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1 Derivation of the chromatin modification circuit models

1.1 Single histone modification: reactions and model

In order to realize the model, we make the following assumptions:

e we lump together the two methylation states (me2 and me3) for simplicity because both
of them are associated with gene repression. This will not affect the type of qualitative
predictions that we seek to make in this paper;

e a nucleosome cannot be characterized by more than one modified histone simultaneously;
e D represents an unmodified nucleosome;
e DM represents a modified nucleosome (methylated or acetylated);

e For a species X, we use n¥ to denote the number of such a species and use italics, X, to
. . . . X

denote concentration when appropriate (defining the reaction volume as €2, X = "5-). When

working with concentrations, Dy, = % represents the total concentration of nucleosomes

that can be modified within a gene of interest.

Then, we model the establishment, the catalysis and the erasure mechanisms as follows.

De novo establishment: the writers of histone modifications are usually found in multi-protein
complexes (denoted here by W) that contribute to stabilizing their enzymatic activity and help in
recruiting these writers to specific loci on DNA. These writer enzymes can be recruited to DNA by
TFs [1](Chapter 6). In particular, based on previous works (Chapter 6 of [1] and [2]), we assume
that the TF binds to DNA first and then recruits W. Furthermore, even if it is less effective, the
writers can still modify the histone even without being recruited by the TF [3, 4] and then we
introduce in the model also the possibility that the enzyme W binds directly to D. By modeling
the de novo establishment of a histone mark by an enzymatic reaction, the reactions characterizing



this phase are the following;:

PPt 2P, P, +D <L Cp,
dp dp

(1)

awo + aw

Cw 2 DMy P, + W,

D+W =2 Cpwo DM+ W, Cp+W
dw dw

in which the first enzymatic reaction represents the basal de novo establishment and the second
enzymatic reaction represents the recruited de novo establishment. Furthermore, P is a sequence-
specific TF that can form multimer with n copies (P,), W denotes the complex containing the
specific enzyme that writes the modification, Cp is the complex between D and P,,, Cwyo is the
complex between D and W, Cy is the complex between Cp and W, ap, a1, awo, aw and dp,
di, dy are association and dissociation rate constants, respectively, and xyy is the catalytic rate
constant of the enzymatic reaction.

Auto-catalysis: As well explained in Section “Models”, histone modification can be quickly
restored on unmodfied histones through a read-write mechanism where a modified histone is rec-
ognized by “readers”, proteins that bind the modified histone, which recruit writer enzymes for
the same modification, thus enabling the modification of nearby unmodified histones [5](Chapter
22), [6, 7, 8, 9, 10]. Consistent with early work that modeled this auto-catalysis mechanism as
a recruited modification [11, 12], we model the auto-catalysis phase with the following enzymatic
reactions:

DM+V‘;:MM, D+M%CM NI JENIS Y § CP+M%CM1 ML DMy P+ M (2)
M

in which V is a multi-protein complex containing the reader and the writer, M denotes the complex
between DM and V, Cy denotes the complex between D and M, Cypq denotes the complex between
Cp and M, ay, @ and dyy, d are the association and dissociation rate constants, respectively, and
kp is the catalytic rate constant. Furthermore, the complex M, containing V, can bind also to
Cp (D bound to P,,) to introduce in the model the fact that, as the sequence-specific TF does not
sequester D from the writer enzyme recruited the de novo establishment phase [1](Chapter 6),[3,
4], in the same way the sequence-specific TF does not sequester D from the writer enzyme recruited
through the read-write (auto-catalysis) mechanism. In particular, we assume that the association
and dissociation rate constants of M with D are independent of weather D is bound to P,, or free.
This reaction model assumes that (see Fig 1C) a modified nucleosome can recruit the writer enzyme
to any other unmodified nucleosome with equal probability, which increases with the concentra-
tion of modified nucleosomes. This is plausible given higher-order chromatin structure, such as by
DNA-looping [13], which allows in principle any nucleosome to move close to any other nucleosome.

Active and passive erasure: active erasure of the mark through eraser enzymes can be modeled
through a similar enzymatic reaction similar to (1):

DM+E\%CE”—E>D+E (3)
E

in which E is a multi-protein complex containing the eraser enzyme, Cg denotes the complex
between DM and E, ap and dp are the association and dissociation rate constants, respectively,
and kg is the catalytic rate constant. In addition to being removed by suitable enzymes, the mark
can be passively removed through dilution due to DNA replication during S phase [5](Chapter



22). Therefore, calling § the rate constant of cell division (and DNA replication), we will have the
passive erasure reaction

DM 2, D. (4)

Derivation of the model: the ODE model associated with reactions (1-4) is given by
P, =apP" —dpP, + kwCw + kpCant — 65,
Cp =apP,D — dpCp — (awo + aw )CpW + dwCy — aCpM + dChs
Cwo = awoDW — dw Cwo — kwCwo
Cw = (awo + aw)CpW — dwCyw — kw Ciy
M = ay DMV — dy M — aDM + dCy + ki Ciar — aCpM + dChs1 + k3 Chnt (5)
Cy = aDM — dCy — knCuy
Cyri = aCpM — dChpy — kaChant
Cp =agDME — dpCp — kpCp
DM = gy (Cwo + Cw) + ki (Coar + Coan) — agDME + dpCp — 6DM.

Since the binding reactions are much faster than the other reactions, we set the complexes to their
quasi-steady state (QSS) values by setting P, = C’p =Cwo=Cw=M=Cy=Cy1=Cg=0,
obtaining

Py _ P %% 1 1 P"W DMy
"TKp 7T KpKp YO Ky W (KW * KWO)KPKP - Kuwum
1 1% 1% _ vV p" E
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in which we introduce the dissociation constants of the first two reactions in (1) and of the first
reaction in (2) (Kp = dP , Kp d—i and Ky = % respectively), the Michaelis-Menten (M-M)

dw+kw K d+f€M ., Kw — dwtkw

constants of enzymatic reactlons in (1), (2) and (3) (Kwo = 0, e

and K = dE+”E , respectively) and we define Ky; = Ky K.
Substltutlng these values in the last ODE of (5), we obtain
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D can be obtained by the DNA conservation law Dy, = D + DM 4+ Cp+ Cwo+Cw + M+ Chy +
Chu + Cg that, by considering the complexes dynamics to the QSS, can be written as
Dy =D 1+ i + 1+ " + P —i—VDM—I— VP
fot = KpKp ' Kwo KpKp)  KpKpKw = Ku @ KyuKpKp

\%4 FE
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By solving for D the conservation law, we obtain
Dioy — DM(1 + % + KLE)

pr W pr PrW VDM vDMpn
1+KPRP+KW0 <1+KPRP>+KPRPKW+ K]\/[ +KMKPI_(P

D:

Now, if we assume that the sum of the complexes Cy, Cwo, M, Cur, Cpy1 and Cg is negligible

; M 4 : W pr Prw v DM vDMpn
with respect to D + D + Cp (that is, D (Kwo (1 + ) t ke T ka T KMKPKP) +

Kpf(p
DM(E + Y )< D (1 + %) + DM), D can be written as
D~ Dtot _ DM

pn ’
(1 * KPI_(P>

Then, equation (6) becomes

Pn
. w w % %4 E
DM = | kw—— + kw Kelr 4 jpg——DM | (Dyoy — DM) — (6 + kp——) DM
Kwo Kw <1 + > Ky Kpg
pikp

= (kwo + kw + kny DM) (Dyo — DM) — (6 + k) DM.

1.2 Activating and repressive histone modifications: reactions and model

In this paper, we will refer to H3K4me3 and H3K4ac as activating histone modifications while
we will refer to H3K9me3 as repressive histone modifications. H3K4me3 and H3/H4 acetylation
co-exist at promoters and TSS of active genes and H3K4me3 may, in turn, promote downstream
acetylation through recruitment of HAT's by the Thryotorax complex [8]. Therefore, there is a syn-
ergy and mutual reinforcement between H3K4 methylation and histone acetylation. We then denote
by DA a nucleosome carrying activating histone modifications, lumping together H3K4 methylation
and H3/H4 acetylation. We instead let D® denote a nucleosome carrying H3K9me3.

De novo establishment: transcriptional activators, while recruiting the TrX complex for H3K4
methylation and/or HAT's for acetylation, compete for binding to DNA with PRC2 recruited there
by transcriptional repressors (see [14](Chapter 7) and also [1] (Chapter 6)). This competitive
binding scenario is well captured by the two following reactions, in which activators and repressors
are assumed not to be able to bind concurrently to DNA to enable a modification.

Activating modifications: H3K acetylation and H3K4me3/1. Based on [5](Chapter 21),
sequence-specific transcriptional activators bind DNA and recruit histone acetylases (HATSs) such
as the SAGA complex to the promoter, which becomes acetylated. Examples of transcriptional
activators that recruit HATs include Myc, GATA.1,and Gal4 [14](Chapter 7). The deposition
of H3K4me3 then can occur co-transcriptionally as RNAPol II recruits SETs, which methylate
H3K4 [15],[5](Chapter 3), or through the recruitment of SETs and MLL1/2 to chromatin by the
CxxC binding domain that specifically recognizes unmethylated DNA. Due to this binding domain,
H3K4 methylation writers may be hardly recruited to regions with DNA methylation [14](Chapter
7). Finally, MLLs can be recruited to specific promoters by transcriptional activators such as Oct4,
which recruits WRD5 to self-renewal associated gene promoters thus facilitating the recruitment
of MLLs through the Trythorax complex [16]. We abstract these mechanisms by letting W4
denote the writer enzyme, VA denote the reader-writer multiprotein complex, that is, TrX for
H3K4 methylation and p300/CBP for acetylation, and A denote a sequence-specific transcriptional



activator that can form multimer with n copies (A,). Therefore, the establishment of de novo
activating modifications can be modeled by the reactions (1) in which we substitute W with W4
and P with A, obtaining

AdAd . =B A, A, +D—2Cy,
dA dA

(7)

A o, A ANV A A ~ A Tt A KV A A
dyy w

Furthermore, denoting with R a sequence-specific transcriptional repressor that can form multimer
with n copies (R;,) and with CR the complex between D and the R,,, we assume that the repressor
allows W4 to still bind to the nucleosome at a small rate (a{j‘vo) and then we introduce the following

reactions:

_ a A
CR+WA%\C%%DA+M+WA. (8)
w

Repressing modifications: H3K9 methylation. H3K9me3 is established by the writer
action of Suv39H1, which can be recruited to D by sequence-specific TFs. An example of this is
the recruitment of this enzyme to GATA.1 targets by the PU.1 TF, as a means to silence GATA.1
targets and promote the myeloid lineage [17]. In this example, PU.1 binding to GATA.1 targets
results in the exclusion of CBP histone acetyltransferase (although not of GATA.1 itself), which
is recruited to D by GATA.1. Let thus W® denote the writer enzyme and V® denote the reader-
writer multiprotein complex. Then, the de novo establishment of H3K9me3 can be modeled by
the enzymatic reaction (1) with W and P substituted by W and R, respectively. The obtained
reactions are the following:

R+R+.. =2 R,, R, +D =& Cy,
dR dR

9)

R R
Ay t ay
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Furthermore, we assume that the activator allows W to still bind to the nucleosome at a small
rate (a%o) and then we introduce the following reactions:

Ca+ WR 2R W DR A+ WR, (10)
dyy;

Other reactions that could potentially occur include W adding activating histone marks on nucle-
osome with repressive histone marks D® and WR adding repressive histone marks on nucleosome
with activating histone marks D*. Both of these reactions are excluded in light of the following ob-
servations. The first one is excluded because it is known that the Setl/Ash2 HMT that methylates
H3K4 does not do so if the neighboring K9 residue is already methylated [18]. The second reaction
is also excluded because in vitro studies complemented by in vivo experiments showed that histones
with H3K4me3 tend to lack H3K9me2/3 and that H3K4me3 prevents SUV39H1 and other KMTs
for H3K9 from binding H3 [19].

Auto-catalysis: in addition to (2) for both DA and DR, we have to introduce the following
reactions:

Cr + M4 L,A Chiz S DA LR, + MA, Ca +M" f‘; Chiz =L DR+ A, + MY, (11)
d d



in which C{ém denotes the complex between Cr and M and Cl\r'{/[2 denotes the complex between Cy
and MR. The reason is that, even if the DNA wrapped around a nucleosome is bound by A, (or
Rn), D is still accessible to the repressive (or activating) modification auto-catalytic process. In
this way, as we did for the single histone modification model, we introduce in the model the fact
that any sequence-specific TF does not sequester D from the auto-catalysis.

Then, the reactions that we have to introduce in order to model the activating histone modifica-
tion auto-catalysis are reactions (2) and the first enzymatic reaction in (11):

A —A I{A
DA+ VAL MY, D MA = o U DA M4 (12)
4, d

H FiA
CA+MA chi>DA+An+MA, CR+MA Cls =5 DA + R, + M2, (13)

and the reactions that we have to introduce in order to model the repressive histone modification
auto-catalysis are reactions (2) and the second enzymatic reaction in (11):

R R R
DR 4 VR L MR D MR S o S DR MR, (14)
iy d

R _ R R
CR+MR cR, ™M, DR 4 R, + MR, CA+MR?:R<J§M”—M>DR+AH+MR, (15)
d

in which we assume that the association and dissociation rate constants of M with D are indepen-
dent of weather D is bound to A,, (or R;,) or free.

Active and passive erasure: just like a histone mark can recruit, through a reader, protein
writers for the same mark to nearby histones, an activating (repressing) histone mark can recruit
erasers for a repressing (activating) histone mark [20]. Specifically, JMJD2A is an erasers for
H3K9me3/2 and de-methylates H3K9me3/2 through its Jumonji domain while being able to bind
H3K4me3 through the Tudor domain. Therefore, H3K4me3 helps recruit this eraser so that it
can demethylate neighboring H3K9me3 marks. In turn, JARID is an erasers of H3K4me3 and
does so through one of its PHD domains. Through a different PHD domain, it binds H3K9me3.
Therefore, H3K9me3 helps recruit this eraser so that it can demethylate neighboring H3K4me3
marks. Furthermore, the CHD4 subunit of the NuRD (nucleosome remodeling and de-acetylase)
complex contains a domain (a PHD domain) that recognizes H3K9me3 and prefers unmethylated
H3K4. This can give a mechanism through which H3K9me3 recruits HDACs that de-acetylated
nearby histones. )

Letting DM and DM represent a nucleosome characterized by a histone modification and a nu-
cleosome characterized by the opposing histone modification, such as H3K9me3 and H3K4me3,
within a gene of interest, we can therefore model the effective erasure as two enzymatic reactions
as follows:

DM+EZ:ECE”—E>D+E, (16)

E

DM + E % Eacty DM + Eact Zi CEact K—E> D + Eact (17)
e E

in which E is a multi-protein complex containing the eraser enzyme, Cg denotes the complex be-
tween DM and E, E..t denotes the complex between DM and E, Cg,., denotes the complex between
DM and E.ct, ag, ae and dg, d. are the association and dissociation rate constants, respectively,
and kp is the catalytic rate constant. In particular, reaction (16) captures the basal erasure, while



reactions (17) capture the active erasure of DM on DM,

Additional chemical reactions: there is the possibility that the sequence-specific transcrip-
tional activator multimer A, binds to the actively modified nucleosome D* and this will lead to
more efficient recruitment of the basal transcription machinery [1](Chapter 4). Furthermore, R,
can bind to D? and block the formation of the pre-initiation complex, independent of its ability to
recruit repressive histone modifiers, that is R,, can inhibit transcription even without the need to
recruit epigenetic modifiers. In light of this, we can write the additional set of chemical reactions
that can occur, noting that if some of them are not present we can simply set the corresponding
rate constants to zero:

A, +DA ;:A C4, R, + DA ;:R CA, (18)
A R

in which (_]ﬁ is the complex between DA and A, (_]ﬁ is the complex between DA and R, and d:4,
C_L/R and d A d p are association and dissociation rate constants, respectively. Note that in this set of
reactions, we have not allowed for both A,, and R,, to bind with closed chromatin D® [21]. As for
the D?, also the marks contained in the complexes Cﬁ and (_Jﬁ can be actively removed (through
erasers recruited by the repressive histone mark) and passively removed (through dilution due to
DNA replication during S phase [5](Chapter 22). Then,

_ ad A A _ ad A
CA+EA ‘dij Chp —Z D+A,+EA, DRyEA \‘;:A EA,, CA4EA, \dﬁj CAp.. —2 D+A,+E2

act? act?

ol e E ( )
19
“A A OB A KR A A A OB AA K A
CR +E \de CRE — D+ A, +E%, CR + Eact \d—A CREact D +Rp + Eact? (2())
o E
A 25D+ A, C2 25 D+R,, (21)

A

in which C4p is the complex between C4 and EA, CﬁEm is the complex between C4 and EZ,

CQE is the complex between Cﬁ and EA, CQEM is the complex between Cﬁ and Egct and ag, ae,
dg, de, kg are defined as it was done in (16). It is important to point out that for simplicity we
consider that the binding of R,, or A,, to DA does not affect the erasure rate of the mark and this
will not affect the qualitative results we will obtain (if the binding of R,, or A, to DA would affect
the erasure rate of the mark, we could consider as erasure rate of D2, an average of the different
erasure rates of DA).

