDtot), u
R
i := kiW /(kAMDtot) for i ∈ {1, 2}.
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Figure O: Input/output steady state characteristics for the (uR, D̄R) pair for different values of ϵ
′

and µ
′
obtained from simulations of system Main Text: Eqs (3). (A) We consider (D̄R, D̄A) = (0, 1)

as initial conditions and we set uA = 0, ϵ = 0.07, uA
0 = uR

10 = uR
20 = 0.1, α = ᾱ = α

′
= 0.1, and all the

other parameters equal to 1. (B) We consider (D̄R, D̄A) = (0, 1) as initial conditions and we set uA = 0,
ϵ = 0.1, µ = 10, µ

′
= 10, uA

0 = uR
10 = uR

20 = 0.1 and all the other parameters equal to 1. In all plots
uA = kAW /(kAMDtot), u

R
i = kiW /(kAMDtot) for i ∈ {1, 2}.

0 0

0

3

Figure P: Stationary probability distribution of the chromatin modification circuit with no
external inputs (uA = uR

1 = uR
2 = 0 and uA

0 = uR
10 = uR

20 = u0 small) and all the parameters
with the same order of magnitude. The stationary distribution of our system, represented by the
circuit in Fig 3A, obtained computationally. The stationary distributions are obtained by simulating the
system of reactions listed in Table K with the SSA and we indicate with nR the total number of nucleosomes
characterized by repressive chromatin modifications, that is nR = nR

1 + nR
2 + nR

12. The parameter values of
each regime are listed in Table K. In particular, we set uA = uR

1 = uR
2 = 0 and uA

0 = uR
10 = uR

20 = 0.1, ϵ = 1,
ϵ
′
= 1, µ = 1, µ

′
= 1 and α = ᾱ = α

′
= 1.
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Figure Q: How the parameter ϵ affects the stationary probability distribution of the chromatin
modification circuit. The stationary distribution of our system, represented by the circuit in Fig 3A,
obtained computationally. The stationary distributions are obtained by simulating the system of reactions
listed in Table L with the SSA and we indicate with nR the total number of nucleosomes characterized by
repressive chromatin modifications, that is nR = nR

1 + nR
2 + nR

12. In particular, defining the reaction volume
as Ω, we consider three different cases, ϵ

′ ≪ 1, ϵ
′
= 1 and ϵ

′ ≫ 1, and for each case we determine how
decreasing ϵ (by decreasing δ + k̄AE or increasing kAM/Ω) affect the stationary probability distribution of the
system. The parameter values of each regime are listed in Table L. In particular, for the parameter regime
ϵ
′ ≪ 1 we consider ϵ = 0.16, 0.12, 0.02, 0.002 and ϵ

′
= 0.2 for the distribution in which we decrease δ + k̄AE

and ϵ = 0.16, 0.12, 0.02, 0.002 and ϵ
′
= 0.2, 0.17, 0.025, 0.0025 for the distribution in which we increase kAM/Ω;

for the parameter regime ϵ
′
= 1 we consider ϵ = 0.19, 0.12, 0.02, 0.002 and ϵ

′
= 1 for both cases and for the

parameter regime ϵ
′ ≫ 1 we consider ϵ = 0.36, 0.12, 0.02, 0.002 and ϵ

′
= 10 for both cases.
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Figure R: How the parameters ϵ, µ
′
, uA and uR affect the stationary probability distribution

of the chromatin modification circuit. The stationary distributions are obtained by simulating the
system of reactions listed in Fig 3A with the SSA and we indicate with nR the total number of nucleosomes
characterized by repressive chromatin modifications, that is nR = nR

1 + nR
2 + nR

12. (A) We consider three
values of ϵ (ϵ = 0.19, 0.12, 0.02) and five values of µ

′
(µ = 10, 1.2, 1, 0.8, 0.1). (B) We consider ϵ = 0.12, two

values of µ
′
(µ = 1, 0.8) and, in the plots above, three values of uA = 0, 0.07, 1 and in the plots below three

values of uR (uR = 0, 0.05, 1), in which uR = uR
1 = uR

2 . The parameter values of each regime are listed in
Table M. For all the simulations we consider α = ᾱ = α

′
= 0.2, ϵ

′
= 1 and µ = 1 (Figs S-T show different

values of ϵ
′
and µ) and we decrease ϵ by decreasing δ + k̄AE (similar results can be obtained if we change ϵ

by varying kAM as shown in Fig Q).
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Figure S: How the parameters µ and µ
′
affect the stationary probability distribution of the

chromatin modification circuit for different values of ϵ
′
. The stationary distribution of our system,

represented by the circuit in Fig 3A, obtained computationally. The stationary distributions are obtained
by simulating the system of reactions listed in Table N with the SSA and we indicate with nR the total
number of nucleosomes characterized by repressive chromatin modifications, that is nR = nR