Derivation of the model: the species involved are the following: D (unmodified nucleosome),
DR (nucleosome with a repressive histone modification, H3K9me3), and D* (nucleosome with a
activating histone modification, H3K4me3 or H3Kac). In terms of notation, for a species X, we use
nX to denote the number of such a species and use italics, X, to denote concentration (defining
the reaction volume as 2, X = %) Furthermore, let us distinguish the parameters, the complexes
and the enzymes related to the activating and repressive histone marks with the subscripts “A”
and “R” respectively. By introducing D%;,; = D + Cﬁ + CA& = “positively modified nucleosome
free or bound by A,, or R,”, C%tot = C% + CﬁE + CQE = “positively modified nucleosome, free
or bound by A,, or Ry, bound by the erasure enzyme EA” and Cﬁmtot = Cém + CQEact + C];A{Eact

= “positively modified nucleosome, free or bound by A, or R,, bound by the complex EaACt”, the



ODE model associated with reactions (7,8,9,10,12-21) is given by
Ap = ap A" —dgA, — 6A, — apAnD 4 daCa + kiy Cily + k4O + 65,CE,
— a4 An DA + d\C4 + kECHE + KACHE, | +6C4
Ca = aadnD — daCu — (afyo + afy ) CaW + dif, Cffy — aftyeCaW ™ + dfy Ol
—aCaMA + dA0fy, — altCaM® 4 dRCR,
CYﬁ‘/o = aéVODWA - dévcéfo - “{Al/ciévo
Ciy = (afyo + aty )CaW? — dii, Ctyy — ki, Ciiy
Civ® = afyoCrRWA — diy, O — Ky Ci®
MA = oy D, VvA — g, M4 — a*DMA + dACfy + ki Cry — a2 CaM? + dACHy + w103
— A CRMA + dAC, + K CHy
C4y = a DM — dACyy — kO
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~A _ AAADA AAA AAA
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—GpR, DA + dpCi + kpCip + kpCip.  +0CH
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CR = aBDRER — qRCol — RCE

CR = aiDRER, — dRCE - kECE 8

act —



Dy = Ky (Cilig + C®) + Ky Gl + KA1 (O3 + Cfiy + Cia) —
A A
=+ dg(cgtot + Cg,,tot) — 0Dioy

DR = &l (Cho+ OF) + vl O + kB (OF + Ol + Oy — aRDR(ER +

+dE(CE+Cf ) —oDR.

a5 Doy (B + Ejg

Eqer)

act)

Since the binding reactions are much faster than the other reactions, we set the complexes to their

QSS values by setting A,, = CA = CWO = C’{,“V = CA2 = MA =

C.'étot - CAmtot = R = CR - CRO - CII/?/ - CR 2MR - C]\IEI - CJ\IEII = Cﬁm = By =
C gact = 0, obtaining
A A" WA 1 1 AwA
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EA

act —

CR

(23)

in which we introduce the dissociation constants of the first two reactions in (7), of the first reaction

n (12), of the first two reactions in (9), of the first reaction in (14) and of the first reaction in
dA

—€_
ar and

A _ dA dr
(1) (K4 = &, K = &5, Kijyy = % K7 = dn, K = do, Kfhy, = O Kilp =
K&, = 3—%, respectively), the M-M constant of the enzymatic reactions in (7), (12), (9), (14)
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E= Tem W oA W
W

the last two ODEs of (22), we obtain
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Substituting these values in

KaK4 * KrKp

)



(24)

EA EA
A A R A
- (HEKS +/€EKA*D +5> Dtot
DR H%(Cwo+CR2)+ WCW+RM(CM+CM1+CM2) I/ig(cg‘i‘Cgact) —5DR
wh AW R 1 1 R'WR
R R
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+ iy | =g DD+ —7—=D"D + —7——=-D"D
Ky KR KpKpg K KaKa
ER ER
R R R A R R
—kp—pD" — kg—p- Dit D" — 0D
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D can be obtained by the DNA conservation law

R
)ieg”")”
KM

= A
Diot = D+ D}y + Ca + Ciirg + C + Cft + MA + Oy + Ciipy + Ciia + Cor + Ot ytor + By

+ DR 4 Cr+ O+ O+ O + ME 4 CF - CFy + Oy + CR 4+ CR

ER

act*

(25)

In particular, if we assume that the sum of the complexes C’{,“VO, C{,?,Q, Cf/?,, MA, Cﬁ, Cﬁl, C]‘\‘b,
C’WO, CIE,Q, crk MR cRt CM1: Cﬁz, Efct, C’Etot, CEacttoﬁ EER, OE C’R -, is negligible with respect
to D+ D, + DR 4+ Ca + Cr (that is Cihy+ Ci2 + Cib + MA + Cf + O + Oy + O+ O +

cl +CR +CR +CR L+ EL +C i+ O ttoﬁEacﬁrCRJrCR < D+D{,+DE+Cy+Chr),

(25) can be approximated as

Diot = D + Dit, + Cp + D 4+ Cp.
Then, by considering the complexes dynamics to the QSS, D can be written as
Dyoy — D}, — DE

An R”
1+ KaKa + K

D =~

By substituting (27) in equations (24), the ODE model becomes

A’VL
. WA WA N VA
DA — (KII;{V + A AN A +:‘€A DA (D _DA
A Rw 74 R" M71-A tot
K K (1+K KA+KRKR) Ky
EA E
— <5+ KEKA + ﬁéKA*DR> DA
= (k{yo + k{ + k3y D) (Dyor — D — DB) — (6 + ki + kpDR)DA
Rn
WR WR KRKR R R R A
= K}W R + W R R + K/M R D (Dtot — D
K K ( KiK4 KA + KRKR) KM
ER EFR
5+n§KR RKR*D;‘;t) DE

= (kiyo + Kty + k3, D®) (Dyor — D* — DBy — (6 + kf + ki D*) D"
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_ DR)

_ DR)

(26)

(27)

(28)



in which, with abuse of notation, we indicate D{, with D4,

Now, let us define D4 = D4/Dypy = n?/Dioy, DF = D /Dy = nft/Dyoy and D = D/Dyyy =
nP /Diot, the normalized time 7 = tk:f/[Dtot, the normalized inputs at = ug‘ + ud with ué“ =
kivo/ (k3 Diot), u = kit / (k4 Dot ), u® = uli+uf with ull = k.o / (ki Diot) and u® = kf, / (k3 Diot)
and the non-dimensional parameters ¢ = (§ + k) /(ki;Diot), 0 = k% /k4, with a constant b such
that (6 + kB)/(6 + k5) = bu, o = k¥ /k4, and € = k/ki,. With these definitions and letting
& = dx/dr, we can rewrite the system model in terms of non-dimensional variables and non-
dimensional parameters as follows:

DA = (@ + D*)(1 — D* — D®) — (e + ¢ DR) DA

. _ L o (29)
Df = (@® 4+ aD®)(1 — DA — DF) — ju(be + € DA)DE.

1.3 DNA methylation: reactions and models

Here, we provide reaction rate and ODE models of DNA methylation, based on the molecular
mechanisms described in [5](Chapter 15) and [14](Chapter 17), using published DNA methylation
models as a starting point [22, 23, 24, 25]. We then amend these models in order to reconcile
inconsistencies between measured in vivo DNA de-methylation time scales [26] and in vitro data
on the kinetics of TET enzymes [27] in light of recent new experimental data uncovering the role
of MBD proteins on the in vivo activity of TET enzymes [28]. Establishment, erasure, and
maintenance: we first start by writing a simple reaction and ODE model of DNA methylation,
including de novo establishment by DNMT3, passive de-methylation through DNA replication, ac-
tive de-methylation through TET enzymes, and maintenance methylation through DNMT1 enzyme
[5](Chapter 15). The model starts with the definition of the molecular species involved, with the
chemical reactions modeling the above processes, the corresponding ODEs, and is consistent with
early models of DNA methylation proposed in the literature [22, 23, 24, 25], but contains a major
addition. Specifically, we introduce a major addition to the model, which has not been considered
before, in light of recent experimental evidence according to which the effective modification rate
by TET enzymes is impacted by MBD proteins [29, 30, 28]. This addition is central to being able
to predict the experimentally observed effects of MBDs knock down on important processes such
as iPSC reprogramming efficiency and kinetics [29, 30].

The objective of the model is to capture the temporal dynamics of the total number of (single
stranded) methylated CpGs within a given gene of interest. In particular, we assume for simplicity
that the DNA wrapped around each nucleosome can have only one CpG and this means that the
total modifiable (single stranded) CpGs coincide with the total number of modifiable nucleosomes,
that is Diot. Therefore, let us then define D as a nucleosome with unmethylated single CpG in
a gene of interest, DM as a nucleosome with a methylated single CpG in a gene of interest and
consider the model proposed by Laird et al.[31]. In this paper, they described the dynamics of DM
assuming de novo methylation, maintenance methylation and dilution due to DNA replication/
cell division. Based on this and introducing R, that is a sequence-specific repressor that can form
multimer with n copies (R;,), which binds to D, creating the complex C(})% and then recruits DNMT3
writer of DNA methylation denoted by W¢ to D, we write the following chemical reactions:

R+R+.. =2R,, R, + D =% 0, (30)
dr dr
4 Wo, a R M d ~0 4 9ot g Rl d
D+W ?‘Cwo—”) + W9 Cr+W d—\CW—>D +W*+R,  (31)
w w
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DM 2, D, (32)

in which C‘VZV represents the complex between D and W¢, a%o a“i,V and d“i,V are the association and
dissociation rate constants, respectively, and H{I/V is the catalytic rate constant of the enzymatic
reactions (31). Furthermore, W can represent either the DNMT3 enzyme or a complex of the
DNMTS3 enzyme with a factor recruiting it to DNA, such as DNMT3L. Concerning reactions (30)
and (31), they represent the DNA methylation de novo establishment. The DNMT3 enzyme can
either bind directly to DNA or can be recruited to specific loci on DNA by sequence-specific TF [32,
33]. Reaction (32) represents passive demethylation, that is, the process by which DNA methylation
is lost due to cell division. Rate constant § represents the effective passive erasure rate constant
resulting from the balance between the dilution of DNA methylation due to DNA replication
(occurring every T= 1n(2)) and the maintenance process by which DNMT1 copies CpG methylation
on the newly generated DNA strand following the pattern on the mother strand [5](Chapter 15),
[34],[35]). As it was derived in Laird et al [31], one can write § as follows:

§ = . (33)

If there is not maintenance methylation, = 1 and then 6 =6, that is CpGs will halve at every cell
division, while 7 = 0 if the maintenance process through DNMT1 enzyme is 100% efficient (all the
CpG methylations are copied on the daughter DNA strand). Therefore, if we have a more efficient
maintenance mechanism, this model leads to a larger half life of DM. As we did for the hlstone
modification model, we can consider the complexes at their QSS and, defining K% = dR , K =

. C . . . d d%VJrn“i/VO d dWJrnW
the dissociation constants of the first two reactions in (31), K{j,q = 7 and K, = % the
wo al, w a,

M-M constants of the enzymatic reactions in (31), the ODE model corresponding to these reactions

a

is given by . . .
D™ = (kwo + kw)(Dtor — D™) — 6 D™, (34)

Rn
we KRKR

in which we define kyq = m{‘fV Kdd and ky = HW KT 1 (full derivation below). From this

RKR
ODE we can represent the system through the following chemical reactions (depicted in the diagram
of Fig AA in black):
Wd

kwo M d
D WO DM g = gl 35
wo ,{WKIC/IVO ( )
d B

DY DM, hyy = 1 RRRE (36)

K 1+ 2%

RAR
pM 2, D, & =dn; (37)

Derivation of model (34)
The ODE model corresponding to reactions (30)-(32) is given by
R, = arR"™ — drR, — 0R,, — apR,D + drC% + r%,C4,
Ciivo = afyo DW — dfy Cifyo — Kfy Cig
Ciy = (aiyo + aiy ) CRW — diyy Cfyy — iy Ciy (38)
C9 = apR,D — dpC% — o, COW® + dd, Cd,

DM = k. cdo + r,CL — 6 DM,
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As we did for the histone modification model, since the binding reactions are much faster than the
other reactions, we set R, C%, C’I‘fvo and C’I‘fv to their QSS (R, = C% = C"{fvo = C’{fv = 0), obtaining

R R" we
R,=—, C%=—-D, %,=——D,
Kr' " KrKpg WO Kd
1 1 _ 1 1 nye
Cly = (o + 2 IWICH = ( y

+ _
d d d d d
Ky Ky Ky Ky KrRKrKy,

. . dd, +r? dd, +rd . .
in which Kf/lvo = Wad”W and K{fV = Wadﬂw, with d{‘fV, afl,v, a%vm K%V defined as done in (31). Then,
w

w
substituting these values in the last ODE of (38), we obtain

DM = gi.cdo + r,Cd — 5 DM
1 1 Rwd

= (/id 1+ K ( -+ ) (39)
= (K —— + K ~
K¢, K&, K& KgrKg

)D-&DM

D can be obtained by the DNA conservation law Dy, = D + DM + C_'% + C{fvo + C{,iV that, if we
assume that the sum of the complexes C’I‘fvo and Cf/lv is negligible with respect to D + DM + C% as
we did for the previous models, can be approximated as

Diot =~ D+ DM + C9,. (40)
Then, by considering the complexes dynamics to the QSS, D can be written as
~ Dtot - DM

D ~
Rn
L+ % %n

(41)

By substituting (41) in (39), the ODE model becomes

Rn

. II/‘d I)Vd — ,

DM=<¢;K1++%Kdlfﬁﬁi)(pm—lﬂﬁ—5DM
wo wlt g ks

= (kwo + kw) (Dior — DM) — 5 DM,

Here, we provide some estimate of the value of 7, and hence of §'. Specifically, we can estimate
these parameters by comparing the kinetics of DNA demethylation in the absence (n = 1) or
presence (n < 1) of DNMT1, both in the absence of DNMT3 (kw = kwo = 0). Specifically in
[23], the authors transitioned mES cells from serum to 2i conditions and at that time, they also
induced the deletion of DNMT1. Under these perturbations, which largely suppress DNMT3, we
can estimate the half life of methylated CpGs, DM, to be about 1.7 cell divisions with the reported
doubling time of 16 hours, corresponding to & ~ 0.024hr~!. This is in contrast to the kinetics
observed in experiments with serum growth conditions and DNMT3a/b knocked off, corresponding
to no de novo establishment (kyo = kw = 0) but presence of DNA methylation maintenance
through DNMT1 enzyme, leading to ¢’ ~ 0.001 hr~!, giving n ~ 0.04, corresponding about 96%
efficiency of the maintenance process. Note that the slightly larger half life observed in experiments
than the time of cell division when both DNMT3a/b and DNMT1 are knocked off is potentially
due to residual DNMT1 and DNMT3 and to the fact that DNMT3 can also act as a methylation
maintenance enzyme [36].
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In addition to passive erasure, DNA methylation can be actively removed through the TET
enzymatic pathway [14](Chapter 17). TET1 is an enzyme that binds CpG-rich regions through
its CxxC binding motif, which has a slight preference for unmethylated CpGs. TET2, instead,
specifically recognizes CpG dinucleotides with a substrate preference for 5mC. Both have catalytic
activity and are able to convert 5mC to 5hmC (hydroxilmethylated CpG), then to 5fc (formylcyto-
sine), and finally to 5caC (carbolxylcytosine) [37, 38]. None of these modified forms are recognized
by DNMT1 and therefore they are subject to dilution through DNA replication [14](Chapter 17).
Here, we lump all these three different modified versions of CpGs into a species that we call Dﬂ/l,
which is not subject to the maintenance reaction and only subject to dilution:

Active erasure of DNA methylation:

d d
DM 4T s cd "L, pM . DM O, (43)
dg

in which T represents the TET enzyme or a complex of the TET enzyme with a factor recruiting
it to DNA, C‘ij represents the complex between DM and T, a% and ddT are the association and
dissociation rate constants, respectively, and /i% is the catalytic rate constant of the enzymatic
reaction. If we introduce reaction (43), the ODE model (34) becomes

DM = (kwo + kw)(Dyor — DM — DY) — krDM — §'DM

: 44
DM = kDM — sDM, (44

in which we defined kr = m%%, with K4 = ((d% + k%) /a%) the M-M constants of (43) and kg
T

and ky are defined as it was done in (34) (full derivation below). From this ODE we can represent
the system through reactions (35), (36), (37) and the following ones corresponding to the TET
pathway (depicted in the diagram of Fig AA in blue):

T
pM kT, DM, kr = K%ﬁ;
K
T (45)
DM 2, DO,
Derivation of model (44)
The ODE model corresponding to reactions (30)-(43) is given by
R =—agrR" + dgRy,
Ciivo = afye DW? — dffy Cifyg — wfy Ciig
Gl = afy + alyo) OV — ity — iy
CY = agRyD — drC% — al, CLW? + dd,Cd, (46)
08 = o DVT — ab O — i
DM = id.Cl o + kOl — 8 DM — o DMT + dLCY

DM — whcd — 5pM.

Since the binding reactions are much faster than the other reactions, we set R, C’%, C’I‘fvo, Cf,lv and
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C% to their QSS (R, = é’% =0, =Cd =4, = C% =0), obtaining

R™ R™ w
R, = -— 0 = _ D, C& D
mn KR7 R KRKR ) Wo ngo )
1 1 1 1 . R"Wd T
Ciy = (7 + =7 )WCh = ( )——D, C4=_DM
KIC/IVO K‘C/IV Kf/lv Kf/lv KrKpg K%

dg

in which K4 = ((d% + x4)/a%) is the M-M constant (43), K¢, = dW%’iWO Kg, = Wﬁ”“w with
ay

dgv, agy afl/vo, k{y defined as done in (31). Then, substituting these values in the last two ODES of

(46), we obtain

DM = bl od 5 DM _ e

we 1 1 R"W¢ ,
= (,i;lvdngv( — ) —— )D—éDM— 7DM
K&, K&, K& KpKg TKd (47)
Dy = k$Cf — 6D)!
T
= k§— DY — 5Dy
KT

D can be obtained by the DNA conservation law D;,; = D + DM + D}]L” + C_'% + C{,ivo + C’f/lv + C’%
that, if we assume _that the sum of the complexes C{fvo, C’ffV and C% is negligible with respect to
D+ DM 4 Di‘f + C% as we did before, can be approximated as

Diot = D+ DM 4 DM 4 CY. (48)

Then, by considering the complexes dynamics to the QSS, D can be written as

D= h (49)

By substituting (49) in (47), the ODE model becomes

) wd g we I / T
DM:('iWKd + K WKd 71(}%[;}1 )(Dtot—DM_D}Jy)_GS +I€TKd>DM
KRRR T
= (kwo + kw) (Dot — DM — DM) — (8" + k) DM (50)

: T
DM = /@dTﬁDM — 6D = krDM — 5D
T

The first decay term in the equation of D™ in (44) represents active de-methylation through the
action of TET, while the second term is due to inefficient maintenance of the methylation marks
through DNA replication. In wvitro characterization of the kinetics of DNMT1 and TET enzymes
have been performed and, although they are not necessarily the same as the kinetics encountered
in vivo, they nevertheless provide a starting point to estimate the order of magnitude of kp.

Specifically, in vivo experimental studies have shown that in the absence of DNMT3 (ko =
kw = 0) DNA methylation in ES cells goes from 22% to 0.6% in 216 cell divisions [39], which
corresponds to ¢’ + kp = 0.0246. This would require a value of kr < 0.0246. This order of magni-
tude is consistent with studies in ES cells estimating the ratio of hydroxilmethylated to methylated
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DNA (kr/é in our model) to be in the range of 0.018 — 0.04, depending on the TET level [40].
However, this is largely inconsistent with in wvitro estimates of the TET enzyme catalytic constant
(kr), estimated to be greater than 15.6hr~! ~ 312§ [27], which cannot lead to k7 < 0.0248 unless
TET level in ES cells are at least 10,000X smaller than TET’s M-M constant. This, in turn is

highly unlikely given that ES cells are characterized by considerably high amounts of TET (see
[14](Chapter 17), [41]).

This basic model therefore does not reflect the low effective values of kr encountered in vivo.
More recent experimental data demonstrated that the ability of TET enzymes in vivo to convert
methylated DNA to hydorxilmethylated DNA (that, in our model considering the DNA wrapped
around a nucleosome, coverting DM to D]rl\l/[) is hampered by the binding of MBD proteins, denoted
with B, to methylated DNA. MBD proteins MBD2/1 and MeCP2 recognize single methylated
CpG dinucleotides and recruit both histone modifying and chromatin remodeling complexes to the
methylated sites (see Section 1.4). It was shown that the binding of MBD2 or MeCP2 protein to
methylated DNA protects it from binding by TET1 and that MBD2 KD leads to an increase in
Di\l/[ level [28]. Reversely, MBD proteins cannot bind hydroxylmethylated DNA wrapped around a
nucleosome, DM [37]. To reflect these observations, we have to add the following reactions:

Reversible binding of MBD proteins B to DM:

a4 Kk
DM+ B — C% -+ C"+B (51)
dg;

in which B represents the MBD protein, CdB represents the complex between DM and B, adB and
d‘é are the association and dissociation rate constants, respectively, and mdB is the catalytic rate
constant of the enzymatic reaction.

Unbinding reaction:

c -4, pM (52)

where d is the unbinding rate constant.

Removal of the methylation mark from C° through dilution:

’

[CRRIN (53)
in which ¢ is defined as it was done in (32).
The ODE model in equations (44) then modifies to
DM = (kwo + kw) (Dyor — DM — DM — C%) — (8" + kr + kp) DM + dC°
DM = kDM — DM (54)
C% = kDM —dc® — §'C”.

in which we defined kg = K% Ifd with K¢ = dBaJmB that is the M-M constant of reaction (51) and

kwo, kw and kp are defined as it was done in (44) (full derivation below).

Derivation of model (54)

16



The ODE model corresponding to reactions (30), (31), (32), (43), (51), (52), (53) is given by

R = —arR" +dgR,
Civo = afyo DW? — diyy Gy — #iy Ciirg
Ciy = (afiyo + afy)CRW? — dfy Cfiy — kfy Cfiy
CY = apR,D — dpC% — o, COW® + qd, Cd,
CY = adDMT — dl.Cd — k4CY (55)
C4 = abDMB — dbC% — k%LC%
DM = id.cd o + kOt — 8 DM — o DMT + d}-CE — o DM B + dbC% + dC°
C0 = kbC% —dC® — 5 C°
DI = ki cd — 5DM.
Since the binding reactlons are much faster than the other reactions, we set R,,, C% i3 C’WO, C’{fv, C’%
and Cj{l3 to their QSS ( n = C’% = C’f,lVO = C’f,lv = Cj‘\z = C% = C% = 0), obtaining

R" - R"
R,=-—, C%= _—D
n KR’ R KRKR )
1 1 _ 1 1  R'Wd
Clty = (= + —)WICh = + —D,
w (KI(/iV(] ng) R (K{C/l[/o K%/)KRKR
we T B
KWO K7 K

d?

in which K¢ = dTJmT and K¢ = B:HB that are the M-M constants of (43) and (51), respectively,
T B

d¢

and Kf,l[,o = d”’;%, K& = %, with d%,aw,a%o,kaw defined as done in (31). Then, the

model (55) becomes
DM = k.00 + Kkl CL — 6 DM — kpCh — kECE + dC°

d nyy/d
1 1 | R"W / T B
d d M d M d M 0
= K)n/‘ +’€”7( + ) = )D_(S_D —K}Ti_D —HBiD +dC
( Kwd 0 KWd 0 KWd KrKr K% K%

. T
DM = gdcd —sDM = H%WDM —6DM
T

C? = k{CE —dC® —§'CY =

(56)

B
Kkp—r DM —dC? — §'C".
KB

D can be obtained by the DNA conservation law Dy, = D + DM + D}]y + C’% + C{,IVO + Cf,lv + C’% +

C’% + CY that, if we assume that the sum of the complexes C{fm, C{fv, C% and C% is negligible with
respect to D + DM + D,]lw + C]% + CY as we did before, can be approximated as

Dyos = D+ DM + DM 4+ C% + C°. (57)

Then, by considering the complexes dynamics to the QSS, D can be written as

Dyt — DM — D,IL” o
1+ '

D=~

KRKR
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By substituting (58) in (56), the ODE model becomes

M g W g W Kﬁ;?R M M 0
D = HWKT_“KWKTW (Dtot—D _Dh —C )
wo wlt gk
/ T B
— 6 + kr—5 + kB—7 | DM +dC°
< v g + K K%)
— (kwo + kw) (Diot — DM = DY = %) = (5" + ky + k) DM + dC° (59)
. T
DM = H%K—%DM — 6D = kpDM — 5D
. B
C? =k — DY —dC® — §'C° = kpDM — dC® - §'C”.
K
By studying these ODEs, we can simplify the MBD proteins binding reactions as follows:
DM K2, 00 gy = g2
i (60)

0 4, pM. o 3 po

The simplified reaction system representing the reactions making up the DNA methylation system,
which account for the mutual protection mechanism between MBD proteins and TET binding to
DNA is shown in Fig AB. Looking at the ODE model (54), we note that kg > d since MBD
proteins are highly expressed in somatic tissues and about half of it is expressed in ES cells [30],
suggesting a large B compared to Kg, and MBD and MeCP2 proteins stay bound even to mitotic
chromosomes [42], suggesting d < 9.

Calling the total single methylated CpGs D}, = C° 4 DM letting § = d + &', substituting
DM = DM, — C0 and setting C° to its QSS, assuming d sufficiently larger than §, we obtain the

following ODE model:
D}y, = (kwo + kw)(Dior — Djy — DY) = (8" + kp) Djy (61)
DM = kDM — 5DM
h T tot h >

with k:lT defined as follows:

Letting DMt represent any nucleosome with methylated CpG, with or without B bound to it, model
(61) corresponds to the simplified diagram in Fig AC, whose reactions are the following:

k wd
D =% Dy, kWOZ’f%/in ;
wo
Wi
k KrK
D l} D%t? kW = H%KTl B RRn 5
w +KRRR
M Mo 5 T , B (63)
DM T, pM ook k= Kk — kp = kL —
tot T TkB+5 T TK% B BK%
DM, % D;
DM 5D
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From here, we observe that the effective active erasure rate constant k:f is now decreased compared
to kr and it can be very small if kp is large and ¢ is small. Then, depending on the value of kg,
this model can now be consistent with experimental data demonstrating that knock down of MBD?2
(decreased kp) leads to global increase in hydroxylmethylation D} [28] due to an increased k:/T
Model (61) can be further simplified. Specifically, since § + kép < §, we can set D,J:/I at the QSS,

obtaining D{y = %TD%. Furthermore, since k:,T < 0, we have that D% < DM.. Then, the final
DNA methylation model can be written as follows:

DM = (kwo + kw)(Dyor — DM) — (8' + kp) DM, (64)

and it is depicted in the diagram of Fig AD.

1.4 Cooperative interactions between DN A methylation and repressive H3K9me3
histone modifications: reactions

In order to develop a model that captures how DNA methylation and repressive histone modifi-
cations cooperate, we assume for simplicity that the DNA wrapped around each nucleosome can
have only one CpG. Also, we assume that each nucleosome can have only one histone modification.
Therefore, each nucleosome can either be unmodified, denoted D, or modified with H3K9me3, de-
noted Dg", or modified with both H3K9me3 and DNA methylation, denoted leé, or modified only
with DNA methylation, denoted by DF.

Now, let us describe the two possible pathways through which D can be modified. Pathway (A)
represents the case in which DNA methylation is initially recruited to D to lead to nucleosome
with DNA methylation, le. Then, le” recruites, via MBD and MeCP2, proteins Suv39H leading
to a nucleosome characterized by both DNA methylation and H3K9me3, DY,. DNA methylation is
positively correlated with H3K9 methylation [5](Chapters 6, 22). In fact, MBD proteins recognize
single methylated CpG dinucleotides and recruit both histone modifying and chromatin remod-
eling complexes to the methylated sites. MBDI, in particular, binds to methylated CpG sites
and recruits histone methyltransferases for H3K9, SETDB1 and Suv39H1, which bring H3K9me3
about [43]. Similarly, MeCP2 binds methylated CpGs and recruits histone methylases that lead
to H3K9me3 [44]. On the other hand, DNMT3/1 binds to HP1 protein, which is recruited to D
by H3K9me3, suggesting that H3K9me3 recruits DNA methylation enzymes through HP1 protein
[45]. Pathway (B) is also possible: it represents the case wherein H3K9me3 is specifically recruited
to the nucleosome first and then DNA methylation is non-specifically recruited by H3K9me3. In
practice, both pathways co-exist, that is, although the initial stimulus may be applied through one
of these two pathways only, once there is some of DY, in the system, it can be converted back to
D through either pathway. The diagram in which pathway (A) and (B) are concurrently present is
represented in Fig C.

The reactions representing this cross-catalysis mechanism between repressive epigenetic marks
described above are the following;:

H3K9me3 recruits DNA methylation. Letting C{, represent a nucleosome with both a repressive
histone modification (H3K9me3) and methylated DNA, bound to MBD; DY, represent a nucle-
osome with both a repressive histone modification (H3K9me3) and hydroximethylated DNA; W4
represent the DNMT3 writer of DNA methylation and introducing R, that is a sequence-specific
repressor that can form multimer with n copies (R;,), which binds to D, creating the complex C%,
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we have the following reactions:

d 9, d
5+ W — M27 Dby, + W=

dd, 4
D + M, % Chu, 0, DR 4,

1
D + M)y, % Cry, —5 DI+ Mgy,
D + M)y, == Tl CRls S DR 4 Mg,
D + M)y, d: Chi,, LR DY + M)y,
DY + M, —= Tl Chua, ;D 5 + M,

R ’ ai ’
Dy + Mg, = Crizg, —

1

—L D + M12a7

M12h7

+Wd M My, €Y +We AL

M M

M12b>

Cn My <= Oy, 4 DI 40, + Ry,

1
’

Cr + Mo, \_% Cri, 5% DR 4+ My, + R,

Cr + My, —= T cmcS M DR 4 My, + Ra,

’

— ’ ai / KM R ’
CR + M12b ﬁcz CR1c3b — Dl + M12() + Rn,
1

’

R ’ al / KM R /
Dy + My, = Cri2, — Dig + Mjgp,

1
li
R ’ ai ’ Ky R ’
Dy + My, = CRrizy, — D1 + Mg,
1

(65)
in which M/2 is the complex between DR and Wd, M/12 5, denotes the complex between Dﬁ p, and we,
M12a denotes the complex between DY, and W, M/12b denotes the complex between CY, and W¢,
CRl denotes the complex between D and MQ, CiﬂQ denotes the complex between D and M/mh,

’
Cnga

/
CR]-Cl

/
CRICSG,

M’ub7 C’R121 denotes the complex between DI and MIQ, CIR122 denotes the complex between DI and

M5 CIR123 , denotes the complex between DZ and M,ma, C;ﬂsz denotes the complex between D

denotes the complex between D and Mlza, CIRI% denotes the complex between D and M/12b7

denotes the complex between Cr and M,Q, C,Rlc2 denotes the complex between Cpr and Mll%,

denotes the complex between Cp and M/lga, ClRlc% denotes the complex between Cp and

and M;Qb, a‘fw, ay and d‘fw, d; are the association and dissociation rate constants, respectively, and
/<a/M is the catalytic rate constant of the enzymatic reactions.

DNA methylation recruits H3K9me3. Letting C{ represent a nucleosome without any histone
modification but with methylated DNA, bound to MBD; D?h represent a nucleosome without
any histone modification but with hydroximethylated DNA; W® represent the writer enzyme of
H3K9me3, we have the following reactions:

]\/I

0 4 WR 24 — = Migor, Clp + WR ==

M M

Mj2tot,

v az = KM v = v az = RM R v
D+ Mltot T CR21 — D + M1t0t7 CR + Mltot T CR2C1 — D2 + Mltot + Rn:
2 2
= a2 = RM R — = v a2 = EM —
D+ Mthot T CR22 — D2 + M12t0t> CR + M12t0t ~—— CR262 — D + M12tot + Rna
2 2

R — az = KM R — R — az = RM
D7* + Mitot TT\ Cri2; — D75 + Migot, D7 + Migtot Tf Criz, % DY, + Miggor,

2 2

0., W a2 =0
Cl + M12tot T CR12
2

0 v a2 =0 RM 0 v HM
C1 + Mltot T CR121 — 012 + Mltota Clg + M12tota
2
R | CINFs M, R Y R | v @, & M, R Y
D73}, + Migot — Cri2n, — D1y, + Mitot, D7}, + Mi2tot == CRi2n, — D15y, + Mi2tot,

2 d2
(66)
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in which My;; denotes the complex between C0 and W, Mo denotes the complex between 012
and WE , C R2, denotes the complex between D and Mltot, C R2, denotes the complex between D
and M12tot, C R2., denotes the complex between Cp and Mltot, C 'R2.2 denotes the complex between
Cpr and Mlgtot, C CR12, denotes the complex between D and My, C R125 denotes the complex
between D1 and Mz, CY R12, denotes the complex between C1 and Mo, CY R12, denotes the com-
plex between C1 and Moo, C R12h, denotes the complex between Dlh and Mz, C R12h, denotes
the complex between D1 5, and Mi2t0t, aﬁ, g and df Ve ds are the association and dissociation rate
constants, respectively, and Kj; is the catalytic rate constant of the enzymatic reactions.

1.5 Competitive interactions between activating histone modifications and DNA
methylation: reactions

As shown in Fig B, at a high level DNA methylation is correlated with the absence of H3K4
methylation [5](Chapter 6), as there is a mutual antagonism between these two modifications
as follows. The Cfpl protein specifically recognizes unmethylated CXXC DNA binding motif and
recruits H3K4-specific lisyne methylases SET1, bringing about H3K4me3 [5](Chapter 1). Similarly,
DNMTS3L recognizes the absence of H3K4me3 and docks to the nucleosome DNMT3, bringing
about de novo DNA methylation [5](Chapter 6, Section 3.1). In turn, it is known that proteins
that contain the ADD (ATRX-DNMT3-DNMT3L) domain, that is, proteins of the DNMT3 family,
do not associate with H3K4me3, which thus inhibits de novo DNA methylation [46]. Therefore, we
model these two marks as mutually exclusive and let D represent an unmodified nucleosome, let
DR represent a nucleosome without any histone modification but with CpGme and D* represent a
nucleosome with a activating histone modification (H3K4me3 or H3Kac).

Active erasure of DNA methylation is enhanced by the presence of active marks. TET1 has
enhanced propensity to bind to unmethylated CpGs through the CXXC domain [14](Chapter 17),
[37]). This suggests a potential mechanism by which H3K4me3 in D* recruits TET1, denoted T,
to nearby methylated CpGs, enhancing the erasure of DNA methylation. Denoting the complex
between and with T, this process can be described as follows:

ad d d
DA + T T# Tact; DR + Tact T CTdct H—T> D}Fl{ + Tact- (67)
t T

These reactions have to be added to the DNA methylation erasure process without the presence
of active marks described in (43) and rewritten here with the current notation of the nucleosome
with DNA methylation, D%:

d d
DRy T cd “T,pRyp DR, po (68)
dg

Active erasure of active histone modifications is enhanced by the presence of DNA methylation.
Methylated CpGs recruit MeCP2 proteins, which associate with HDACs to establish histone de-
acetylation and further chromatin compaction [5](Chapter 15), [43, 47, 48]. Similarly, methylated
CpGs also recruit MBD2, which interacts with the NuRD complex to promote de-acetylation [43],
[5](Chapter 21). These interactions can be modeled by a recruitment of erasers of the activating
histone marks by methylated CpGs. That is, similar to what done for the competition between
opposing histone marks, we have the following reactions for the active erasure of DR on DA:

A A
pRaEt g, DM Sopt Dy gl )
e E
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1.6 Derivation of the complete model

By combining the competition interactions between activating and repressive marks of Figs 1C and
B with the cooperation pathways among repressive marks of Fig C, we obtain the overall chromatin
modification interactions, whose pictorial representation and interaction diagram are shown in Figs
1D and 3A, respectively. To realize the model, we assume that the DNA wrapped around each nu-
cleosome can have only one CpG and that each nucleosome cannot be characterized by more than
one modified histone simultaneously. Furthermore, as we saw in Section 1.5, activating histone
modifications are anti-correlated with DNA methylation and then we assume that a nucleosome
characterized by a activating histone modification cannot acquire CpG methylation. Conversely, as
we saw in Section 1.4, repressive histone modifications are positively correlated with DNA methy-
lation and then we assume that a nucleosome characterized by a repressive histone modification
can acquire CpG methylation, and wviceversa. Therefore, the species involved are the following:
D (unmodified nucleosome), DY (nucleosome without any histone modification but with CpGme),
D! (nucleosome with a repressive histone modification, H3K9me3, but without methylated CpG),
DR, (nucleosome with both H3K9me3 and CpGme) and DK (nucleosome with a activating histone
modification, H3K4me3 or H3Kac). In terms of notation, for a species X, we use nX to denote the
number of such a species and use italics, X, to denote concentration (defining the reaction volume

as Q,X:%).

The reactions considered are the following:

e reactions (1), (16), (4) and the first reaction in (14), in which we substitute P, P,,, Cp, W,
Cwo, Cw, DM M, E and Cg with R, Ry, C(I)ﬂ, WE, C%Q, D& M% EF and CgQ, respectively;

e reactions (10), in which we substitute D® with DY, respectively;

e reactions (17), in which we substitute D™ E, E,, Cg
and D4;

AM . R pmR RR R
et and D™ with DQ ) E ) Eact17 CEQactl

e reactions (17), in which we substitute DM, E, Eyet, Cp,., and DY with DI ERf EE, ngactQ

and Cﬁ, respectively;
e reactions (17), in which we substitute DM, E, Eye, Cp,., and DY with DI ER EER, Cg%%

and C}%, respectively;

e reactions (16), (4) and the first reaction in (14), in which we substitute D, DM, M, E and Cg
with DI, DE_ M E® and Cgu, respectively;

e reactions (17), in which we substitute DM, E, E,, Cp,., and DY with DE, EF, EE ngactl

act»

and D4, respectively;

e reactions (17), in which we substitute DM, E, Eq., Cg,., and DM with D EX EffctQ, Cgmmz

and Cﬁ, respectively;

e reactions (17), in which we substitute DM, E, E,, Cp,., and DY with Df Ef EE, Cglza%

and Cg, respectively;
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reactions (16), (4) and the first reaction in (14), in which we substitute D, D™, M, E and Cg
with D’Fh, Dgh’ Mgh, Ef and Cgmh, respectively;

reaction (17), in which we substitute DM, B, E,., Cp,., and DM with D{%h’ ER, EaRctl,
Cﬁmml and DA, respectively;

reactions (17), in which we substitute DM, E, E,, Cg,., and DM with DIt Ef EE

acto

R AA : .
C F12haer, and C, respectively;

reactions (17), in which we substitute DM E, Equ, Cg,, and DM with Dﬁ, ER ER
C§12hact3 and (_]2, respectively;

acts?

reactions (16) (4 ) and the first reaction in (14), in which we substitute D, DM, M, E and Cg
with CY, C%, MIY, Ef and CEY,, respectively;

reactions (17), in which we substitute DM, E, E,, Cg,,, and DY with c), Ef EE, | CE12M1
and D4, respectively;
reactions (17), in which we substitute DM, E, Eqe, Cg,,, and DM with ), EBf, EaCtQ, CE12act2
and (_]ﬁ, respectively;
reactions (17), in which we substitute DM, E, Ey«, Cg,,, and DM with QY ER, Efcty Cg%a%
and Cg, respectively;

reactions (14) and (15), in which we substitute D, M, C¥,, Cg, C¥,, C4 and C¥, with
D , ME, CM2 , C(});ﬂ, Cﬁmd, C4 and Cf/l?ad’ respectively;

reactions (14) and (15), in which we substitute D, M#, C¥,, Cg, Cf,,, C4 and C¥,, with
Dg, M%, Cfmg, C%l, Cf\%/f%z’ C4 and Cfmm, respectively;

reactions (14) and (15), in which we substitute D%, M®, Cf,, Cg, C¥,, C4 and C¥,with
Df, M{},, CM237 C(I)%la C]\@[gcg, C4 and Cﬁ2ac3’ respectively;

reactions (14) and ( 5), in WhiCh we substitute D, M?, C¥,, Cg, C¥,, C4 and CF, with
DI MY, CM24, CRl, C]\R;[2c47 C4 and CfMWN respectively;

the second reaction in (14), in which we substitute D, D, M® and Cf/l with D, D MF~
and C]\R/”Ql, respectively:;

the second reaction in (14), in which we substitute D, D®, M and Cﬁ with Df, DIt ML
and C]\R/”QQ, respectively:

the second reaction in (14), in which we substitute D, D, M and Cﬁ with D, D, M12h
and C]\R/[123, respectively:

the second reaction in (14), in which we substitute D, D, M® and C]\R4 with Df, DIt ME
and C]\R/[124, respectively:

the second reaction in (14), in which we substitute D, D, M® and C with D1h7 12hv MFE
and Cfﬂ%l, respectively;
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the second reaction in (14), in which we substitute D, D, M® and C, with th, D%h, ME
and CJ\R412h , respectively;
2

the second reaction in (14), in which we substitute D, Df, M% and C with Dlh, D12h7 M12h
and 05\%412}1 , respectively;
3

the second reaction in (14), in which we substitute D, D, M and C¥, with DE D, M
and CJI\%/[12h47 respectively;

the second reaction in (14), in which we substitute D, D, M and C¥ with CY, C%,, M
and Cfflzl, respectively;

the second reaction in (14), in which we substitute D, D, M¥ and C¥, with C9, C,, M%,
and CIA%})IQZ, respectively;

the second reaction in (14), in which we substitute D, D®, M and Cﬁ with C9, C%,, M12h
and C]\R/[O123, respectively;

the second reaction in (14), in which we substitute D, D, M and C%, with CY, C{,, M
and C]\Rf124, respectively:;

reactions (30), (31), (32), (51), (52) (53) and (68), in which we substltute DM, CR,CWO7 ce,,
C CBl, M and C° with D CRl, CWlO’ Cle CTl, CBI, and CY, respectively;

reactions (10), in which we substitute W%, Cgf, and DR with Wd, 03}21 and DY, respectively;

reactions (67), in which we substitute Tye;, D CT ., and DR with Tye,, DE, Cle51 and

th, respectively;

reactions (67), in which we substitute D4, Ty, D, Cd ., and DR with CA, acty> DI, CTlact2

and th, respectively;

reactions (67), in which we substitute D4, Ty, D, C%m and DE with (_313, Taets, D, CTlactg

and D{%h, respectively;

reactions (32), (51), (52), (53) and (68) in which we substitute D, DM, C4, C%,, DM and C°
with Dg, D{%Q, C_JOR112, CT12, CBlQ, Dﬁh and CY,, respectively;

reactions (67), in which we substitute Tgoe;, D? CT ., and D with Taet,, DI, Clem and
D{gh, respectively;

reactions (67), in which we substitute D*, Toe, DF, C%,  and D with €}, Toa,. DI,
C%l%ctQ and D, | respectively;

reactions (67), in which we substitute D4, Tge, DT, CdTact and DI with G}%, Tacts, DB,
C%ma% and DI, | respectively;

reactions (65), (66);
reactions (1), (16) and (4), in which we substitute P, P,,, Cp, W, Cyr, D™, E and Cg with
A, A, Cy, WA, C , DA, EA and C‘g, respectively;
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reactions (65), (66);

reactions (8), in which we substitute Cg with C(I)ﬂ, respectively;

reactions (17), in which we substitute DM, E, Eye, Cg, ., and DM with DA EA EA,  C4

and DE:

reactions (17), in which we substitute DM, E, Eye, Cp,., and DM with DA EA EA

and Dl27

reactions (17), in which we substitute DM, E, Ey, Cg,,, and DY with DA, E4, EA

and Dm,17

reactions (17), in which we substitute D™, E, E,, Cg,,, and DY with DA, E4, EZ,,, C4

and CYy;

acty? ~ Egety

A
acta? CEact2

CA

act3? ~ Eqetg

Eact4

reactions (12) and (13), in which we substitute M4, C4,, Cy, Cfm, Cg and Cfﬂ with Mf,