1 + nR
2 + nR

12.
We consider three different cases, ϵ

′ ≪ 1, ϵ
′
= 1 and ϵ

′ ≫ 1, and for each case we determine, for two values
of ϵ (ϵ = 0.12, 0.02), how µ and µ

′
affect the stationary probability distribution of the system. In particular,

we consider two values of µ (µ = 1, 10) and three values of µ
′
(µ = 0.1, 1, 10). For all the simulations we

consider α = ᾱ = α
′
= 0.2. The parameter values of each regime are listed in Table N.
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Figure T: How the parameter uA and uR affect the stationary probability distribution of the
chromatin modification circuit for different values of ϵ

′
. The stationary distribution of our system,

represented by the circuit in Fig 3A, obtained computationally. The stationary distributions are obtained
by simulating the system of reactions listed in Table O with the SSA and we indicate with nR the total
number of nucleosomes characterized by repressive chromatin modifications, that is nR = nR

1 + nR
2 + nR

12.
We consider, for two different regimes of ϵ

′
(ϵ

′
= 0.2 and ϵ

′
= 10), ϵ = 0.12, µ = 1, two values of µ

′

(µ = 1, 0.8) and, in the plots above, three values of uA (uA = 0, 0.07, 1) and in the plots below three values
of uR (uR = 0, 0.05, 1). For all the simulations we consider α = ᾱ = α

′
= 0.2. The parameter values of each

regime are listed in Table O.

Figure U: The effect of ϵ
′ ≪ ϵ on the stationary probability distribution of the chromatin

modification circuit. The stationary distribution of our system, represented by the circuit in Fig 3A,
obtained computationally. The stationary distributions are obtained by simulating the system of reactions
listed in Table P with the SSA and we indicate with nR the total number of nucleosomes characterized by
repressive chromatin modifications, that is nR = nR

1 + nR
2 + nR

12. We set ϵ = 0.12, µ
′
= 1, µ = 1 and we

consider four values of ϵ
′
(ϵ

′
= 1, 0.12, 0.01, 0.001). The parameter values of each regime are listed in Table

P.
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Figure V: How the key parameters affect the time to memory loss of the active and repressed
state of the chromatin modification circuit for different values of ϵ

′
. The plots on the left side

are related to the time to memory loss of the repressed state. In particular, we indicate with nR the total
number of nucleosomes characterized by repressive chromatin modifications, that is nR = nR

1 +nR
2 +nR

12 and
we plot, for several values of ϵ, µ

′
and ϵ

′
, the time trajectories of system starting from a repressed chromatin

state nA = 5, nR
1 = nR

2 = nR
12 = 15 and we stop the simulation when the trajectory reaches nR = 6 for

the first time. The plots on the right side are related to the time to memory loss of the active state and in
this case we plot, for several values of ϵ, µ

′
and ϵ

′
, the time trajectories of system starting from an active

chromatin state nA = 45, nR
12 = 5 and we stop the simulation when the trajectory reaches nA = 6 for the

first time. In all the plots on the x axis we have the time normalized with respect to
kA
M

Ω Dtot. The parameter

values of each panel are listed in Table Q. In particular, we consider ϵ = 0.36, 0.12, µ
′
= 1, 0.5, µ = 1 and

ϵ
′
= 0.4, 1, 10. In each panel, the number of trajectories plotted is 10.
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Figure W: How the key parameters affect the reactivation of repressed chromatin state for
different values of ϵ

′
. Time trajectories of system starting from nR = 45,nA = 5 and considering an input

uA that, at steady state, leads to a unimodal distribution in the proximity of the active chromatin state
nA = Dtot. The parameter values of each panel are listed in Table R. In particular, we set uA = 1.62 and we
consider two values of µ

′
(µ

′
= 0.6, 0.2), two values of ϵ (ϵ = 0.48, 0.16) and three values of ϵ

′
(ϵ

′
= 5, 1, 0.3).