CMl, Cy, Cfﬂl, C%l and Cfﬂl, respectively;

reactions (12) and (13), in which we substitute D4, M4, C4,, C4, C]‘?ﬂ, Cg and CJ‘?/H with

Cﬁ, M3 CM2, Cy, CMl ) CORI and C§\4ﬂ2, respectively;

reactions (12) and (13), in which we substitute D4, M4, C4,, C4, Cf\‘/[l, Cg and Cf/jg with

AA NrA A F A 0 A : :
Cr, M3, Cjy,s Ca, Cypy,, Cry and Cjpy,, respectively;

reactions (69), in which we substitute D?, E24, D4 and C4¢ with D, EZ4 |
respectively;

reactions (69), in which we substitute D, EAZ D4 and C2¢ with CY, E ad
respectively;
reactions (69), in which we substitute D¥, EZ4 D4 and C4¢ with Df,, EZMd |

respectively;

reactions (69), in which we substitute D, EZ4 D4 and C4¢ with C9,, EZ4 |
respectively;

reactions (69), in which we substitute D, EA4 D4 and Céd with DF, EAd o
respectively;

reactions (69), in which we substitute D, E/4
respectively;

act»

reactions (69), in which we substitute D?, EAd
respectively;

D4 and C4¢ with D, E

acty act3 ’

reactions (69), in which we substitute D, EZ44, D4 and C4¢ with CY,, E4d
respectively;

reactions (69), in which we substitute D, E/d
respectively;

act’
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DA and CAf,
DA and CAd,
D4 and C

DA and C‘gff,

Cﬁ and CﬁdEl,
DA and C44 with O, EA4 | €4 and C4%,
CA and CAEy
CA and CAE4,

D4 and C4¢ with DI, EA4 | O and CA4 o



e reactions (69), in which we substitute D, EA4 D4 and C4? with CY,

respectively;

CR and CREQ?

act’ act2 ’

e reactions (69), in which we substitute D¥, E2d, D4 and C4¢ with DI}, EZ4 | CR and CREs,
respectively;

e reactions (69), in which we substitute D¥, E/4 D4 and C4¢ with CY,, E A CR and CRE ,
respectively;

Defining Dy, = D4 + CA + CR, Dil, = D' + CY, Dib,p = DIh + CYy, Cllpy = CM21 + CM22

CM23 + Clip, . Cia = Cinia, + Cina, + Ciino, + Cinz,» Chnan = Chnan, + Chron, + CM12h3
+ CM12h47 Cife = CM121 + CM122 + CM123 + CM1247 Cf/m CM2 at CMQ et CM2 e T CM2 a?
CRl CRI + CR12 + Cng + Cm%’ Cm Ch w TCr1, t Chi e T Ch ap? Chriz = CR121 +
Cng + Cmg , Cra = Cra, + Cra,, Cr2, = Cr2,, + Crouy Cri2 = Criz, + CR1227 CORQ = 6%12
+ CR12 . Cri2n = Cprion, + CRl?hzu Mf, =M% + M{} + M, + M{%, M =M, + M12h + My,

_ R

"‘ M].Qb’ M M]_tot + M12t0t7 E ECLCtl + Eact2 + ECLCt3’ C ot — CEQact + CE2act2 + CE2a6t37
_ R RO

CE12m = CE12M + CElzm + CElzm ; CE12hact = CE12hact + CEthaC, + CE12h,m  CEl12,0,

CElQW + CElzm + CE12aCt ; CMzaC = CM2 + CMQ w T CM2 w T CMZ o Tact = Tact; +

Ta’CtQ + TaCtS’ C%l - C%lact + CTl(lCtQ + C%lactg,’ 0%12(; t = C%l2act1 + CT12act2 + CTlQactS EaCt
- EaCtl + EaCtQ + Eact5 act47 CA = Céact + Cé + CEact3 + CE ety CA = C + C +
CM3’ C = C1\/[11 + CM12 + CMls’ C = CM21 + C M2o + CM237 act Eact1 Eactg Eactg
+ Ea6t4’ CAd C + C CE CE4’ CAE - C + CAE2 CAE3 CAE47 C CRE1

A
CRE2 + C&% s T CRE4= CEt ,=Cg + Cie + Ciag, CEacttot = CEW + CAEaC + CRE Cgit

ct’

CAd + C —l— cad 2%, the ODE system associated with the reaction system described above and
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shown in Fig 3A is given by
Ap =a" —dgA, —6A, —asA,D +dsCy
+ Ry Oy + sy O + 5y O + K2 Ciin + 5 Cra,, + ErCrog, + k0 Cli,,
— a4 Ay DA + d,C4 + kBCAp + KO |+ KECAL + 504
Ry = agR" — dpRy, — 0R, — apRnD + drCh + ki Chy + ki C%?
+ 1 Ol + k2Ol 4+ k0 OBy + K3 Cri. + BarCra, + KA Cirs
—apR, DA + dpCh + kaChip + kACHE  + KACHE + 6CH
O% = arRaD — drC% — [(atyo + aly) O W — dfh,
+ aé{/oc_’%lWA - dIIj‘VCI?/’Z + (afyo + afy ) O W — dif Cif
MECY, —dRCl, +aiCh M — diChy, +a@C% M — dyChro,
aAMACY, — dACH s + a1 CW M’ — diCly. + asC% M — doChra,]
Cng = G%VODWd - dcvlvctcflvw - “Cvlvclcflvm
Ciir = (afyo + a(ti/v)ézoﬂwd — diy Ciiyy — Ky Ciin
CP? = aflyoCaW® — df,C%* — k002
Toct = ay Dtot - dngact - [aTD{%Tact - ddTC%act - HdTCf/iq
+ a7 Dy Toet — d7Cs,,, — £7C1a,,,]
C4y = a3 DT — d}CYy — K$CYy

act

Cl1gey = a:erl act — dTCTlact "GdTC%lact

C'%1 = adBDf'B - dBCBl - “Bcfél
CII/I{/QO = a{/{VODWR - d{/zvc%m - H%/VCI%QO

0%2 = a{fVC_‘%WR — di Ctlf?/z - ’f%vcllx?/z

Ci? = i, Cawt — ali. ot — k3,007

Mt]gt = aM(D2 + D12h 12t0t>vR d tot @ MtotD - JRC}@Z - ’iMCJ}\%z
aRMtotCRl — d"Cja, — kM Clhi, + a"DIMY, — d"Ciyy — kiCiing
a"CYM, — d"Cifiy — knCig + @ DI, M S, — d"Cllyon — £ Chirion

Cilg = a"MED — d"Cfly — knChig

CJ@% = _RMtotC?zl - JRCJ\]}% - K“MCJ\}EIQC
01@2“ = totCA JRC]\]}2 we — BM Cﬁ%c

ER = RDtotER dREact [ DézEact dRCEQ - K,gch

R R R ~RO
+agDELER, — dECEIQMt KECE12act+aECI2Eact d CEum—’iECElzm

_.I_
_.I_

+ag Dy, B, — dgcﬁmhm - ’iECElzhact]
ng = aEDfER dRCEQ - HECEQ
ngact = aEDé% Eact dgCEQ - ’iECEzm;
Cgvuo = aWOD SWe — d%vcgvuo - “liifvcll/ivmo
0%12 = GTD T — df 0%12 - H%C%lz
CT12m = aTD12Tact - dTC%Ha - "G%C’%mact
0312 = CLBD B — dBCBm ’130312 27

_ Rt/ R
CW120 = aWODl W dWCW120 "GWCW120



Ciip = a" DM, — d"Ciiry — ki Ciig
ng = GED B — dgCng - chﬁm
Cgmm = aED Eact dRC’gwm - "'%Cguact
CI]/I%/0120 = awocl YW — df CW120 “IQ/VCI]/I%/OlQO
Cife = a"CYM, — d"Cif, — kuCifia
CE12 = aEC12ER dRCEm CE12
CElQMt = aECm act dRCElQ ct CE12act
Clirano = atyo DI,W T — ditClirram0 — w3y Cliriano
Cﬁlzh = RD1hM£t —d" CMlzh - K“MO]\PZIQh
anh = D12hER - dgcﬁlzh - HECgmh
Chiohee: = WED1o, vy — d5CHhop,.. — KECE 1o,
M' = af/(D5 + Dy, + Dfsor) W — diy M
- [&1DM — dlC'Rl — HMCRI
+ @O M —diCry — Ky Cri. + a1 DEM' — diCrys — Ky Chrio
+@1CaM' — diCry. — k3 Chri. ]
M = af(CY + COYWE — aB M — [asDM — dyChro — EniCro
+asCh M — dyCro, — RnCro, + a2 DM — dsCriz — R Criz
+ @CYM — doClhyy — ROy + C_lszhM — d2Cri2n — EmCrizn
+ a2CaM — dyChro,. — FMCra,.]
Cri = a1DM — diCry — Ky Cry
Cri, = a1 Co M — ch}zlc - “;\40;%10
Cri,. = a1CaM — diCry. — Ky Cry..
Cr2 = a2DM — d3Cro — Ry Chre
Cro, = 420 M — daCra. — R Chro,
éRzac = a2CaM — d2Cra,, — kv Chra,.
Cris = @1 DM’ — diCriy — kinsChis
Criz = @2 DM — doCriz — RniCriz
6%12 = a2CYM — daChyy — FChys
Crion = @2 D5 M — dsCraan, — FarCrasn
Ca=aald,D — dsCa — [(aiho + aiy)CAWA — di},Cily + a*CaM* — dACyy,
+ L CaW ™ — dltCl? 4 oy, Caw? — dfCh2
+altCaMp, — dRCl, +aiCaM —diCry + @2CaM — doChro,.]
Civo = aiyg DW* — ditCiirg — Rit-Ciig
Ciy = (aivo + afy)CaW* — diyy Oy — wiy Gy
0;2 = aioCp W™ - déVC$2 - ’f%cﬂ?f’g
M4 = o DA VA — dh M4 — [a*DMA — dAC3; — k3,04
+aCyMA — dAC, — kA CiR8+ aACrMA — dACHY, — k4O,



Ci =a*DMA — dAcd, — k4,08
G GACMA — dACh, A od
Cipg = @ Co M* — d*Cipy — k3 Cipa
E(ﬁ:t = af(Df + D{%Zh + Dﬁtot)EA - d?E(ﬁ:t - [ag’Dﬁ)tEcﬁ:t - décéacttot - chéacttot]
Efcctl = a?(Dﬁot + Dgtot)EA - d?Efc? - [a‘gDétEﬁg - décéit - chﬁit}
Cidp = afCLE* — djCihp — niCip
ééE = afjéﬁEA - dééﬁlﬁ: - ’igééE
Cétot = aéD{})tEA - dgcétot - chétot
éﬁEact = afjéﬁ Ez:‘ct - dééfEact - "éééﬁlEact
Citpo = TBCRE S, — d4ChE,., — KBChE,.,
Céacttot = aéDétEg‘ct - décéacttot - Kécéacttot
Ot = apCAEL — dpCA% — kpCAL

SAd A AARAd A ~Ad A ~Ad
Cre = agCrE i — dpCrE — kECRE

YAd . APA Ad A ~Ad A ~Ad
CEtot - aE‘DtOtEaCt - dECEtOt - K/ECEtOt

C4 = @4 A DA — d\C4 — apCAEA + dCip — aBCAEL, + dACH, | — apACAEM 4 apCAL — 5C4
CA = apR, DA — dpCh — apCHEA + dbChp — apCHEL, + dpChp, | — apCAEL + daCht — 5CF
DY = &y (Cfirio + Gt + C3) + #24(Cy + Cra, + Cha,,)
— ' DE —ad,DEB + d},C%, + dCY — a4 DE(T + Tyw) + dH(CHy + O, ) — a2DEEA + a2 EAL
— [afioe DIWT — dff, Cif 190 + @D M, — dCfipyy + @ DM — doCriz — Kk (Crs + Chi,.,) — 6D
CY = khOL, — dOY — ' CY — al, CYWE - df Moy — a2 CYEA + dAEAT
— [afi o CYW T — dif Ciff0g + a"CYM, — dRCifiy + a2CY M — daCly — KE(CHY + Oy, ) — 0C1]
Df}, = #7(Cfy + Cty,,,) — 6D},
— [afio DI,W T — dif, Cffrap0 + @D, My, — d"Cll 1,
+ayD{,M — dyCrian — £5(Chhan + Chhon,.,) — 0D1b)
D3 = Ky (Cifrao + Clira + 0%2) + kn(Chjg + Cha, + Chira,.) + Fui(Cr2 + Cra, + Cha,,)
—ag D (E™ + Egly) + d§(Ca + Cth,,,) = 6D3 — al! DY B + di By,
— [al o DEW — a3, CL 1o + afy DEWE — @iy ME + @y DEM' — d,Clyy — 8' DIy — 6DE, — 6'CY)]
Dy = K3y Ciioo + £ Chia + EvCriz — ag DIy (ER + EfL) + di(Chg + Chya,,) — 0D
+ k8 Cilra0 + karCriz — 0Dy — ah DL B + dBChy, + dCYy
—a2DREA +d)EL, — a)DEEY + d2 B,
— a7 DIS(T + Toer) — df(Ciy + Cha,,,) — ady DLW + dfiy M}
0?2 = "ﬂdBC%m - dC(1)2 - 5IC?2 - aJ\R40?2WR + dﬁMlztot
— @l CHLEY + dl Epy, — all CHLEY + dl Eyg,
+ [k Clifiao + kM Cifia + FarCig — apClo(E™ + Ejly) + dit(CRis + Chia,,)
— 60y — af;CYWE + af MY
DYy, = k5(Cyp + C:%lzm]) — 0D,
+ [53 Civ1ano + £0Chiion + EnCrizn —285D15, (E™ + ENL) + di(Ciiopn + Chion,.,)

R R AR /R , 4R /R AR 1A | jApA
— 0Dy, — apy D5y W + dyy M5y | — ag Dy, E° + dg By,



D, = ki (Clrg + Cit + C2) + K (CRr + Cili + Cil) — afy DAWA + dif M — oD, ER
A A A A A
+ dR act a’EDtot<E + Eact Eactg) + d (CEtot + CEaCttot + CEt t) oD*.

All the reaction rate constants involved are defined as it was done in (1), (4), (12), (13), (14), (15),

(16), (17), (30), (31), (32), (51), (52), (53) and (68), (67), (69). Since the binding reactions are
much faster than the other reactions, we set the complexes dynamics to the QSS, that is we set

An = Rn = C_'?%l CIC/lI/Ql = CWIO = CWl = tact = CTl = CTlm C%l = C.g/zo = 0%2 CR2 =

M, = CMQ Cz% - 01\122 = Bffy = ng = Cg“?m - 0%1120‘: 0%12 = Ofl“lzact 0%12 -

Cwmo = CM12 = Cgm = Cgu ot Cwmo = CM12 = 05?2 :_Cg?%ct CI]/I%/IQhO = CMlQh =

C_'guh __Cgmhact : M =M = Cri = Chy, = Cry,, = Cro = Cra, = Cha,. = Chriz = Cria =

2%12 - C_'Ré%fd:éf\ - C{{‘VQ - CII/LXVQ - Cf/?/ = M" = Cfy = Cipy = Oy = By = Bt = Cétot -
Eoortol z,,, = 0, obtaining

R" R" A" L A" al WD wd
Ryo=-—, C% =——D, Ay="——, Cy=—=—D, C¢ =20 = D,
" Kg' BT KrKp " Ka KaKa WO qd okl T K

(aflyo + affy ) WICY, 1 4 1 1 WIRn
Cwi = = ( + YWAChi = ( + =—2D,
g, + kS, Ki, Kd K&, K&’ KgpKpg
d Wdc_f Wd B WdAn
Oy = WA = ——Ca = =D,
diy + Ry Ky KiyolKaKa
of _ G WED W o af DiyT _ DigyT
w20 d{}/ + KZ%V K‘I;/O rooee dd Krr’
oR, — (afo + af )W Chy _ (L wRGe, — (L 1 )WR{?,”
dii. + k3, K&, Kv’?, K&, R KrKp
CR’2 _ aWOWRCA - WR WRAn
W gR 2 T KE T KE KaRK,
w t Ry Wwo woltalia
d R dr PR
4 _ apBDy B _p 4 _ apTD; T Tt
& dd 1 1cd Kd L Cr dd + KdD ) CTlact Kd D
BT kp B T T R
cd ag WeDf W DR ol _ apBDf, _ B R cd aiTDfy T _p
W120 d%v + H%V KIU/lV() 25 B12 d% + H% K% 12> T12 dd + ﬁ% Kd
Toet TDA TD Tet TDA
Cd aci DR tot DR — tot DR, Cd — aci D — tOtD ’
Tlact K% 1 KTTK% K[; 1 T12act Kd 12 K* 12
ME — ay V(DS + D1y, + Dibypy) VR(DR+D12h+D{gtot)
tot — dR KR
MM
r _ d"MED  VE(DF + Dif, + Dgtot)D _ VH(DF + Dy, + D{%Qtot)D
M2 = dR+/<;M KEKE KE ’
CR. — a"MisChy _V "(Df + Dy, + ngtot)c R'VE(DJ + Dy, + Dgtat)D
M2 ™ "R 4 gy, KRKE R KrKpKE ’
OR. — a"MiiCa _ V(D3 + Diby, + Dibor) o _ A"VR(D{ + Dfyy, + Dibyoy) D
M2ac ™R 4 1y KEKE,, KaKaKE ’
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aD{,ER®  DAER o oRERDE  ER _ afERD,  ER

ER, = = , CRy =22 2 — —_pit of,="E" 12—
act — d? K}]E{E E2 dg +/‘€§ KR 2 E12 — dR—{—Hg Kg
FE2qct Kg 2 KgEKg 2 Kg* 25 E124¢t KR KR* 12?
C _ ajy W D{" _ wh DR ¢lo _ ajpWHCY _ wh 0
w120 d{}/ I ’Q%/V KII/I%/O w120 — dR + K%/V KII/I%/() 1
OBy — ai%MtlgtDR V(D + Dy, + D{gtot)DR _ V(Df + Dy, + Dibyor) pr
di + kv KEKE,, KE ’
cho, — 7RMt1§tCO VE(D + Dy, + Dibior) 0 oo — VE(DS + D1y, + Dibior) %,
A+ Ky KEKE KE ’
RO _ agE"CY, _ QRC 8. _ agERngh ER Z _pR (R _ aI]/%VOWRD{%h _ wH DR
E12 = d§+m§ = KR 12> “YE12h = dR—i-/ﬂ?g KR 12h “Wi12p0 = dgv‘*‘“%/v - K%O Lhs
ERDA EERDA ER ERDA
t tot tot ~0 R ¢ tot
CE12 - K(—ZIC% 012 KEEKOR 012 Kg“*o Cha, Cgian = Ka}c% D12h KR* D12ha
CR L = a" My Dij, _ VE(DF + Diyy, + D{Etot)Dlh _ VDS + Dby, + D12tot)D1h
d¥ + Kk KEKE KE ’
jya af,W(DE + Df;, + Dib) Wd(DR + Dfy, + Dibyor)
B dd, Ki, ’
, aaDM WYDE + DE, + DE, ) WeDE + DE, + DE, )
CRl - _ = 12h 12tot D= }2h 12tot D,
di + Ky KEKY, K,
P alcmM Wd(DR + DRy + Dl%tot)cwo R"W(DJ + D%, + D{gtot)D
Ble ™ d, + k), KEKY,,, e KrKrK), ’
r a1CaM’ _ wDf + DYy, + D{gtot)C«A _ A"W4(Df "’:D{%Qh + Dgtot)D
flae ™ 0 + K, KBKd KaKAK), ’
W= ayyWH(CY + Cy) _ WH(CY + Cy)
dii Kify
Gy — aDM  WH(CY + 0?2)D (G C?Q)D
do + Ry Ké%KﬁM Ky ’
Gy~ ROM _ WE(CD 4 Ch) g RMWH(C) 4 CF))
 dy+ Ry KRKE T KrKpKy ’
Cry = asCaM _ WR(C’O +Cl2)@ A”WR(CO +C )
¢ do+FEyp KEKE KKKy b
. @DEM WD+ CY% .y + DR, + Dgtot)DR _ WUDF + Cpyyg + Dby, + D{%Qtot)D
R12 — d}—i—/i}w - RRK]C%/[M 2 — K}\/[ 29
CR12 _ CEQDRM _ WR(CO + ClQ)DR WR(CL? + C?Q)DR
dy + R KPKE K b

31



~0 _ @CYM WR(CY? + C?z)co _ WR(C_? + C?Z)CO
R12 dz + RM Ké%K]@M 1 KM 1>
~ a DM WHR(C) +C) g~ WHC +C) 5
Crigh = =——— = Bk Dyyy = ———=— D1},
do + Ry K2 KMM Ky
A (afyo +afl)WACa 1 1 as 1 1 wAasn
Cw = A A :(KA KA)W CA:(KA KA)KK' J
dyy + Ky wo w Wwo W talta
4 ayWAD w4 4 a WwACY,  wACY, WAR®
Ciwvo = —1 1 = oa Dy Cwa=—73 A T A T 1A =D,
dW + HW KWO dW + HW KWO KWOKRKR
aA = WADE, _ WAD, 4 _ a"MAD _ WDy o WADE,
- A - A -3 A T GA A - A )
dyy K dt +ry Ky Kipy Ky
4 a*MACy  WADR, ., A"WADJ,
Cin = —= A T joA A % D,
dA—i-/iM KMKMM KisKAK
o _@MACh WD e RVAD
M2TogA vkl KAKY, T KrKrK{L
A _ al (D} + DYy, + Dy, ) E*  (D§ + Df%, + Dfb,,,) E#
act — dA - KA )
e FE
EA‘f _ a?(Dﬁot + Dl%tot)EA _ (Dﬁot + Dfﬁtot)EA 4 _ a’EEA‘DtAOt E—Ath
act — A - A J 0 A A Aot
de KEE tot d + /iE KE
4 _ EfctDA _ EA(D¥+ D, + D{gtot)DA _ E4(DJ{+Df, +D§2tot)DA
acttot — tot — A tot — Ax tot»
! Kg KEEKé Ky
CAd E(?C%DA _ EA(Dﬁot + Dgtot)DA _ EA(DFtot + Dgtot)DA
FEtot KA tot — KA KA tot — KA* tot»
E EERE E

Substituting the QSS values in the ODEs and defining Cf, = CY + C},

model (70) becomes

and DE

htot —

. d An 1 1 Wan
Ditor = (s e R _
1ot = (K Ki ( KAKA> nW(KgVO K{fV)KRKR
’ Wd An Rn /
— (1 — _ DR DR DR D_5s DR 4
JrHMKM ( i KaKa * KRKR>( 2 + Diop + Didior)) 1tot — (
2 wE Wk R R R B WR 0 o R
- (ki K&, L Kk (D" + Digp, + Digyor) + KME(CH + C12)) Ditor
ER ERpDA
+ (0 + 1o + B ™) Dibior
K& KR o
: T TDj
Df, = (K%K—% + K K?)D{% _ DR
R R R

— (K + K —g (
KI}/?/U KAPZ M
B o BDh

+(6+RE—p +k
( EKg E Kg* 12h
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D'+ Diyy, + Dibyo) + KM?(C? + C1y)) D,

T

KT*K%

R R
D1y, + Doy

A
/id TDtot
T *
KT

) DY



Djt = (

HQWR N An +2(1 N 1)WRR"
VKR, KR4 KR, K& KpKp

wih A" R"
— (1 _ _ D D DR
+HMKJ\I} ( +KAKA+KRKR>( 2+ Dign + Distor)

Wh A" R" ER ERDA
1 _ _ CO CO D—(§ R~ R tot DR
+I€MKM( +KAKA+KRKR>( 1+ Ch2)) ( +/€EK§+/‘5E K- ) Dy
. wh
—[(kw—g— t kum (D2 + Dby, + Disyo)) DY — 6 Dby — 0D
Ko Ky
Wk wk Wk
Dibo = (Kiy - TEM TR (D5 + D1y, + Dibyor) + FEar=—(CY + Cfy)) Dity
K&, KE Ku
ER ERDA we , W
— (0 + Kp—p + kg ——r ) Dby + + — (DY + D, + DE))DE
( HEKg KE KR* ) D140 ( ngo KMKM( 2 12k 2)) D3
T d T‘Dtot

— 8 Dfy — ("ﬂcdrﬁ + KT K ) DT,

T TDA
Diy, = (K%Kd + K KiOt)D — 6DfY,

, WH wh o p R R wh 0 R
+ (5 KiT, + KM KE (Dy" + Di5y, + Do) + RM@(Q + Ci3)) Dy},
EER EEDA
—(6+ “gﬁ + K KRfOt)Duh]
E
B /
Ctot = “B a (DR + D 5) — dcz?ot -0 Cz?ot

Kg

: T TDA
Dflz%tot = (H%ﬁ—’—’%% K:Ot)(D{{—i_D{%Q)_(SDf]L{;ot
T T

: w4 R" 1 1 owaar -, wA An
Doy = (i e <1+ >+név( + o) et e (1+ =+

KrKg Ko Ki KaKa K3 KaKa
(54 kA EA o EADF + DYy + DRy | A BADE, + Dibor) DA
( +K EKA+ KA* +“E KA* ) tot>
E E

in which DE_, = DE + C? and DE, , = DE + CY,, as defined at the beginning of the section.

Furthermore, we make a variable substitution, by introducing Y3 = D, + Dmot =

“total con-

centration of nucleosomes characterized by methylated DNA”, Y, = DR + Dl% + D12tot = “total
concentration of nucleosomes characterized by H3K9me3” and Ytot Dltot + DR + D12h + D12tot =
“total concentration of nucleosomes characterized by at least one between methyalated DNA and

H3K9me3”. The model can be rewritten as following;:
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R"

Yl _ ( d Wd KRKR ) <(1_|_ An_ + Rn_ )D)
WK1+ KAKA + K}f;f(R KaKa KrKg

wd , we A" R?
s+ g (02) ( (14 20+ o) D+ f
wo

K, KysKy KrKpr
T TDA
~ Vi~ R + ) OF + D)
. R R" n n
Y2:(2WR KRKR R )<(1+ A_ * R_ )D>
K 1+KAKA+KRRR KasKy KgrKpg

Wk Wk Wk A" R"
+ (“WKR + “MKR (Ya) + “MK (Ch)) ((1 + Kaka + KRKR) D+ Dfi,; + DFh)

ER ERDA
(6+KE(K§ + KJE{iOt))Yé
Rn
. Wd Wd KnK ’ Wd WR
Yjﬁot = (K/{d/[/ + Kld/V AnR = n + Rar ’ ()/2) + K;%/Vi
Ky Ky 1+ &5 + ke Ky Kify
RTL
WR — WR WR AP R"
2 KrKpr - 0
+ Ry T i+ kg (Y2) + By =—(Cio)) ((1+ _— >D>
K1+ % + e KR Ky " KaKa KgpKp
) T TDj ER  ERDA
d tot R R tot
=0 (Yot — Y2) — ”T(@ K;;O )(D1* + Dib) = (6 + & (KR + Kg*o ))Yiot — Y1)
. B /
Cl?ot - Kd (DR + D ) dcl?ot -0 C?ot
B
: T TD{
DE — pd(— Lotypft — sDF
Kf  Kj
Wk whk wh ER  ERDA
[(/ﬁ%VKR + RMKR (YQ) + ’KJMI—{ (Cw?ot))D (5 +K (KR + KRiOt)>D12h}
E
. T TDA
Dy, = "ﬂdT(ﬁ + KiOt) —6Df,
T T
Wwhk Wk Wk ER  EEDA
+ (o g+ e (V2) + R e (C) D, = 0w (o + =)Dl
E E
. T TDA
Dffn = ¥ (i + i) (Df + D) — 80l
T
ATL
: waA W KaK A WA 4 A" ’"
Db, = (kiy i + Ky 2 A=A 4 Ky 1 Diot) | (1 + = + —)D
K K KKA+KRKR KM KaKy KRKR
EA EAY2 FEAY,
(5+HE(KA + KA+ @))Dét-
(72)
d
Assuming d > J, we can set Cp, at its QSS (that is O = " B (DE 4 DR)) and so, since
tot 1 d+6 K 1 12
B

Yy = DI, + DR, . = DF 4+ DI + C,, we can express express (DI + D) as function of Y7 and

34



CY,. Then, defining kp = /<;B ,0=d+ ¢ and Ry = RM%, equations (72) become
R"

. Wd 7N << A" R™
Y = I‘Ld nR i n 1+ = T I D
1= WKd 1+ KfKA + KEK ) KysKy, KgrKg

W . W An R™

d R

A — (Y- 1 _ __\D+D

+ (ki K‘dI,O+KMKM( 2)><< +KAKA+KRKR) + 2>
, 5 T TDA

-5 da_ v - tot
( +“Tk3+5(KgL Kx

A" R" , A" R"
=kl 1 _ __ | D ki oy ) (Y 1 _ __ | D+ DE
W(( +KAKA+KRKR> >+( wo + har)( 2>(< +KAKA+KRKR) i 2>

§ T TD§,

Y1

S S R (i Y;
R’ﬂ
: 5 WE A R™
Yy = (K KR KRKR = )<(1+Kf( +KK>D>
1+KAKA+KRF<R AL A RIAR
wWE Wk WwE A" R"
2 — R
A — (Y- — (Y} 1 _ __ |\ D+DE +D
g+ mar g 09+ fan ) ( (14 207 + e ) D+ Dl + D)
ER EERDA
— (6 +KE(—5 + L)Y,
KE KB

A" R"
= k2 1 _ __ D
W(( +KAKA+KRKR> )

_ A" R"
o+ har(05) + Far () ( (14 5+ e ) D+ Dl + D)
EE  EpRpDA
— (6 + wE (=5 + —=m )Y
KE KE
R’I’L
. w we Knkn , we wh
Yiot = (RWKd tkK CleKd ] KRKR I +’€MK7/(Y2)+”12/VKT
+KAKA+KR[<R M wo
Rn
WR 7N WR WR A™ R™
+ Ky —x ot — + k5 (Yo) + i —=—M)) | (1+ —=+——=| D
Ky, 1+KAKA+KRI'<R Ky, Ky KsKy KgrKg
5§ T TDj, r ER  EEDA, )

+

— ! di_i —
= (kiyo + kiy + knp(Y2) + iy + Ky + kar(Y2) + k(Y1) ( 1+ SN
wo T Rw + k(X2 wo T R 2 ! KisK4, KgrKp

§ T TDi, ER  EEDA,

Y I A (i Yo — Y- 5 Yot — Y;
( +ﬂTkB+5(K% K ))(Yior — Ya) — ( +“E(Kg+ KB ))(Yiot — Y1)
) T TDA
R _  d tot R R
Dy, = HT(@ K )Di* — 0Dy},
wih wh whk ER  EREDA
— [(k§ WKR + ”MKR (Y2) + ffMlK (Y1))Dff, — (6 + “E(Kg + Kgi L)) Dib,]
T TDA _ ER  EEDA
d tot R R 2 R tot
= Kp(—7 LY DY — 6D, — [(kiyo + kar(Ya) + kar(Y1))Df, — (6 4 w5 (—5 + ))D
K{ Ky K§  Kg -
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T  TDA,

SR d
Dyyy, = K“T(iK% + K )Df} 5D12h
| wh wWh ER  EEpDA
2 — tot
Y- — (V3 5 D
+ sy o+ mn e (¥2) + R e (V)P = (04 wE (g + o) Dl
T TDA _ ER  ERpDA
ZH%(de Ki‘”) — 0Dy, + [(kfyo + kar(Y2) + kar (1)) Df, — (6 + k3 (—5 T KRi"’*))Dm]
T T E E
) 5 T TDA
DR — d _ tot Y —5.DR
htot HTikB T 5(4K:Crl K* ) 1 htot
A’)‘L
. wA wAa 7;{ 74 wA A" R™
DA — K'/A +K)A ANA — +K}A DA 1+ _ + _ D
tot ( WKA WKA 1+ W K + KR[’( MK]‘?/[ tot) ( KAKA KRKR)
A RIYR

EA  BY, EAY
KA + KA* + KA*
E E E

~ (ko + iy + k) (14

— (6 +rp(g )) Dy

An Rn
KaiKy * KrKp
D can be obtained by the DNA conservation law

EA  EAY, FEAY;

A
KA + KA* Ké* ))Dtot‘

D) 6+ k(g

Dot = D + Chy + Ciii + Ciiig + City + Cy + Taet + Cper + Ch1 + Ot + O + Ot + ME, + O
+ Chpo, + Ciia,. + Chia + Eity + Chs,.., + D5 + Ciiiag + Cia + Cia,, + Cia + Ditor + Cifiag
+ Cinia + Chio + Chig,., + DT + Cliiono + Ciiion + Clran + Chion,., + Citi20 + Ciia + Cia
+ CElQact + M + M + CRl + dec + CRlac + CRQ + CRQC + CRQM + CR12 + CRlz + Cng
+ Crazn + Diyyor + Dy, + Ca + Cfy + Ciig + Ciy® + M* + Ci + Ciip + Cilpy + Bt + Eey

+ CEtot + CEacttot + CEtot + Dtot
(74)
d d R R,2
If we assume that the sum of the complexes Cfy ), CW1> Civ1s CT1> Tact, C’T1 o C’Bl, Civao O
R R R R R R R d d d d R R R
Civar Migt, Chra Chra,s Chia,. , Chay Bty CE24000 Ci200 CT12> C2,00 CB120 Cwi20) Cinizs CE125
R R R R R RO RO RO (RO o / /
CE12,000 Cwi2no> Chrizns CE121 CBrahee Otz CVX120> Criy Cpia,. M, M, Cgy, Cpy,, Cry,,»
S o o ! S ~0 ~ A )2 A A A A A Ad A A
Cr2, CRr2,, CR2,., CRri9: Cr12, CRia, CRri2n, Ciyg, Oy, Ciys M2, Cy, CM1> Chrz Eacts Eaet» CF, 00
A Ad ot : ~0 ~ R R A
Cg,.,tor and O is negligible with respect to D+Cp +Ca+ Dy +Di . +DE +DE,  +DR, + D,
Dy can be approximated as

Doy = D + C%y + C* + DI + Dfi, + DI} + Df,, + DIy,
(75)

A" R™
= <1—|— Kk + KRKR> D+D2 +D1tot+D +D12tot+D{%2h

in which the last equality is obtained by considering the complexes dynamics to the QSS. Then,

defining k;,’f as

/ 5 T

* d

= = 76
"Thp+ 0 K (76)

equations (73) become

Yy = ktlzv(Dtot — (Yiot + D) — D) + (Klyo + Ky Y2) (Dior — (Y1 + DE ) — Dihy)
5 T TDA
5 tot

Y1
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= kil (Dtor — Yior — Diy) + (kg + kg Yo) (Dyor — Y1 — D) — (8 + kp + ki D )Y1
Yo = ki (Dot — (Yot + Di}y) — Diey) + (Ko + kYo + kar Y1) (Dyor — Yo — Diay)

ER EEDA,
= ki (Diot — Yiot — Diy) + (Ko + kar (Y2) + kar (Y1) (Diot — Yo — Diby) — (8 + ks + kED;b,) Yo
Yiet = (kiyo + kiy + ka Yo + ko + ki + karYa + karY1) (Dior — (Yior + D) — D) (77)
, 5 T TDA ER EREDA
d tot tot
- (0 + ”Tm(ﬁ + el ) Yior — Ya) — (0 + RE(KR + KR ))(Yior — Y1)

= (kiyo + Kty + ky Yo + ko + ki + karYa + kar (YD) (Dyor — Yier — DY)
— (8" + kp + ki D) (Yior — Ya) — (6 + kB + ERD) (Yior — V1)
. EA  EAY, EAY;
Disy = (Kivo + ki + kirDior) (Diot — (Yior + D1y) — Dity) — (5 + “E(KA + KA*Q + TA*I
E

= (kivo + kiy + ki Dioy) (Diot — Yior — Disy) — (8 + kfs + kYo + kY1) Dig,

))Disy

in which, in the first equation, we safely neglect Dht , because we assume that le < 6, which
ensures that D . is well approximated by its quasi-steady state D _, = (k ’T /9)Y1 and hence it is
also negligible compared to Y;. Furthermore, since Dlh < Dht o and Y7 < Yy, we can also neglect
D1 5, wWith respect to Yj in all the ODEs. In conclusion, the ODE model is given by

Y1 = kiy (Diot — Yior — Dige) + (Kiyo + kar)Ya(Diot = Yi = Diey) — (8 + by + k7 Dis)Vi

Y = kiyy(Diot = Yiot = Dieg) + (Kiyo + karYa + karY1) (Dior — Ya — Digy) — (8 + ki + ki Do) Ya

Yiot = (ko + Ky + karYa + k3o + k3 4 kanYa + kY1) (Dior — Yior — Disy)

— (8 + kp + k7 Digy) (Yior = Ya) = (8 + KE + kEDib) (Yior — Y1)
D{s = (Kivo + kit + karD{ss) (Diot — Yior — Diy) — (6 + k33 + kYa + kY1) Diyy
(78)
or, expressed in Df . DE, . DI = DE+ DR and Dj, variables,
= (ko + kiy + ky (DR + DEVYD + (5 + kR + kEDA)DE,
— (kfyo + kar (D' + D) + kar (D + DY) +6 + by + ki D*) D!
DF = (ko + Ky + k(DS + DY) + kag (D + DI)D + (8" + kp + kf D) DF,
— (kiyo + Ky (DR + D) + 6 + kR + kEDA) DI (79)
Dfy = (klyo + kny(DE + D)) DR + (ko + knt(DE + D) + kar (DF + DIy))Df
- +/<:T+k *DA 46 + kR + kEDYYDE
= (kiyo + kiyy + kDD — (8 + kfy + k(D + Df%) + k(Dff + D15)) D4
in which, with abuse of notation, we indicate D ,, DX DR and D, with Dff, Df, D, and
DA respectively, and D = Dy — DF — DE — DE — DA,

Now, let us define DA = DA/Dypy = n/Dyos, DFf = DF/Dyoy = nft/Dyoy, DF = DI /Dtot =
n; /Dtota DFZ = D12/Dtot = nlz/Dtot, D D/Dtot =N /Dtota the normalized time 7 = tk‘ Dtot7
the normalized inputs @ = uf' +u? with ug' = ki-o/ (k3 Diot), vt = kit / (k3 Dior), = ufl +ulf
with wft = kiyo/kiy Dior and wlt = kb, / (k4 Diot), @ = ubly + ug? with ufly = kfyo/ (ki Dior) and
ufl = k2, / (ki Diot), and the non-dimensional parameters € = (§ + kf3)/(ki;Diot), p = kB /kp,
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with a constant b such that (5 + k%)/(6 + k8) = bu, u' = (k%)/(k3), with a constant 8 such that