In each panel, the number of trajectories plotted is 10.
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Figure X: Time trajectories of D̄A for different values of ϵ
′
, µ

′
and µ. We set uA = 20, uA

0 =
uR
10 = uR

20 = 0.1, α = ᾱ = α
′
= 1 and realize several time trajectories of D̄A for different values of µ

′
, µ, ϵ

and ϵ
′
, starting from D̄A(0) = 0.1, D̄R(0) = 0.9. In all the plots on the x axis we have the normalized time

τ = t
kA
M

Ω Dtot.
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(A) (B)
(C)

(D) (E)
(F)

Figure Y: Effect of ϵ and µ
′
on the the silencing and reactivation processes. (A) Graph representing

the % of reprogrammed cells (% of time trajectories, starting from nA = 0, that reach nA > 40) as function
of time for two different values of ϵ. (B)-(C) Time trajectories obtained by simulating the system of reactions
listed in Table S with the SSA, starting from nR = 0,nA = 50. The parameter values of each panel are
listed in Table S. In particular, we set µ

′
= 0.2, µ = 1 and ϵ

′
= 1, ϵ = 0.03 in (B) and ϵ = 0.05 in (C). (D)

Graph representing the % of reprogrammed cells (% of time trajectories, starting from nA = 0, that reach
nA > 40) as function of time for two different values of µ

′
. (E)-(F) Time trajectories obtained by simulating

the system of reactions listed in Table S with the SSA, starting from nR = 0,nA = 50. The parameter values
of each panel are listed in Table S. In particular, we set ϵ = 0.03, µ = 1 and ϵ

′
= 1, µ

′
= 0.2 in (E) and

µ
′
= 0.5 in (F).
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6 Tables

It is important to point out that Dtot represents the total number of nucleosomes in a gene. Since
we can assume about one nucleosome per 200 pb [66](Chapter 4) and we can assume that an
average gene spans 10,000–20,000 bp [67], Dtot can be considered on average between 50 and 100.
In particular, in our computational analysis we consider Dtot = 50.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1)
Fig 4A Fig 4B

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 3.5 3.5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0, 50 (upper plots)

0 0 (lower plots)

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 4.7, 0.5 3

4 DA δ−−→ D a4 = δnA δ 4.7, 0.5 3

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 1 1

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 1 1

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 1 1

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 1 1

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 3.5 3.5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0 (upper plots)
0 0, 50 (lower plots)

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 4.7, 0.5 (upper plots) 2.4

4.7, 0.47 (lower plots)

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
4.7, 0.5 (upper plots) 2.4
4.7, 0.47 (lower plots)

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 1 (upper plots) 1, 0.8

1,0.1 (lower plots)

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 3.5 3.5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0 (upper plots)
0 0, 50 (lower plots)

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 4.7, 0.5 (upper plots) 3

4.7 (lower plots)

20 DR
2

δ−−→ D a20 = δnR
2 δ 4.7, 0.5 (upper plots) 3

4.7 (lower plots)

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 1 1

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 3.5 3.5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 4.7, 0.5 (upper plots) 3

4.7 (lower plots)

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 4.7, 0.5 (upper plots) 3
4.7 (lower plots)

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 1 1

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 3.5 3.5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 4.7, 0.5 (upper plots) 2.4

4.7, 0.47 (lower plots)

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
4.7, 0.5 (upper plots) 2.4
4.7, 0.47 (lower plots)

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 1 (upper plots) 1, 0.8

1,0.1 (lower plots)

Table A: Reactions and parameter values used to generate the plots in Fig 4A,4B.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1)
Fig 4C Fig 4D

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5 5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 9, 3 9, 3

4 DA δ−−→ D a4 = δnA δ 9, 3 9, 3

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 1 1

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 1 1

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 1 1

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 1 1

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 5 5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 9, 4.5 9, 4.5 (left side)

3, 1.5 3, 1.5 (right side)

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
9, 4.5 9, 4.5 (left side)
3, 1.5 3, 1.5 (right side)

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 1,0.5 1,0.5

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 5 5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 9, 3 9, 3

20 DR
2

δ−−→ D a20 = δnR
2 δ 9, 3 9, 3

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 1 1

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 5 5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 9, 3 9, 3

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 9, 3 9, 3

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 1 1

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 5 5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 9, 4.5 9, 4.5 (left side)

3, 1.5 3, 1.5 (right side)

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
9, 4.5 9, 4.5 (left side)
3, 1.5 3, 1.5 (right side)

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 1,0.5 1,0.5

Table B: Reactions and parameter values used to generate the plots in Fig 4C,4D.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1)

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5

2 D
kAW−−→ DA a2 = kAWnD kAW 160

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 4,6

4 DA δ−−→ D a4 = δnA δ 4,6

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 1

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 1

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 1

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 1

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 0.4,0.6

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
0.4,0.6

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 0.1

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 4,6

20 DR
2

δ−−→ D a20 = δnR
2 δ 4.6

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 1

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 4,6

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 4,6

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 1

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 0.4,0.6

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
0.4,0.6

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 0.1

Table C: Reactions and parameter values used to generate the plots in Fig 4F.
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Param. Value Value Value Value
1st plot 2nd plot 3rd plot 4th plot

uA0 0.001 0.001 0.001 0.001
uA 0 0 0 0
uR0 0.001 0.001 0.001 0.001
uR 0 0 0 0
α 1 1 1 1
ϵ 3 0.3 0.3 0.3

ϵ
′

0.3 0.3 0.3 0.3
b 1 1 1 1
µ 1 1 0.1 2

Table D: Parameter values relative to the plots in Fig D, going from left to right.