(0 + kp) /(6 4+ k) = B’y oo = kg [R5, @ = kar/kiy, o = ky, ki, and € = k2 /k%. With these
definitions and letting & := dz/d7, we can rewrite the system model in terms of non-dimensional
variables and non-dimensional parameters as follows:

DR = (af + & (DB + DR))(1 — DE — D — DE — D*) + u(be + ¢ D*)DE,
U+ a(DE + DI + a(DF + DE) + 1/ (Be + € D)) DE
(@l + o(DE + D) + a(DE + DEYY 1 — DF — DF — DE — D) + 1/ (Be + € D*)DE,
— (uft + o (DF + D) + p(be + € DY) DF
DE = (u® + o/ (DE + DR))DE + (ul, + o(DE + DR) + a(DE + DE))DE
— (i (Be+ € D*) + p(be + € D*)) D
DA = (ud + u* + DY(1 — DF — DE — DR — D4) — (¢ + ¢ (DF + DR) + € (DF + DR)) DA

(80)
1.7 Expressions of the ki, ki, and k3,
In the derivation of the model (79), we obtain the following expressions of k{,4v, ki, and k3 :
A" AN
k‘é/ _ K“II;KV WA KaKa _ 'Lﬁ;lV WA Kaa
- A An Rn - A An Rn
KW 1+ KaoK A + KrKgr KW 1+ Kaa + KRrr
d R d R™
kl _d w KrKpr _d W Krr 81
W_HWKd 1+ An Rn _KWKd 1+ An+Rn7 ( )
w KAKA KRRR w KAA KRR
R i R R
Ky = ol o 1 = g
R n R’ﬂ R n R’ﬂ )
KW 1+ KoKy T KrKg KW 1+ Kaa + KRR
in which A = %, R = ”I;;p, with Q the reaction volume and n° (nf*P) the number of molecules

of the activator A (the repressor R), and with K4 = K4K4 and Krr = KrKg. Then, assuming
that A and R bind DNA with cooperativity 1, expressions (81) can be re-written as follows:

7.A Act
kA = R 't (82)
W Q 1 + nAct + nlep ?
KaaQ ' KgrprQd
R =B e
Q nAct nRep ?
I+ 7o+ ©ma (83)
];:2 nfiep
kIQ/V = Act Rep *
c ep
Q1+ o+ %o

Gh LA A WA 1o .d _ wd T2 _ 2 _WE
with k{;, = HWK‘?/KAA7 ky, = HWK%,KRR and kjj, = HWK{},KRR'

Now let us define u?, uff and ul’ as u? = ki, /(k{;Diot), ult = ki, /(k{ Do) and ufl =
k%/(kﬁDtot), respectively. Then, if we assume nACt/Q < Kaa and nf*?/Q < Kgrp, ul, uff
and uf can be written as

A ];é;?’LACt ];.é/nAct ];‘1%/ N a4

Ok Dot k3/Diot ki
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];;1 Rep ];:1 Rep ];:1 3 _

e Bt B _Kepoar
Ok Dy ki Duy Ky )
- R - R -

B Qki]l\44Dtot B kﬁDtot B k’ﬁ

in which we define A := n4/Dyoy, R := nfi? /Dygy, @4 = kit /kiy, 0l = ki, /k4, and 0t = k2, /K4,

1.8

Summary of the assumptions considered in the models derivation

We lump together the two methylation states (me2 and me3) for simplicity because both
of them are associated with gene repression. This will not affect the type of qualitative
predictions that we seek to make in this paper.

A nucleosome cannot be characterized by more than one modified histone simultaneously.

We assume for simplicity that the DNA wrapped around each nucleosome can have only one
modifiable CpG.

We assume that the sequence-specific TF does not sequester D from the writer enzyme re-
cruited during the de novo establishment phase [1](Chapter 6), [3, 4]. Similarly, we assumed
that the sequence-specific TF does not sequester D from the writer enzyme recruited via the
read-write mechanism.

Activating histone modifications are anti-correlated with DNA methylation (see Section 1.5)
and then we assume that a nucleosome characterized by an activating histone modification
cannot acquire CpG methylation.

Repressive histone modifications can co-exist correlated with DNA methylation (see Section
1.4) and then we assume that a nucleosome characterized by a repressive histone modification
can acquire CpG methylation, and viceversa.

The binding reactions are much faster than the other reactions and thus we set the interme-
diate complexes dynamics to the QSS [49].

The rate constant ké of the enzymatic reactions erasing H3K4me3/ac, is independent of which
repressive chromatin modification is recruiting the erasers. This assumption is not affecting
the qualitatively results related to the effect of the repressive marks on the erasure and then
on the memory of the active state.

The rate constant kjs of the enzymatic reactions writing H3K9me3 when recruited by H3K9me3
itself is independent of whether the recruiting nucleosome has both H3K9me3 and CpGme or
only H3K9me3. This assumption is not affecting the qualitatively results related to the effect
of the auto-catalysis of H3K9me3 on the memory of the repressive state.

The rate constant kjs of the enzymatic reactions writing H3K9me3 when recruited by CpGme
is independent of whether the recruiting nucleosome has both H3K9me3 and CpGme or only
CpGme. This assumption is not affecting the qualitatively results related to the effect of the
cooperative interactions between repressive marks on the epigenetic cell memory.

The rate constant of the enzymatic reactions writing H3K9me3 on either D or D} are equal
and equal to kj; when recruited by H3K9me3 itself or equal to ks when recruited by CpGme.
If this assumption were not true, there would be some differences in the relative amount of
DY and DR, but the qualitatively results would not change.
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e The rate constant k;\/[ of the enzymatic reactions writing CpGme when recruited by H3K9me3
is independent of whether the recruiting nucleosome has both H3K9me3 and CpGme or only
H3K9me3. This assumption is not affecting the qualitatively results related to the effect of
the cooperative interactions between repressive marks on the epigenetic cell memory.

e The rate constant of the enzymatic reactions writing CpGme on either D or on DY are equal
and equal to k:;w If this assumption were not true, there would be some differences in the
relative amount of DY and DR, but the qualitatively results would not change.

e The rate constant of the enzymatic reactions erasing H3K9me3 on either D} or DY, are equal
and equal to k:g. If this assumption wer not true, there would be some differences in the
relative amount of D and DR, but the qualitatively results would not be different.

e The rate constant of the enzymatic reactions erasing CpGme on either DY or DY, are equal
and equal to k:jf If this assumption wer not true, there would be some differences in the
relative amount of le‘ and D{{Z, but the qualitatively results would not be different.

e If a repressive modification is present on the nucleosome, TFs cannot bind and then the only
de novo establishment that can occur is due to non-specific enzyme recruitment (Section 4).

e For the model of k{f‘v, k:ll/V and k%v we assume that activator A and repressor R bind DNA with
cooperativity 1 and that activators and repressors interfere with each other by competing for
promoter binding. The formulas obtained can be written as (82),(83). Different forms of k{j,,
k‘l,V and k‘%V can be obtained without without major changes in the model as long as they are
increasing with A and decreasing with R.

2 Detailed analysis of the histone modification circuit model (Fig

1C)

2.1 Deterministic analysis

A R

For the deterministic analysis of (29) we consider no external inputs (a4 = u{' and @' = uf? small)
and we determine the number of stable non-zero steady states that the system admits as functions of
the key parameters ¢, ¢ and w. This is one of the key features to analyze an ODE model witnessing
epigenetic cell memory because a non-zero stable steady state for the unstimulated system indicates
that the system is able to keep in memory this state theoretically for an indefinite time [49].

For this analysis, we can rewrite system (29) as follows:

D4 = (uff + D*)(1 — D4 — D) — (e + ¢DF)DA

. _ L o (86)
D® = (ul' + aDT)(1 — DA — DF) — pu(be + € DA)DE.
in which uf', uft < 1. Since u§ and uf are much smaller than 1, this can be viewed as a regular
perturbation problem [50]. In particular, let uy = ul = ug, v = ug and z = (D4, D), then the
above system can be described as

T = f(z,v). (87)

On this system, we are interested in characterizing the steady states (the locally unique solutions
to f(z,v) = 0) with z > 0. Since v < 1, we can determine the steady states of our system by
studying the locally unique solutions to f(x,0) = 0. In particular, let us define z; > 0 a value of z
such that f(z;,0) = 0. Then we can exploit the Implicit Function Theorem (IFT) [51] that allows
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8f(z v

us to claim that if |z=z, v—0 is non-singular, then there is a local continuous function ~;(v)
such that v;(0) = z; and f(vi(v),v) = 0 in a neighborhood around v = 0. For our system (86),
when we set ug = 0, we have four steady states:

1 = (070)7
Tog = (0, 1-— %be),
x3 = (1 -6 0)7 (88)
_ €' (a0 — pbe) + e(a — ub) e’ (1 —€) + e(ub — )
x4:( / / / ’ / / / )‘
ae + pe' (14 €) ae + pe' (14 €)

Now, in order to verify for which steady states the conditions of the IFT hold, we evaluate the
Jacobian %, with v = ug and z = (D4, DF):

J— (I—DA—DR)—(uo—l:DA)—(e—i—e'DR) ) _—(1+e’)DA_—u0 )
N —(a + pe') DR — ug a(l — DA — DEY — (ug + aD®) — u(be + ¢D4) )
(89)
In particular for Z; the conditions of the IFT hold if € # 1 and € # ﬁ, for Zo the conditions of

the IFT hold if € # % and p # boé((?ii)) = 2, for 3 the conditions of the IFT hold if € # 1 and

7 7é T E)+ 7 = M1 and Z4 the conditions of the IFT hold if u # 1 and p # po. If the conditions

hold for all the steady states, this means that system (86) with ug small also has four equilibria
which are close to those in (88). In particular they can be approximated as [51]

_ of(x,v _10f(x,v _ _
Vi =T; — V| (azn ) [Fe— 1(8U)|x=xi,z/zo =Z;+ szl, (90)

_[Bf(:c,u) 13fa:u)

in which we define :Ell = S |le=z;v=0]" | r= —z; v=0. Now, for the first three steady states
~v; with ¢ = 1,2, 3, we determine the sign of z; and T} to check if they are in the positive quadrant.
In particular, we obtain that

(6
>0ife> 1, —
v >0if € > mazx{ ub}

, a ale +¢€)
>0 <—, p< —F—5 = 91
22 0if €< s B < iy T ke (91)
(087
>0ife<], p>————=pu.
v320ife<1, p A—gre M

Concerning the fourth steady state, we have to check when Z, is in the positive and does not collide
with one of the two steady states Z; and Zy (find the conditions such that z4 > 0, T4 # T2 and
Z4 # Z3). In particular, this is verified when p > p1, pu < po.

Concerning the study of the stability of these equilibria, we exploit the fact that the eigenvalues of
a square real or complex matrix depend continuously on its entries [52, 53]. Thanks to this property,
it is possible to claim that, introducing the parameter v defined over an open set 2 C R and a
matrix A(v), if the entries of A(v) are continuous, then the spectrum of the matrix, sp(A(v)), is
continuous. This means that, given vy € Q and given X € sp(A(1p)) with multiplicity m as a root of
the characteristic polynomial of A(1y), for any sufficiently small » > 0, there exists a neighborhood
U of vy in Q such that, for all v € U, the matrix A(v) has m eigenvalues (counting multiplicities) in
B(A,r) [53]. Then, since the Jacobian (89) is continuous in # and v and since we showed with the
IFT that the steady states are continuous function of v, we can claim that sp(J(v)) is continuous.
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This allows us to determine the stability conditions of Z; (conditions under which the eigenvalues
of the Jacobian J with uy = 0 and = = Z; have negative real part) and then to extend, for a
sufficiently small ug, these conditions to the steady states of our original system.

In particular, if we set = Z; in the Jacobian (89) with uy = 0, the matrix eigenvalues are
A =1—e€and Ay = a — pbe and then this steady state is stable only if € >max{1, L

If we set & = Zo in (89) with ug = 0, the Jacobian’s eigenvalues are \; = (1—DZX)—(e+¢DE) and
A2 = a(1-DE)—aDE —ube, with DE = 1—(ub/a)e. Studying the sign of g, it is possible to notice
that, if (DE, DA), exists (that is, if %be < 1), Ay = pbe — a1 — (ub/a)e) + pbe = —a(1 — (ub/a)e)
is always negative. Concerning A1, it is negative if

p< p. (92)

If we set = 3 in the Jacobian (89) with ug = 0, the Jacobian’s eigenvalues are A; = (1 — DZ) —
DA —eand Ay = a(1— D) — (ube + pue’ DA) with D2 = 1—e¢. Studying the sign of the eigenvalues,
it is possible to notice that, if (DR, DA)3 exists (if € < 1), A\; = —(1 — €) is always negative and Ay
is negative if

> pu, (93)

with pq defined as done in (91). Furthermore, by comparing the formulas of p; and po defined as
done in (91), it is possible to calculate that, if € < 1, p is always lower than ps. If we set x = Z4
in (89) with up = 0, it is possible to show that, when it is in the positive quadrant, it has never
both eigenvalues with negative real part. To summarize, this analysis shows that, for a sufficiently
small ug,

e System (86) is characterized by a unique stable steady state y; = (D2, DE); ~ (0,0) if

X
e > maz{l, %};
e System (86) is characterized by a unique stable steady state vo = (DA, DE)y ~ (0,1 — %)6) if
1 <e< G and p < po ore<min{1,%} and p < pi;

e System (86) is characterized by a unique stable steady state v3 = (DA, DE)3 ~ (1 —¢,0) if

EER
ap <e<land p>n ore<min{1,%}andu>u2;

e System (86) is characterized by two stable steady states vz ~ (0,1 — %’6) and 3 ~ (1 —¢€,0)

if e < min{l, %} and py < p < pa.

This implies that, for having non-zero stable steady states, € has to be sufficiently small and
then, depending on the value of u, we can have either one or two non-zero stable steady states.
Furthermore, if € < min{l,ﬁ}, (DA, DE)y ~ (0,1) and (DA, DE)3 ~ (1,0), that is, at these

887 889
states, the gene is either almost fully modified with repressive marks or activating marks. The

results of this deterministic analysis are shown in Fig D, in which we plot the system nullclines
(DA =0 and DT = 0) for all the qualitatively different parameter regimes.

2.2 Model reduction of the 2D model
In order to reduce the system, let us re-write model (28), writing explicitly the ODE for D:
DA = (kyo + kv 4+ k3, DD — (6 + ks + kADT) DA
DR = (koo + ki + k. DR)D — (6 + kB + kEDA)DE
D= (6+kB+kEDYYDE + (6 + ki + kaD®)DA — (kivo + ki + iy DA + kg + kR + kﬁD(R))D
94
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with initial condition such that Dy = D + DA 4+ D®. Now, let us introduce the new time variable
T = tDtotkg in the system written above, obtaining

¢ de_A = (uf} + vt + DD — €(c + DF)DA
€ dClZ_R = (uf! + uf + aD®YD — pé'(cb + DA DE (95)
e'cjll; = ¢ [u(cb+ DMYD® + (¢ + D®)DA) — (uft + u? + D + ulf + uf + aD®)D.
in which each species is normalized with respect to Dyt (X' := X /Do), in which we introduce

c = 5 and all the other parameters are defined as done in (29). Based on the results of [54], it is
possible to obtain a reduced version of this type of system if certain conditions are satisfied. In
particular, given a general dynamical system ‘fl—f = f(z,t) with z € R", let us define a smooth
surface S in R x R as integral manifold of the system if any trajectory of the system that has at

least one point in common with S lies entirely on S [55, 56]. Now, let us consider the system:

€/i = fl(xv yQata 6/)

/. / (96)
€Y2 = fQ(:L'vaatae )
with z € R™ and yo € R™. If the matrix A(x,y2,t) given by
ofr  9f
Alw,yot) = [ 22 T2 ) = (flw f1y2> 97
(z,92,1) <8£ gg) for  fou (97)

with € = 0 is singular on some subspace of R™ x R” x R, system (96) is referred to as singular
singularly perturbed system [54]. Let us introduce the following conditions [54]:

e C1: the equation fa(x,y2,t,0) = 0 has a smooth isolated root yo = ¢(x,t) with x € R™,
t € R and f2(l’,¢(l’,t),t,0) = 07

e C2: the matrix A, defined in (97), with y» = ¢(x,t) and € = 0 has a m-dimensional kernel
and m corresponding linearly independent eigenvectors, and the matrix

an(:L‘a ¢($, t)? t7 0)
Y2

B(l‘,yg = ¢($’t)7t’ 6/ = 0) = (98)

has n eigenvalues \;(z,t) such that Re);(x,t) < —2«, with a > 0;
e C3: in the domain
Q= {(x7y27t76l)’x € Rma ||y2 - d)((l:,t)” < pat € R,O < 6/ < 6;)}

the function f; and fo and the matrix A are continuously differentiable (k 4 2) times, with
k > 0 for some positive eE) and p.

Then, by introducing the change of variable yo = y1 + ¢(z,t) in (96), we obtain

€i = Clx, )y + Fi(z,y1,t) + € X(z,y1,,€)

! ’ / (99)
€ yl = B<m7t)y1 + F2($,yl7t> +e Y(xayhtuﬁ )7
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in which

C(xvt) = f1y2(x7¢(x7t)7t7 0)7 B(a;,t) = fng(J},QS((IZ,t),t,O),

Fl(xayht) = f1(377y1 + ¢($,t),t,0> - C<x7t)y17
F2($7y2,t) = f2<377y1 + ¢(x7t)7t70> - B<$7t)y17 (100)
E,X(xaybtaﬁ/) = fl(xayl + ¢(.%',t),t, 61) - fl(xvyl + ¢($,t),t,0)

G,Y(x7y1>ta el) = fQ(xvyl + QS(I’,t),t, 6,) - fQ(xayl + ¢($7t)7t70)

with Fy (i=1,2) satisfying ||F(x,y1,1t)|| = O(||y1||?) and € ~'Fy(x, € y,t) continuous in Q, with Q
defined in condition C3 [54]. At this point we can apply Theorem 7.1 in [54], which allows us to
claim that if conditions C1 - C3 are satisfied, then there exists (—:,1, 0 < 6/1 < 66, such that, for
any € € (0,6/1), system (99) has a unique slow integral manifold y; = e/h(x,t, ¢) exponentially
attractive and the motion along this manifold is described by the equation:

i=X(Z,tc) (101)

in which X, (Z,t,€ ) = C(Z,t)h(Z,t,€ )+ X (Z,€ h,t,€ )+€ ~'F\(Z,€ h,t) and the function h(z, t, € ) is
k times continuously differentiable with respect to x and ¢ [54, 57]. Since the slow integral manifold
is exponentially attractive for a sufficiently small €, then, for any solution z(t),y:(t), z(tg) =
20, y1(to) = y10 of (99) with |y10 — € h(xo, to, € )| sufficiently small, we have a solution of (101) such
that

w0 =3O+ G, nlt) = EhEE),4E) +Glb), (102)

with (;(t) = O(e_(o‘/g/)(t_to)), i = 1,2, and t > to ([54], [58], [59](Chapter 6). This allows us
to determine the behavior of the trajectories of the original system near the integral manifold by
analyzing the behavior of the trajectories of the reduced system (101).