Param. Value

D̄R(0) 0.3
D̄A(0) 0.7
uA0 0.1
uA 0
uR0 0.1
uR 0
α 1

ϵ
′

0, 0.1, 0.01
c 1
b 1
µ 1

Table E: Parameter values relative to the plots in Fig E.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1)
Fig FA Fig FB

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5 5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0, 5, 50 (upper plots)

0 0 (lower plots)

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 10,5,0.5 2.5

4 DA δ−−→ D a4 = δnA δ 10,5,0.5 2.5

5 DA +DR kAE−−→ D+DR a5 =
kAE
Ω nAnR kAE

Ω 1 1

6 D +DA kAM−−→ DA +DA a6 =
kAM
Ω nDnA kAM

Ω 1 1

7 D
kRW0−−→ DR a7 = kRW0n

D kRW0 5 5

8 D
kRW−−→ DR a8 = kRWnD kRW 0 0 (upper plots)

0 0, 5, 50 (lower plots)

9 DR k̄RE−−→ D a9 = k̄REn
R k̄RE 100, 12, 10, 8.3, 0.1(left plots) 2.5, 2.075

50, 6.5, 5, 4.15, 0.05(central plots)
5, 0.65, 0.5, 0.415, 0.005(right plots)

10 DR δ−−→ D a10 = δnR δ 10,5,0.5 2.5, 2.075

11 DR +DA kRE−−→ D+DA a11 =
kRE
Ω nRnA kRE

Ω 10, 1.2, 1, 0.83, 0.1 1, 0.83

12 D +DR kRM−−→ DR +DR a12 =
kRM
Ω nDnR kRM

Ω 1 1

Table F: Reactions and parameter values used to generate the plots in Fig F.

Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1) Value (h−1) Value (h−1) Value (h−1) Value (h−1)
1st plots 2nd plots 3rd plots 4th plots 5th plots 6th plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5 5 5 5 5 5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0 0 0 0 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 5, 2.5, 0.5, 0.05 5 10, 5, 0.5, 0.05 5 12.5, 5, 0.5, 0.05 5

4 DA δ−−→ D a4 = δnA δ 5, 2.5, 0.5, 0.05 5 10, 5, 0.5, 0.05 5 12.5, 5, 0.5, 0.05 5

5 DA +DR kAE−−→ D+DR a5 =
kAE
Ω nAnR kAE

Ω 0.2 0.2 1 0.5, 1, 10, 100 10 4, 10, 100, 1000

6 D +DA kAM−−→ DA +DA a6 =
kAM
Ω nDnA kAM

Ω 1 1, 2, 10, 100 1 0.5, 1, 10, 100 1 0.4, 1, 10, 100

7 D
kRW0−−→ DR a7 = kRW0n

D kRW0 5 5 5 5 5 5

8 D
kRW−−→ DR a8 = kRWnD kRW 0 0 0 0 0 0

9 DR k̄RE−−→ D a9 = k̄REn
R k̄RE 5, 2.5, 0.5, 0.05 5 10, 5, 0.5, 0.05 5 5, 0.5, 0.05 5

10 DR δ−−→ D a10 = δnR δ 5, 2.5, 0.5, 0.05 5 10, 5, 0.5, 0.05 5 12.5, 5, 0.5, 0.05 5

11 DR +DA kRE−−→ D+DA a11 =
kRE
Ω nRnA kRE

Ω 0.2 0.2 1 0.5, 1, 10, 100 10 4, 10, 100, 1000

12 D +DR kRM−−→ DR +DR a12 =
kRM
Ω nDnR kRM

Ω 1 1, 2, 10, 100 1 0.5, 1, 10, 100 1 0.4, 1, 10, 100

Table G: Reactions and parameter values used to generate the plots in Fig G, going
from the top to the bottom.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1) Value (h−1)
left plots central plots right plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5 5 5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 5, 0.5 5, 0.5 5, 0.5

4 DA δ−−→ D a4 = δnA δ 5, 0.5 5, 0.5 5, 0.5

5 DA +DR kAE−−→ D+DR a5 =
kAE
Ω nAnR kAE

Ω 0.2 1 10

6 D +DA kAM−−→ DA +DA a6 =
kAM
Ω nDnA kAM

Ω 1 1 1

7 D
kRW0−−→ DR a7 = kRW0n

D kRW0 5 5 5

8 D
kRW−−→ DR a8 = kRWnD kRW 0 0 0

9 DR k̄RE−−→ D a9 = k̄REn
R k̄RE 50, 5, 0.5 50, 5, 0.5 50, 5, 0.5 (left plots)

5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 (right plots)

10 DR δ−−→ D a10 = δnR δ 5, 0.5 5, 0.5 5, 0.5

11 DR +DA kRE−−→ D+DA a11 =
kRE
Ω nRnA kRE

Ω 2, 0.2, 0.02 10, 1, 0.1 100, 10, 1

12 D +DR kRM−−→ DR +DR a12 =
kRM
Ω nDnR kRM

Ω 1 1 1

Table H: Reactions and parameter values used to generate the plots in Fig H.

Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1)
left plots right plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5 5

2 D
kAW−−→ DA a2 = kAWnD kAW 0, 5, 50 0, 5, 50 (upper plots)

0 0 (lower plots)

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 2.5 2.5

4 DA δ−−→ D a4 = δnA δ 2.5 2.5

5 DA +DR kAE−−→ D+DR a5 =
kAE
Ω nAnR kAE

Ω 0.2 10

6 D +DA kAM−−→ DA +DA a6 =
kAM
Ω nDnA kAM

Ω 1 1

7 D
kRW0−−→ DR a7 = kRW0n

D kRW0 5 5

8 D
kRW−−→ DR a8 = kRWnD kRW 0 0 (upper plots)

0, 5, 50 0, 5, 50 (lower plots)

9 DR k̄RE−−→ D a9 = k̄REn
R k̄RE 2.5,2.075 2.5,2.075

10 DR δ−−→ D a10 = δnR δ 2.5 2.5

11 DR +DA kRE−−→ D+DA a11 =
kRE
Ω nRnA kRE

Ω 0.2,0.166 10,8.3

12 D +DR kRM−−→ DR +DR a12 =
kRM
Ω nDnR kRM

Ω 1 1

Table I: Reactions and parameter values used to generate the plots in Fig I.
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Param. Value

D̄R
12(0) 0.7

D̄A(0) 0.3
uA0 0.1
uA 0
uR10 0.1
uR1 0
uR20 0.1
uR2 0
α 1
ᾱ 1

α
′

1

ϵ
′

1, 0.1, 0.01
c 1
b 1
µ 1
β 1

µ
′

1

Table J: Parameter values relative to the plots in Fig J.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1)

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 3.5

2 D
kAW−−→ DA a2 = kAWnD kAW 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 25

4 DA δ−−→ D a4 = δnA δ 25

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 1

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 1

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 1

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 1

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 3.5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 25

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
25

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 1

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 1

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 1

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 3.5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 25

20 DR
2

δ−−→ D a20 = δnR
2 δ 25

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 1

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 1

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 1

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 1

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 1

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 3.5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 25

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 25

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 1

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 1

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 1

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 1

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 3.5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 25

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
25

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 1

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 1

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 1

Table K: Reactions and parameter values used to generate the plots in Fig P.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1) Value (h−1) Value (h−1) Value (h−1) Value (h−1)
1st plots 2nd plots 3rd plots 4th plots 5th plots 6th plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 3.5 3.5 3.5 3.5 3.5 3.5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0 0 0 0 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

4 DA δ−−→ D a4 = δnA δ 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1, 1.33, 8, 80 1 1, 1.57, 9.4, 94 1 1, 3, 18, 180

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 3.5 3.5 3.5 3.5 3.5 3.5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0 0 0 0 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 3.5 3.5 3.5 3.5 3.5 3.5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0 0 0 0 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

20 DR
2

δ−−→ D a20 = δnR
2 δ 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 3.5 3.5 3.5 3.5 3.5 3.5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 3.5 3.5 3.5 3.5 3.5 3.5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
4, 3, 0.5, 0.05 4 4.7, 3, 0.5, 0.05 4.7 9, 3, 0.5, 0.05 9

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800

Table L: Reactions and parameter values used to generate the plots in Fig Q, going
from the top to the bottom.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1)
Fig RA Fig RB

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 3.5 3.5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0, 3.5, 50 (upper plots)

0 0 (lower plots)

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 4.7, 3, 0.5 3

4 DA δ−−→ D a4 = δnA δ 4.7, 3, 0.5 3

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 1 1

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 1 1

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 1 1

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 1 1

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 3.5 3.5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0 (upper plots)
0 0, 2.5, 50 (lower plots)

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4

30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4
30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 10,1.2,1,0.8,0.1 1, 0.8

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 3.5 3.5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0 (upper plots)
0 0, 2.5, 50 (lower plots)

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 4.7, 3, 0.5 3

20 DR
2

δ−−→ D a20 = δnR
2 δ 4.7, 3, 0.5 3

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 1 1

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 3.5 3.5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 4.7, 3, 0.5 3