In order to find h(z,t, e/), it is important to note that the change of variable y = y;/ ¢ allows us
to re-write (99) in the standard singular perturbation form:

:'U:)N((asjy,t,e/), reR™, teR,

S , (103)
ey=Y(z,y,t,e), xeR",

in which X(z,y,t,€) = C(z,t)y + € ‘Fi(z, ey, t) + X(z,€y,t,€), Y(z,y,t,e) = Bz, t)y +
€ 1Ry (z, €y, t) + Y(x,€y,t,e). Since F; (i=1,2) satisty ||Fj(z,y1,t)|| = O(||y1]]?) in Q, then
¢ “1F;(z, €y, t) are well defined as ¢ approaches zero [54]. Then, being conditions C1 - C3 satisfied,
it is possible to show that, defining y = ho(x,t) the smooth isolated root of Y (2,y,t,0) = 0, the
eigenvalues ); of the matrix (9Y /dy)(x, ho(z,t),t,0) satisfy the inequality Re()\;) < —2a, with
o > 0. Then the integral manifold y = y; /€ = h(z,t,€ ) can be calculated as asymptotic expansion
in integer powers of € , h(x,t,€ ) = ho(x,t) 4+ € hi(x,t) + ... + € *hy(z,t) + ..., whose coefficients are
smooth function with bounded norm [56] and they can be found substituting the expansion in the
second equation of (103), obtaining [54]

/ah /ah ind / ~ !
— — = . 104
€8t+68xX($’h’t’6) Y(z, h,t ) (104)

Now, it is possible to show that system (95) is a singular singularly perturbed system. Defining

DA -
o= (pn): »=D

b= (uff + u* + D*)D — é(c 4+ D*)D4 (105)
V7 \(uft +uf + aDRYD — pé (cb + DA)DE )

f2 =€ [u(cb+ DD + (¢ + D)D) — (uf +u + D* +uff + u” + aD)D,
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it is possible to show that ¢(z) = 0 and that the matrix A as defined in (97) with D = 0 and € =0
can be written as follows:

0 0 (u? +ug + D)

0 0 (u + ugf + aD™) ) . (106)
0 0 —(u?+u + DA+ ulft +uff + aDR)

This matrix has two zero eigenvalues and two corresponding linearly independent eigenvectors.
Furthermore, the matrix B defined in (98) can be Written as B = —(u +uf + DA+ ult +uf +a D)
and in the case where no inputs are applied ( =uft = = 0), it has always negative real part if

+u > [ with [ > 0. To find the slow integral manifold and the reduced system, let us introduce
in (95) the change of variable D = D /€ , obtaining

dDA A A NAN T N\ DA

?:(uo—i—u + D*)D — (¢c+ D™)D

dD* R, R ARY T AAY AR

P (uy' + v + aD™)D — p(eb + D*)D (107)

6/2—? = [u(cb + DYDE + (¢ + DPYDA) — (uf + v + D + uff + u® + aD®)D.
To calculate the slow integral manifold, let us construct the asymptotic expansion of D:

D = h(D*, DR ¢') = ho(D*, D) + € hy (DA, D) + O(€”). (108)

Substituting (108) in the last ODE of (107), we obtain
Jdh _ o Oh dD*  0h dD®

) = [u(cb+D?) DE+(c+ DT DA — (ul +u + DA+ uf+uf +aDF)h.

(109)
To calculate hg and h; we equate the terms on the left and right hand side multiplied by the same
power of e/, obtaining

[1(cb + D)D" + (c + D*) D]

€

‘o “\oDA ar +aDR dr

ho = _ L
0 (uf +ut + DA + ult + uf + aDR)
b Oho ((uf} + uf* + aDR)hg — p(ch + DA)DR) + 2ho ((ug + u? + DA)hg — (c + D)D)
' (uh +uA + DA+ ull + ult + aDE) '
110
Since 229 and 229 are bounded (and then ¢ 289, ¢ 9o < 1 for a sufficientl 11 bsti ( i )
DR DA 9DR € DA y small € ), substituting

(110) into (108), we obtain
[(cb + DAYDE + (c + DF)D4]

R

D= J L 111
(ug +ut 4+ DA+ uff + uf + aDE) (111)
Now, substituting (111) into (107), we obtain the reduced system as follows:
dD4 (cb—l—DA)(uA + D4) BE
7 \(uft +ut + DA) + (uff + ul + aDR)
0+DR(u + u + aDR) _
— DA
(uft + u? + DA) + (uft + uf + aDR) (112)
dDR < (c+ DB)(ult + u® + aDF) >—A
= D
(uft + uA + DA) + (uft + uf + aDR)
< p(eb + DAY (uft +ut + DA) >

(uft + uA + DA) + (uf + uf + aDR)
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Summing the two ODEs written above, it is possible to notice that db d* + df,R 0, that is
DA + D = constant. In particular, since D4 + D® + D =1 and D = 0 for ¢ =0, we have that
DA+ DE=1fore =0.

We further validated via simulation that system (112) is a proper reduction of the full system
(95) when € is small. We perform simulations of both systems for different values of € and initial
conditions, showing that the trajectories of D and D of the full and reduced systems become
closer as € decreases (Fig E).

It is important to point out that in the reduction we let € = ce , with ¢ = O(1), implying that as
¢ decreases also € decreases. Given the definition of ¢ and €, it is reasonable that, if the specifically
recruited erasure reaction is slow compared to the auto and cross-catalysis reactions, then also the
basal erasure reaction due to non-specific binding of enzymes and dilution is slow compared to
the auto and cross-catalysis reactions. This is consistent with the fact that the rates of enzymatic
reactions where enzyme-substrate binding is highly specific tend to be larger than the rates of
enzymatic reactions occurring though non-specific enzyme substrate binding and to removal due
to simple dilution from cell growth.

Now, multiplying both sides by Dyt (k@ Diot), system (112) can be rewritten in a dimensional
form:

PA _ ( (Kivo + kiy + kD) (0 + kg + kiED?) )DR
(kfbo + kil + ki DA) + (fby + M + K DR
(kito + kY + kR DR (6 + k4 + kADE)
kit + kit + k:A 4 DAY + (kK + k. + k. DR

( (kR + kR + kL DR§(5 + ks + kaDT) )
o= - )
(@ )

(113)
DA

kivo + kit + ki DA) + (ko + k:R + kE DR
(ko + kit + ki D) (6 + kB + EEDA)

DR
(kiyo + kiy kﬁDA) + (ki + kI + K DR ’

or, since Dt + DA = D,,;, it can be written as

DR _ < (ko + kyiy + kap D) (0 + kg + kg D) > (Diot — D™)
(Kb + kil + iy (Dior — D)) + kit + Kfj + K5 DR) ) 2%
<(k§‘vo + ki + kgl (Dior — D)) (8 + K + k(Do — DR)>> R
(b il - ks (Dtor — D))+ (o + K+ K, D)

(114)

Finally, the system can also be represented through the following simplified chemical reactions:

DA kar, DR hap = < (kfyo + kY + kR DE)(6 + kg + kpDR)
(

ko + ki + ki DA) + (k& + kI + k% DR)
(kito + kit + k3, DA)(S + kR + kEDA)
kit + kit + ki DA) + (k& + kB + kI DR)

(115)

DR 254, DA g = ((

2.3 Derivation of stationary distribution formula

Since n® + n4 = Dy, the reduced chemical reaction system (115) can be represented by a one-
dimensional Markov chain in which the state x represents the total number of repressive histone
modifications, that is, z = n'. In particular, the state z can vary between zero and Dyot. Further-
more, let us define the transition rate from state x = i to state x = j as ¢; ; [60]. Specifically, ¢; ;
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for our Markov chain takes the following form:

k4
(ko + Ky + M) (65 + kA + M)
Qx,(ac+1) = WO o (Dtot - $)7
(ki + k) + S (Dtot T)) + (’fﬁvo + kf + M) (116)
(Kiyo + kiy + <Dtot — 2))(5 + R + 5 (Dyor — )
Az (z—1) = ) ) R R k:R €,
(kWO + kW + ﬁ(Dtot )) (kWO + k (1\21 (L')

for € [0, Diot] [49, 60]. Since this Markov chain is irreducible and reversible, we can apply detailed
balance [60] to determine an analytical expression for the stationary probability distribution m(x).
According to detailed balance, for each state x, the product of 7(z) and the rate e (z—1) 18 equal
to the product of m(z — 1) and the rate g(,_1)4, that is 7(7)q, (1) = 7(z — 1)gz—1)4 Or

d(z—1),x
Az, (z—1)

m(x) = m(x —1). (117)

Applying this equality recursively we are able to express m(x) for any state = as a function of m(0).
In order to derive this formula, let us consider a particular state x = z. Formula (117) allows us
to express 7(Z) as a function of 7(z — 1), that is

d(z-1),z
4z, (z—1)

(1) = (% —1). (118)

Since (117) holds for any state x, it can be rewritten also for state z = & — 1, obtaining

q(z—2),(z—-1)

m(x—1)=
( ) q(z—1),(z—2)

(T — 2). (119)

If we substitute in (118) 7(Z — 1) obtained in (119), we obtain an expression for 7(Z) as a function
of m(z — 2):

m(z) = N2 He D@0 7 g), (120)
4z,(z-1) 9(z-1),(z-2)

Applying (117) recursively for each state = € [1,Z] we then obtain an expression for 7(z) as a
function of 7(0):

2(z) = d(z-1),z 9z—2),(z-1) 9z-3),(z-2) 9(—4),(z-3) ...@@

dz,(z-1) 4(z-1),(z—2) 9(z-2),(z-3) 9(z-3),(z—4) 92,1 41,0

(0). (121)

Since this derivation does not depend on the specific initial state & we choose, formula (121) can
be rewritten for a generic state x as follows:

ﬁ 96— (122)

Now, in order to find an analytical expression for 7(0), we use Z?“(’)t w(j) = Z?:mf ( g:1 %) m(0)+

7(0) = 1 so that we can express 7(0) as follows:

(0) = ! . (123)

Dtot J Q(i—l),i
(1 + Zj:l ( =1 qi,(z‘—l)))
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Substituting in (122) the 7(0) expression obtained in (123), the stationary probability distribution
7(x) can finally be expressed as

z q Ha: . 9(i—1),3
_ (i=1),i =1 g; ;_1)
n(x) = [ === (0) = S — (124)
i=1 207 (1R (T i)

for any x € [1,Dio]. Now, let us compute []7_; % for our system by writing explicitly the

expression for the rates and rearranging properly the terms. In particular, for any € [1, Dyt — 1],
it can be written as

xT kR kA
. D M _ Fym
H q(i—1),i < t0t> 1+2— Q Q

— qi,(i—1) %Dtot + kiﬁ[llo + ké[/ + kg/() + kﬁ/

_ R _ A
ﬁ (kfpo + Kl + "80) (6 + ki + )
. - b+
i1 \ (kb + Ky + 4 (Dyot — 1))(8 + k2 + % (Deot — 1))
(kfiro + ki) (8 + kz)
ko + ki + "3 (Dyoy — 2))(6 + BB + 55 (Dyoy —
( wo + w + Q ( tot x))( + E Q ( tot .T}))

(125)
D -1
) (s
x Dot 1 +uf +u +u0+uR
ﬁ( (ug -I-uR—}-ozDit)(e-i-eDfot) >
Dto Dyot—%
=\ g+ ut o+ (b + ¢ B
_ (ugf +u)e
(uf +uA + L=y (pe 4 ¢ Bre=2)y’
A
in which the final formula has been obtained by dividing numerator and denominator by ( w)
in each of the factors. For x = Dy it can be written as
. kR kA
T 2. Ronil N
H ——= = | 1+ Dtot )
=1 2i.(i-1) “MUDyot + kit + kit + ko + k5
Dot —1 kR - kA _
i (Kfyo + Ky + S420)(0 + B + ') (fyo + )6 + k)

A _ R A A L.R
it \ (kb + k& + 5Dy — ) (6 + BE + 2 (Dyo — 1)) | (Rivo + ki) (0 + k)

a—1
< 1—|—u6‘—1—uA+u0R—|—uR>

(i) ) e
( )

i=1 ug +ut + (Dlt)oti):i) V(e + € Lret=0y | (ugt + uA)ub’

Dtot

(126)
A
in which the final formula has been obtained by dividing numerator and denominator by (M)

Q
in each of the factors. Then, assuming that € # 0, equations (125) and (126) show that, in the
limiting condition where e — 0, []%_, 26=1.

i=1 g ) * tends to zero unless x = Dio. This implies that the
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stationary probability is such that

l—i%P ifx=0
lim 7(x) = meo(z) =< 0 if x # 0, Diot
e—0 P .

14‘7}3 lf xTr = DtOt

with

(
p—
(udt + u? + ult + uf 4 1) (ug' + ut)b

(127)

udt + ul + ull + uf + o) (uf + u®) Dot 1 (lLoR-l-uR—Foszot ) <1>Dt°t
Dot [\ o

A A Dot —1 »
i1 UO + u?t 4+ Dtot

This implies that, if € tends to zero, w(x) — 0 except for z = Dy (fully repressed gene state)
and x = 0 (fully active gene state), that is, the probability of finding the system in one of the
intermediate states is almost zero. Furthermore, given the expression for P in (127), it is possible
to notice that if u < 1, 7 (0) = 0 and 7mo(Dtot) — 1 and this implies that, under these parameter
conditions, the probability of finding the gene in an active state is close to zero. However, this
stationary probability distribution can be modified by varying the input stimuli (v and uf). In
particular, increasing u* leads 7.o(Dyot) to increase and m(0) to decrease. By contrast, increasing
u? is going to lead to Te0(Dtot) — 0 and 7(0) — 1 and, looking at the expression for P (127), for
smaller i, it is required a larger u to decrease 7qo(Diot) to the same level.

2.4 Derivation of time to memory loss formula for the 2D model

Let us define the time to memory loss of the fully repressed gene state, TBM, as the expected
value of the first time at which the state x of the Markov chain hits 0, starting from = = Dy. In
particular, we define the hitting time of x = 0 starting from x = i as t{ := [ inf{t > 0 : 2(t) = 0
with z(0) =i} with ¢ € [0, D¢ot]]. Then, the time to memory loss of the fully repressed gene state
can be defined as the expected value of t%mw that is, TBM = E(t%mt). In order to compute Tgmt
we use first step analysis [61], which allows us to evaluate the vector of expected hitting times
79 = (72 : i € [0, Dtot)) as the solution of the following system of equations

=0 ifi =0
D 01 w20 (128)
D=0 4T it i #0,

with g; ; defined as the rate of going from state i to state j. In our one-dimensional Markov chain
the state ¢ can only go either to i + 1 or to ¢ — 1. Then, defining ¢; ;41 = a5, 7 = ¢ii—1 and
Gii=—q = — Z‘?:“(’)t? j+i %i,j With g; defined as the rate of leaving state [61] and then rewriting g; ;
as —(aj + i), each equation of system (128) can be expressed as

1 lo% Y .
0 7 0 4 0 :
20— + 20 T 1, if i € [1,Dgo — 1 129
' a; +v 0 oty ol a;+v " ! 11, Dot ] (129)
1
Dy, = —— + T 1 (130)

tot
In particular, we can rearrange (129) as o;(79 — 701) = 1+ (721 — 7) and, defining A7 =
(19 — 721), (129) can be rewritten as
0 1

i
AT) = ot a—:AT?_l. (131)
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In equation (131), we can express A7) as a function of A7 | and thus, applying (131) recursively,
we can express A7l as a function of ATO as follows:

i
1r; A7)
Al =) —2L 4 =0 132
! Z Qi T; * ri ’ ( )
j=1 "7
in which r; = % In order to evaluate the time to memory loss of the fully repressed gene

state TD , we apply ZD“” ! to the left and right-hand side of (132), that is ZD“’“ L (ATZ-O) =
S Drert (Z L% ATO) in which the left-hand side can be explicitly expressed as

i=1 J=1 a; r; T

Dtot—1
0\ _ 0 0 0 _ .0 0 0 0 0 0 _ .0 0
E (ATi ) =Am + A1 + ...+ ATDmt—l =T — Ty +Ty = T3 + . D1~ ot = 1 — TDioy
=1

from which, solving for 7'8 , we obtain
tot

Dot —1 i 1 7 70
B =1 >, | D —2-2L]. (133)
ot QT T
i=1  \j=1

At this point, we need to evaluate Ti) . To this end, we rewrite equation (132) for i = Dyoy:

Poll oy 70
Moot = s = D, ——— — ——, (134)
ot tot ;T r
j=1 J " Dot —1 Dot —1
in which we have substituted AT]%M_I with T]gmt_l — T]%tot and AT(? with 7'(? — 70 = —T{) (78 =0 as

ven 0 0 1
given in (128)). Now, , _; —7p, , can be expressed as ———

tot

(it can be obtained by rearranging

(130)) and then 7{ can be written as

Dtot—1 . Do )
M=) Lo (135)
j=1 a] PyDtot

Finally, plugging this expression for 7{ into (133), we obtain the expression for the time to memory
loss of the fully repressed gene state T]%tot as a function of the system parameters:

Dtot—1 Dtot—1 i Dtot—1

I Sl L FE R o o S
tot
° i=1 ai 7Dtot i=1 j:1 a] Ti j=1 CK] ri P)/Dtotri
Dtot—1 Dtot—2 Dot —1 Dtot_l
= E Ti f Dot E E E "Dros—1
. .
=1 ¥ D =1 j=ip1 @ i=1 DroiTi (136)
Diot—1 Dtot 1 Dtot—2 Dot —1
_ TDios—1 1+ 2 : 2 : + § :
ryDtot i=1 ] ’L-‘rl
o Diot—1 Dot [ i1
= =1+ E oot E —[1+> —
’YDtot 72 j=1 Tj
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In particular, for our Markov chain, a; and ~; are given by

kR - kA .
o (ktho + Kl + ") (5 + kit + %4 o
1 A R o)
(et + ki) + 53 (Dyoy — 1)) + (kg + KF + XL4)

R
_ (bl + Kl + kR )(e-i—eDmt) . .
(g +u"‘+M)+(u +ul + as) (Deot =)
0 Dot

t t

(137)
. 7 kR .

o (ko + kil + S8 (Daor — ) (6 + B + 55 (Dyer — ) .

b ko + ki + 8 (Dygy — 1)) + (kB + KB + Sk

<W0+ W+Q( tot 2))+<w0+ W+ QZ)

k4 . ’ —i
(kiyo + ki + "8 (Dot — 1)) pa(be + € Bie=iy

Dto i
(ud +uA + By 4 (uff + uf + agl)

in which the final expressions are obtained by multiplying and dividing the intermediate expression

A /
by w. In the absence of external input stimuli and assuming that ¢ # 0, it is possible to notice
that, for € < 1, the dominant term of Tgtot is the first addend in (136). Then, by normalizing the

. . k4,D _ k4D . .
time to memory loss with respect —Mg== (7-][-_))mt = 7-]%'30t M=o, Tgtot in the regime ¢ < 1 can be

re-written as follows: o
tot — KZ
7. = TR~ — (1 + Z ) (138)

with kY an increasing function, h¢(0) = 0, K and K}% functions independent of € and u, and in

which we redefine %8 as Tgr to simplify the notation.

In a similar way we can determine the time to memory loss of the fully active gene state, TD““

that is the expected value of the first time at which the state x of the Markov chain hits Dtot,

. . . ~ Diot —1YDiot —2+--YDiot —J .
starting from = = 0. In particular, defining 7; = Dot 1 MDior =21 MWige—j T(])D ot can be written as
Dot —1¥Dyor =2+ XDyot —j

follows:

Dtot—1 Dtot—1 ~ i—1

i 1
T G V] ek Sl o LR 354 | B
7 J

: aDtot 1 - aDtotfl 321

Also in this case, in the absence of external input stimuli and assuming that € # 0, it is possible to
notice that, for € < 1, the dominant term of 75°*" is the first addend in (139). Then, by normalizing

JVIDtOf (%(]))tot — Té)tOt kﬁ]gto"' ) Dtot
)

the time to memory loss with respect Ty ©°* in the regime € < 1 can

be re-written as follows:
Dtot— 1
7—_(])3tot 7 (1 4 Z ) (140)
=1

with A% an increasing function, h%(0) = 0, K4 and Kf4 functions independent of € and u, and in
which we redefine ﬁ])) ot as T4 to simplify the notation.
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3 Detailed analysis of the chromatin modification circuit model
(Fig 1D)

3.1 Estimation of y’

By analyzing experimental data available in the literature, it was possible to show that the pa-
rameter ul is small. In fact, in ES cells for example, in vivo experimental studies have shown
that in the absence of DNMT3 (k;,, = ki, = 0) DNA methylation goes from 22% to 0.6% in
216 cell divisions [39], which corresponds to § + k/T = 0.0246. This means that, in our model,

R S A e
Pu=5mh = 5

= 0.024. Now, let us rewrite explicitly 3:
, , k2 Diot
. ngtot 0 + kT B (S‘E-‘rl;g

o+ l?:]f;‘ k;f Dot ki Diot
& +kr

p (141)

Then, assuming that the ratio between specifically recruited erasure rate constant and basal erasure
rate constant has the same order of magnitude for any chromatin modification (that is the numerator
and denominator of 5 have the same order of magnitude), we can conclude that, in this case,
p < 0.024.