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 4.7, 3, 0.5 3

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 1 1

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 3.5 3.5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4

30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4
30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 10,1.2,1,0.8,0.1 1, 0.8

Table M: Reactions and parameter values used to generate the plots in Fig R.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1) Value (h−1) Value (h−1) Value (h−1) Value (h−1)
upper side upper side upper side lower side lower side lower side
left plots central plots right plots left plots central plots right plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 3.5 3.5 3.5 3.5 3.5 3.5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0 0 0 0 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5

4 DA δ−−→ D a4 = δnA δ 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1 1 1 1 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 0.2 1 10 0.2 1 10

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 0.2 1 10 0.2 1 10

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 0.2 1 10 0.2 1 10

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 0.2 1 10 0.2 1 10

10 D
k1W0−−→ DR

1 a10 = k1W0n
D 3.5 3.5 3.5 3.5 3.5 3.5 3.5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0 0 0 0 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 (left side)

5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 (right side)

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 (left side)
5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 (right side)

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 2,0.2,0.02 10,1,0.1 100,10,1 2,0.2,0.02 10,1,0.1 100,10,1

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 3.5 3.5 3.5 3.5 3.5 3.5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0 0 0 0 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 3, 0.5 3, 0.5 3, 0.5 30, 5 30, 5 30, 5

20 DR
2

δ−−→ D a20 = δnR
2 δ 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2 0.2 0.2 0.2 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2 0.2 0.2 0.2 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 0.2 1 10 2 10 100

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 3.5 3.5 3.5 3.5 3.5 3.5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 3, 0.5 3, 0.5 3, 0.5 30, 5 30, 5 30, 5

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5 3, 0.5

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2 0.2 0.2 0.2 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2 0.2 0.2 0.2 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 0.2 1 10 2 10 100

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 3.5 3.5 3.5 3.5 3.5 3.5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 (left side)

5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 (right side)

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 (left side)
5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 5, 0.5, 0.05 (right side)

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2 0.2 0.2 0.2 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 2,0.2,0.02 10,1,0.1 100,10,1 2,0.2,0.02 10,1,0.1 100,10,1

Table N: Reactions and parameter values used to generate the plots in Fig S.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1)
left plots right plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 3.5 3.5

2 D
kAW−−→ DA a2 = kAWnD kAW 0, 3.5, 50 0, 3.5, 50 (upper plots)

0 0 (lower plots)

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 3 3

4 DA δ−−→ D a4 = δnA δ 3 3

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 0.2 10

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 0.2 10

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 0.2 10

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 0.2 10

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 3.5 3.5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0 (upper plots)
0, 2.5, 50 0, 2.5, 50 (lower plots)

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 3, 2.4 3, 2.4

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
3, 2.4 3, 2.4

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 0.2, 0.16 10, 8

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 3.5 3.5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0 (upper plots)
0, 2.5, 50 0, 2.5, 50 (lower plots)

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 3 3

20 DR
2

δ−−→ D a20 = δnR
2 δ 3 3

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 0.2 10

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 3.5 3.5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 3 3

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 3 3

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 0.2 10

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 3.5 3.5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 3, 2.4 3, 2.4

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
3, 2.4 3, 2.4

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 0.2, 0.16 10, 8

Table O: Reactions and parameter values used to generate the plots in Fig T.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1)

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 3.5

2 D
kAW−−→ DA a2 = kAWnD kAW 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 3

4 DA δ−−→ D a4 = δnA δ 3

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 1,0.12,0.01,0.001

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 1,0.12,0.01,0.001

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 1,0.12,0.01,0.001

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 1,0.12,0.01,0.001

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 3.5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 3

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
3

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 1,0.12,0.01,0.001

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 3.5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 3

20 DR
2

δ−−→ D a20 = δnR
2 δ 3

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 1,0.12,0.01,0.001

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 3.5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 3

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 3

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 1,0.12,0.01,0.001

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 3.5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 3

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
3

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 1,0.12,0.01,0.001

Table P: Reactions and parameter values used to generate the plots in Fig U. The

parameter values with
kAE
Ω =

k
′∗
T
Ω =

kRE
Ω = 1, 0.001 h−1 are also relative to the simulations

in Fig 4E.

99



Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1)
left plots right plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5 5

2 D
kAW−−→ DA a2 = kAWnD kAW 0 0

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 9, 3 9, 3

4 DA δ−−→ D a4 = δnA δ 9, 3 9, 3

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 0.4, 1, 10 0.4, 1, 10

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 0.4, 1, 10 0.4, 1, 10

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 0.4, 1, 10 0.4, 1, 10

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 0.4, 1, 10 0.4, 1, 10

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 5 5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 9, 4.5 9, 4.5 (left side)

3, 1.5 3, 1.5 (right side)

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
9, 4.5 9, 4.5 (left side)
3, 1.5 3, 1.5 (right side)

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 0.4, 0.2 - 1,0.5 - 10,5 0.4, 0.2 - 1,0.5 - 10,5

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 5 5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 9, 3 9, 3

20 DR
2

δ−−→ D a20 = δnR
2 δ 9, 3 9, 3

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 0.4, 1, 10 0.4, 1, 10

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 5 5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 9, 3 9, 3

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 9, 3 9, 3

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 0.4, 1, 10 0.4, 1, 10

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 5 5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 9, 4.5 9, 4.5 (left side)

3, 1.5 3, 1.5 (right side)

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
9, 4.5 9, 4.5 (left side)
3, 1.5 3, 1.5 (right side)

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 0.4, 0.2 - 1,0.5 - 10,5 0.4, 0.2 - 1,0.5 - 10,5

Table Q: Reactions and parameter values used to generate the plots in Fig V.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1) Value (h−1)
lower plots upper plots upper plots

left plots right plots

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 5 5 5

2 D
kAW−−→ DA a2 = kAWnD kAW 81 81 81

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 12, 4 12, 4 12, 4

4 DA δ−−→ D a4 = δnA δ 12, 4 12, 4 12, 4

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 1 1 1

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 1 0.3 5

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 1 0.3 5

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 1 0.3 5

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 1 0.3 5

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 5 5 5

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 7.2, 2.4 7.2, 2.4 7.2, 2.4 (left side)

2.4, 0.8 2.4, 0.8 2.4, 0.8 (right side)

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
7.2, 2.4 7.2, 2.4 7.2, 2.4 (left side)
2.4, 0.8 2.4, 0.8 2.4, 0.8 (right side)

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.2 0.2 0.2

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.2 0.2 0.2

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 0.6, 0.2 0.18, 0.06 3, 1

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 5 5 5

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 12, 4 12, 4 12, 4

20 DR
2

δ−−→ D a20 = δnR
2 δ 12, 4 12, 4 12, 4

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.2 0.2 0.2

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.2 0.2 0.2

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.2 0.2 0.2

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.2 0.2 0.2

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 1 0.3 5

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 5 5 5

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 12, 4 12, 4 12, 4

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 12, 4 12, 4 12, 4

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.2 0.2 0.2

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.2 0.2 0.2

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.2 0.2 0.2

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.2 0.2 0.2

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 1 0.3 5

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 5 5 5

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 7.2, 2.4 7.2, 2.4 7.2, 2.4 (left side)

2.4, 0.8 2.4, 0.8 2.4, 0.8 (right side)

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
7.2, 2.4 7.2, 2.4 7.2, 2.4 (left side)
2.4, 0.8 2.4, 0.8 2.4, 0.8 (right side)

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.2 0.2 0.2

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.2 0.2 0.2

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 0.6, 0.2 0.18, 0.06 3, 1

Table R: Reactions and parameter values used to generate the plots in Fig W.
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Rj Reaction Prop.Func.(aj) Param. Value (h−1) Value (h−1) Value (h−1) Value (h−1)
Fig YB Fig YC Fig YE Fig YF

1 D
kAW0−−→ DA a1 = kAW0n

D kAW0 0.14 0.14 0.14 0.14

2 D
kAW−−→ DA a2 = kAWnD kAW 0.7280 0.7280 0.7280 0.7280

3 DA k̄AE−−→ D a3 = k̄AEn
A k̄AE 0.0788 0.0788 0.0788 0.0788

4 DA δ−−→ D a4 = δnA δ 0.0263 0.0526 0.0263 0.0263

5 D +DA kAM−−→ DA +DA a5 =
kAM
Ω nDnA kAM

Ω 0.07 0.07 0.07 0.07

6 DA +DR
1

kAE−−→ D+DR
1 a6 =

kAE
Ω nAnR

1
kAE
Ω 0.07 0.07 0.07 0.07

7 DA +DR
12

kAE−−→ D+DR
12 a7 =

kAE
Ω nAnR

12
kAE
Ω 0.07 0.07 0.07 0.07

8 DA +DR
2

kAE−−→ D+DR
2 a8 =

kAE
Ω nAnR

2
kAE
Ω 0.07 0.07 0.07 0.07

9 DA +DR
12

kAE−−→ D+DR
12 a9 =

kAE
Ω nAnR

12
kAE
Ω 0.07 0.07 0.07 0.07

10 D
k1W0−−→ DR

1 a10 = k1W0n
D k1W0 0.14 0.14 0.14 0.14

11 D
k1W−−→ DR

1 a11 = k1WnD k1W 0 0 0 0

12 DR
1

k
′
T−−→ D a12 = k

′
Tn

R
1 k

′
T 0.0158 0.0158 0.0158 0.0394

13 DR
1

δ
′

−−→ D a13 = δ
′
nR
1 δ

′
0.0053 0.0106 0.0053 0.0132

14 D +DR
2

k
′
M−−→ DR

1 +DR
2 a14 =

k
′
M
Ω nDnR

2
k
′
M
Ω 0.0014 0.0014 0.0014 0.0014

15 D +DR
12

k
′
M−−→ DR

1 +DR
12 a15 =

k
′
M
Ω nDnR

12
k
′
M
Ω 0.0014 0.0014 0.0014 0.0014

16 DR
1 +DA k

′∗
T−−→ D+DA a16 =

k
′∗
T
Ω nR

1 n
A k

′∗
T
Ω 0.0014 0.0014 0.0014 0.0014

17 D
k2W0−−→ DR

2 a17 = k2W0n
D k2W0 0.14 0.14 0.14 0.14

18 D
k2W−−→ DR

2 a18 = k2WnD k2W 0 0 0 0

19 DR
2

k̄RE−−→ D a19 = k̄REn
R
2 k̄RE 0.0788 0.0788 0.0788 0.0788

20 DR
2

δ−−→ D a20 = δnR
2 δ 0.0263 0.0526 0.0263 0.0263

21 D +DR
2

kM−−→ DR
2 +DR

2 a21 = kM
Ω nDnR

2
kM
Ω 0.0014 0.0014 0.0014 0.0014

22 D +DR
12

kM−−→ DR
2 +DR

12 a22 = kM
Ω nDnR

12
kM
Ω 0.0014 0.0014 0.0014 0.0014

23 D +DR
1

k̄M−−→ DR
2 +DR

1 a23 = k̄M
Ω nDnR

1
k̄M
Ω 0.0014 0.0014 0.0014 0.0014

24 D +DR
12

k̄M−−→ DR
2 +DR

12 a24 = k̄M
Ω nDnR

12
k̄M
Ω 0.0014 0.0014 0.0014 0.0014

25 DR
2 +DA kRE−−→ D+DA a25 =

kRE
Ω nR

2 n
A kRE

Ω 0.07 0.07 0.07 0.07

26 DR
1

k2W0−−→ DR
12 a26 = k2W0n

R
1 k2W0 0.14 0.14 0.14 0.14

27 DR
12

k̄RE−−→ DR
1 a27 = k̄REn

R
12 k̄RE 0.0788 0.0788 0.0788 0.0788

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ 0.0263 0.0526 0.0263 0.0263

29 DR
1 +DR

2
kM−−→ DR

12 +DR
2 a29 = kM

Ω nR
1 n

R
2

kM
Ω 0.0014 0.0014 0.0014 0.0014

30 DR
1 +DR

12
kM−−→ DR

12 +DR
12 a30 = kM

Ω nR
1 n

R
12

kM
Ω 0.0014 0.0014 0.0014 0.0014

31 DR
1 +DR

1
k̄M−−→ DR

12 +DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M
Ω 0.0014 0.0014 0.0014 0.0014

32 DR
1 +DR

12
k̄M−−→ DR

12 +DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M
Ω 0.0014 0.0014 0.0014 0.0014

33 DR
12 +DA kRE−−→ DR

1 +DA a33 =
kRE
Ω nR

12n
A kRE

Ω 0.07 0.07 0.07 0.07

34 DR
2

k1W0−−→ DR
12 a34 = k1W0n

R
2 k1W0 0.14 0.14 0.14 0.14

35 DR
12

k
′
T−−→ DR

2 a35 = k
′
Tn

R
12 k

′
T 0.0158 0.0158 0.0158 0.0394

36 DR
12

δ
′

−−→ DR
2 a36 = δ

′
nR
12 δ

′
0.0053 0.0106 0.0053 0.0132

37 DR
2 +DR

2

k
′
M−−→ DR

12 +DR
2 a37 =

k
′
M
Ω

nR
2 (nR

2 −1)
2

k
′
M
Ω 0.0014 0.0014 0.0014 0.0014

38 DR
2 +DR

12

k
′
M−−→ DR

12 +DR
12 a38 =

k
′
M
Ω nR

2 n
R
12

k
′
M
Ω 0.0014 0.0014 0.0014 0.0014

39 DR
12 +DA k

′∗
T−−→ DR

2 +DA a39 =
k
′∗
T
Ω nR

12n
A k

′∗
T
Ω 0.0014 0.0014 0.0014 0.0014

Table S: Reactions and parameter values used to generate the plots in Fig Y.
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