3.2 Model reduction of the 4D model

LA R
Before reducing the system (79), we define ¢ = ;:;ft, w o= :—ﬁ with the constant b such that
E o E
S+RR kR §' oy,

bep = D Ho= —x with the constant 3 such that Bep = System (79) can thus be
E o E

rewritten as follows:

kpDiot”

) , DA
DI = (kL + klyo + kyy (DE + DE)D + kA Do <bc + 5= > Df
tot

_ , A
— (k30 + kar(DE + DB + kpr(DF + DE) + k2 Dyt <,8c + ))D{?‘

) _ , DA
DE = (63, + Ko + kar(DE + DR) + iy (DR + DE)D + k2 Dyoes (/sc + ) D&

Dtot
’ DA
— (kiyo + kar (DS + Dib) + ki Dyor (bc + ))Df
tot
Dy = (kiyo + kag (DS + D15)) DS + (Ko + kar (DS + D{3) + kar(Dff + Dfb)) Dff (142)
A DA ’ DA R
— kg Dyo b — D
E tt(u<c+DtOt)+,u (Bc+DtOt)) 5
: , DA DA Yy, DE4 DR
D = kDyo ( (c+ )DR+ (bc+ )DR+(bA+ 42 12>DA>
gDt |1 | B Dy, ) D1 HH D) P2 D D

— (K + ko + kar (DR + DI + kg (DR + DI + Ky + ko + kyy (DE + D) + kil + kil + ki DD
DA = (ki + k3o + kDD
Di' + Dt D§+D{g> DA,
Dtot Dtot

— k2D, <bA +

with initial condition such that Dy, = D+ D4+ D+ D+ D In order to reduce the system, we
consider the system in the parameter regime where € < 1, that is the specifically recruited erasure
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reaction is slow compared to the auto and cross-catalysis reactions. Biophysically, in this regime,
the reactions represented by the label RE; in Fig 3A become slower compared to those represented
by the label C;. In this regime, by reducing ¢, also the reactions represented by the label BE; in the
diagram in Fig 3A become slower compared to the ones represented by the label C;. Specifically,
this means that, whenever a nucleosome is characterized by either DNA methylation or H3K9me3
histone modification, it tends to acquire the other repressive modification much faster than loosing
the modification that already characterizes it. Then we introduce the time variable 7 = tDtotké
and, in order to rewrite the model in terms of non-dimensional variables, we divide both sides of
the ODEs (142) by Dy, obtaining

dDf' _ kjy + ki +kM(D§+D{§)D+M (be+ D) DE,

dr kDot
k2 kar (DS 4+ DE) + kpy(DE + DR ) O\ =
—( o + ka( 2*1412)7L Mm(Dy" + 12)4—,u (BC—FDA))D{%
kEDtot
dD§ k¥, + k¥ + kv(DE+ DE) + ky(DE+DE) - -\ =
= D+ (Be+ D) DR
dr kA Dot +p (Be+ 12
Fivo + k(D5 + Dfy) ( Sa\ 7
- b DA) DE
( kéDtot + p | 0c + )Ds
dDfy _ kiyg +/<;'M(D§+D{g)DR+ Fivo + kar (D' + Dib) + kar (D + Dib) -z (143)
dT k’éDtot 2 kg'Dtot !

— (p (bc + D_A> +u (Bc + D_A>)Df%2
dD , ~ N\ = -\ = _ _ _ _ _
—= (u (Bc+ DA) Df 4+ u (bc + DA> D¥ + (c+ (D' + Dfy) + (Df + DY) DA>
(ki + Kiyo + knr (DF + DY) + ki (DF + DY) + iy + kv + k(D + D) + kil + Kiio + k3 D) 5
ké'Dtot

dDA kA + kA + kA DA _ _ _ _ _
— = W W0 L M D (c+ (Dff + DY) + (Df + DY) D4,
dr kEDtot

in which each species is normalized with respect to Dyy (X' := X/Diot). Furthermore, we rewrite
the following terms as a function of € :

kly + ko + Ky (DE 4+ D) uff +ull + o/ (D + Df)

kéDtot N € ’
Ky + ko + kar(D5 + D) + kn(DF + DF) — uff + ulf + o(DF + DEY) + a(Df + DY)
kéDtot €l ’
kiy + kiyo + kDA u? +uft + DA
kéDtot N 6/ ’

(144)

in which the final expressions are obtained by multiplying and dividing the first expressions by
A
w and all the parameters in the final formulas are defined as in system Main Text: Eqgs (3).

By substituting (144) in the equations (143), the ODE system (143) becomes

»dD? AN _p = R AR R
e —— = (' +uy +DY)D —¢ (c+ (Df + Diy) + (D5’ + Diy)) D*
,dDJ R R e p
e —2% = (ugo + a (D3’ + D1b)) Dy’ + (uz + (D' + D1) + (D1’ + Di)) Dy’
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— € (u (bc + 15A> o (5c + D_A))D{‘g

€ d(i_{% = (Wl + ull + o/ (DF + DE)D + ¢ (be + DA) D
~ ((uff + a(Df + D) +a(Df + D)) + €4’ (B + DA))Df (145)
e'dd'? = (ul + ubl + (DE + DE) + a(DF + DEND + € 4/ (6c + EA) DR
— ((ult + o/ (DE + DE)Y + € (bc + 15A))D§f
¢ 20— ¢ (' (Be+ DA) D+ (e DA) DS + (e + (DF + D) + (DX + D)) D)

— (ult + ul + o(DF + DE) + a(DF + DE) + uft + uf} + o (D + D) + u? + uf + D*)D.
It is possible to show that this system satisfies the conditions C1, C2, C3 listed in Section 2.2 and
hence that (145) is a singular singularly perturbed system [56]. In particular, defining

iy Df

T = (DR> 5 Y2 = -Dé{ 5
12 D

(u? +uft + DA)D — € (c+ (Dff + DE) + (D§ + Df)) DA

Jo= 1 (uff + o (DF + D)) DE + (uff + (D + DE) + a(DF + D) DE |
—€ (p (bc + DA> +u (,Bc - DA>)D{32

(uf +uffy + o' (DFf + D%)D + € u (be + D) Dffy
—((uf}, + (D + D) + a(DR + D)) + ¢ <ﬁc + DA))D{%

(uft + ulf + a(DF + D) + a(Dft + DD + €1 (Be+ DA) Dfy
—((uft + o' (DE 4+ DE)) + €' (bc + EA))Df

¢ (// (/3c + 15A) DR+ 4 (bc + 15A> DE + (c+ (DE + DE) + (DF + DE)) DA>
—(uf + Ugo + a(DF + DE) + a(DE + D) + uff + u{% + O/(D§ + D) + u? + ué‘l +DYD
(146)
it is possible to show that ¢(z) = (0,0,0) and that the matrix A as defined in (97) with D = Dff =
D =0 and € = 0 can be written as follows:

0o A 3>
A — 9 _“ 147
(@) (0 e (147)
with ( A ) *A)
- 0 0 ut +ud + D
Ag g = - , - 0 > 148
23 ((uﬁ% T (a+a@)Dh) (uf}+a D) (148)
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—(u 4 (o + a)DE) 0 (ult + ull + o' DE)

Ags = 0 —(ull + o' D) (uft +ully + (o + a)DE)
0 0 —(u? +ug + D)
—(uf + ull +ult +uld + (o +a+ o' )DR)

(149)
Matrix A has two zero eigenvalues and two corresponding linearly independent eigenvectors. Fur-
thermore, the matrix B defined in (98) can be written as A3 3 and it has three eigenvalues always
characterized by negative real part if uﬁ), uﬁ), u()“ > [ with [ > 0. To find the slow integral manifold
and the reduced system defined in (96), we follow the procedure explained in Section 2.2: we first
introduce in (145) the change of variable D = D/¢ , DF = Dft/¢' and DI = DL /€', obtaining

,dDE 5 L
€ dTl = (uff +ufl + o' (¢ DE + DR))D + pu (be + D?) DE,
— ((ul + a(e DE + DE) + a(¢ D + D)) + ¢ 1 <5c + 15A>)DF
,dDE , N
€ =2 = (uf +ufh +a(¢ DF + Dfy) + a(¢ Df + D) D +p <5c+DA>D{g
— ((uft + o' (€ DF + DI + € <bc+ DA>
/d.D / - !~ - / ~ ;) ~ _ ;7 ~ _ _
(= (u (Bc—i—DA) 6D5+u<bc+DA) ¢ DR + <c+ (€ DR+ D) + (e D§+D{g)) DA)
(150)
(UQ +U2o +a(€ D2 +D12) +a(€ D1 +D12) +U1 +U10 +a (61[75‘4'[){%2) +u? +U6‘ +DA)[7
dDR N . _ . o
dTH = (ul} + o' (¢ DF + DE)YDE + (ul + (¢ DE + D) + a(¢ DF + DE))DR
— (u (bc+ 15A) o (5c+ D_A))D{"L2
dD” = (W +uf + DD — (c+ (€ DI + D) + (¢ D¥ + DE)) DA
d= 0 €L 12 € Ly 12 .

It is important to point out that in the reduction we let € = ce/, with ¢ = O(1), implying that as ¢
decreases also € decreases. Given the definition of € and € , it is reasonable that, if the specifically
recruited erasure reaction is slow compared to the auto and cross-catalysis reactions, then also the
basal erasure reaction due to non-specific binding of enzymes and dilution is slow compared to
the auto and cross-catalysis reactions. This is consistent with the fact that the rates of enzymatic
reactions where enzyme-substrate binding is highly specific tend to be larger than the rates of
enzymatic reactions occurring though non-specific enzyme substrate binding and to removal due
to simple dilution from cell growth.

Then, to calculate the slow integral manifold, let us construct the asymptotic expansion of D,
DE and DE-
1 2

D = ho(D?*, D, ¢') = hoo(DA, D) + € ho1 (DA, D) + O(€™),
Dft = hy(D*, Df}, € ) = hio(D*, Df}) + € h1(D*, D) + O(™), (151)
DI = hy(DA, DR, €) = hoo(D?, DI) + € hot (DA, DE) + O(").
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Substituting (151) in the first three ODEs of (150), we obtain
6,% = 6/((;91};4 dcl;: + 883{1%2 dfi);g)

— (uff +ull + ' (¢ ha + DI%))ho + i (be + D) DI

— ((ufly + afe hy + DR+ a(ehy + D)) + € 4 (50 + liA))hl
1dhy 1 Ohy dDA  9hy dDE

“a ~“opt @ T oDk a7 )
= (U + ull + a(e ho + DE) + a(e hy + D)) ho + 1 (5c + D_A) DE
— ((uﬁ] + O[/(Elhz + ]__){22)) + e/u (bc + EA))hg
+dh . Ohg dDA  Ohy dDE
€= =€ (Frr—r + 2rp —a2)
dr oDA dr 0D dr

= (// (ﬁc + 15A> €hi+p (bc + D_A) € hy + (c + (€h1+ DB) 4 (¢ hy + D{E)) DA)

(152)

— (uff + ubl + a(€ hy + DB) + a(e hy + D) + ult + ull + o/ (€ hg + D) + v + uf + D*)ho.

To calculate h;y and h;1, with 2 = 0,1, 2, we equate the terms on the left and right hand side of the
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equations multiplied by the same power of € , obtaining

b (c+2DR)DA
00 = +u20+aD12+aD +u1—|—u10+aD —}—uA—i—ué—i—DA’

(uft + ull + o' D) hoo + p (be + DA) DL,

hio = _ ,
10 ull + (a + a)DE
(ubt + ubl + oD, + aDf)hoo + 1 <ﬂc - 15A) DR
h20 == UR T OZIDR )
10 12
Ohoo . 4 | A, AA SR\ AHA
(W((U +uy + D% )hoo — (¢ +2D15) D7)
8h00 - / - _
oo (ufh + o' D)o + (ufy + (0 + @) D)o — (u (be+ DA) + 4t (Be+ DA))DE))
12
(153)

' (Bc + D_A) hio + p (bc + D_A) hao + (h1o + hQO)DA — (a/hQO + (o + a@)hio)hoo

('UQ +U20+O{D12+O&D12+U1 +U10+O{D +U +U0 +D )hol,

oh _ o
O (A + ugt + DMhoo — (c + 2DE) DA

(8DA
ggllg(( uth + o Dfy)hao + (uzh + (@ + @) Diy)hig — (1 (bc + 15‘4) +u (Bc - EA))D%))
12

= Oz/hgohoo + (u{% + uﬁ) + O/Df’z)h()l — (ahzo + dhlo)hlg — (ufo + (04 + @)D{g)hn,

oh _ o
(S22 ((w? + ug + DMYhoo — (¢ + 2DE) DA

oDA
Ohgo ,, r | =R R \ PR S A ' YA\ HR
oo (ulh + o' D)o + (ufy + (0 + @) D)o — (u (be+ DA) + 41 (8e + DA))DE))
12

= (ahgo + @hlo)hoo + (u§ + ugb + (a + @)Dg)hgl — Oz/hgo — (uﬁ) + OélDl%)hgl.

" Ohig ' Ohio 1 for a sufficiently

Since ggz% and ggg are bounded for any i = 0, 1,2 (that is, € oDl € DA
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small EI), by SOlViIlg (153) for hoo, hlo, hgo, hgl, h117 hgl we obtain

hoo = —x R AR _7R(c+12%Df§)£A "HR A A DA

uy + uyy + oDy + aDyh 4 uyt +ujg + o Dy +u? +ug + D
hio — (uft + ufl + Oé];Dg)hoo + uﬁ(bc + DA) DE

ubly + (o + @) Diy

(ult + ul + DB + aDR)hoy + 4 <Bc + 5A) DR
a0 o+ oDl (154)
hor = —¢ R *(/;%(Cb —i— P}:)h%;‘ . (RBC " l/)fll)%hm) A A DA

uy + uyy + Dy + aDyh 4+ uyt +ujg + o Dy +u? +ug + D
hyy = (u{% + ’UJ{% + O/D{%Q)hg;— (ahgo + (_Jihl[) + ,U,, (,BC + DA))hlo

ush + (o + @) Db

Byt — (ubt +uld + (o + @) D) ko1 — (o' h3y + pu(be + DA))hQO.

R AR
uyy + o Dy}

Substituting hoo, ho1, h10, h11, h2o and he; into (151) and (151) into (150), we obtain the reduced
system as follows:

dD4 € (u(be + DN (Be + DA))K (ut + uft + DA) _
dr ud +uft + DA+ ud +ulh + uf +ull + (a+a+a')DE

B (c+2Dﬁ2—)(u%+u§)+u{%+uﬁ)+(Oé+0_é+041)D{%2)_ DA
ud +uft + DA+ ud +ulh + uf +ull + (a+a+a')DE

(155)

dDfy [ (c+2DE)(wd +ulh + ult +ull + (a + a+a')DE) A
dr u? +uft + DA+ uk + ull + uf +ull + (e +a+ o' )DE

~ € (u(be + DN (Be + DA))K (u? + uft + DA) .
uA + g + DA+l +ull +ul +ull +(a+a+d)DE )T

o 1 1
ith K = - —— .
wit ulk o' DR, T uE F(ata)DE,

that di; + dgflRQ = 0, that is DA+ D% = constant. In particular, since DA+ D+ D+ DE+DE =1
and D = DIt = DF = 0 for ¢ = 0, we have that DA 4+ D}, = 1, for ¢ = 0.

We further validate via simulation that system (155) is a proper reduction of the full system
(145) when ¢ is small. We perform simulations of both system for different values of € and initial
conditions, showing that the trajectories of Dg and D4 of the full and reduced systems become

closer as € decreases (Fig J). Finally, multiplying both sides of the ODEs in (155) by Dtot(k:éDtOt),

Summing the two ODEs written above, it is possible to notice
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system (155) can be rewritten in a dimensional way:

pA_ (6 + kB + kEDA) (" + kyp + ki DY K gim kit + kit + Ky DA DE
kévo+kév+kf4DA+kWO+k%V+k:WO+k1 + (kn + kv + )
(0 + kg + 2ka DI (K2 + k2, + ki + Ky + (bar + ks + Kyp) Dﬁ DA
kivo + ki + kDA + kg + k& + Kiyo + kiy + (kar + kar + Ky ) DI (156)

PR — (8 + kfg + 2k DY) (Ko + iy + Ko + ki + (kar + kar + k) DY) DA
kg‘VOJrkA ]{ZADA+]€2 + k2, + ko + kb + (kar + kar + k) DB

(0 + kB + KEDA)(6" + by + kgt DY) Ko (ki + kiy + k3 DA) DE
ko + kit +kf4DA+kWO+k§V+kWO+k1 + (kanr + kar + Ky ) DE &
with Ky, = L + L or, since D® + DA = Dyot, it can be written as

k1lzvo+k1v1Dg kevo"'(kf‘/f'~']€1‘4)D{_{Z7
b — (8 + kg3 + 2k DI ) (K + iy + ko + kiy + (kar + kar + k) D) (Don — DE)
ko + kit + ki (Dot — DE) + k2,0 + k%, + ko + ki + (kar + ks + k) DE

(6 +kE + kE(Dior — DI (0 + ki + kgt (Diot — D)) Kaim (Ko + iy + Ky (Diot — Dib)) DR
kivo + ki + ki (Dot — D) + ko + Kby + kiyo + kly + (kar + ks + k) D

(157)
The system is one-dimensional and it can be represented through the following simplified chemical
reactions:

’ ko + kv + ki DA + k2,0 + k&, + ko + ki + (ka + ka + Ky,

)
DR ki pA o ( (8 + KB + kEDA)(6' + Ky + kD) Kgina (ki + kb + kil DA))D ) |

(0 + kA + 2kADRY (k2,0 + k2, + Ky + kiy + (kar + kas + k) DR) )
Df

kg‘vo+k§},+kf\‘4DA+k%,0+k§V+k§VO+k1 + (ks + kar + K
158)

3.3 Derivation of stationary probability distribution formula

Following the same procedure we used in Section 2.3 for system (115), the reduced chemical reaction
system (158) can be represented by a one-dimensional Markov chain in which the state = represents
the total number of DY, that is, z = nf,. In particular, the state z can vary between zero and
Diot- Furthermore, the transition rate from state i to state j, ¢;;, for our Markov chain can be
defined as follows:

— A - /
(6 + A+ 2520y (k2,0 + k2, + iy + Ry, + EaEEaRy) 4

Az (z+1) = LA Q(k a0 (Dtot - .’B),
kiyo + ki + 3 (Drot — 2) + Kfig +k2 + kLo + K, 4 SMTEM M) g
5+ kB 1+ (Do — 2))(8 + K D Rgim (ki + Kb + 588 (Dyoy —
_ ( + E + Q( tot SU))( + + ( tot — )) dzm( WO+ W + Q ( tot .’L‘)) .
Az (z—1) = A A ]gfl 2 1 1 (kM-ﬁ-/}M-i‘k;w) 5
Kivo + Kiy + 5 (Dror — @) + Kfypg + by + kg + ki + g2
(159)
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in which we have used D4 = n4/Q and D = nf,/Q, with Q the volume of the reactions and

Kiim = 1k, + 2 (k}w .7 for € [0,Dyot] [49]. Since this Markov chain is irreducible
kot Mz wo™t Q z

and reversible, we can apply detailed balance [60] to determine an analytical expression for the

stationary probability distribution 7(z) as a function of 7(0):

xT

q(i—1),i
m(r) = ——=(0). 160
@ =1 5=2n0) (160)
Now, introducing
_ 1 1
K;= 4 — (161)

R . /_J R N _J
ujg+ & gl Uzt (a+a) g

T 93G-1),5
=1 g;,(3—1)

rates and rearranging properly the terms. In particular, for any = € [1,Dyor — 1], []7; % in

let us compute [] for our system by writing explicitly the expression for the transition

(160) can be written as

kA
xq(il)’i_<Dtot> 14 kM-l-kM—i-——#
o A
i=1 4, (i-1) € k—Dtot + ]{3 —|— k,‘é/ + kWO + kll/V + kIQ/[/O + k‘%[/
_ _ 4 i -
k= (0 + kfh + 270) (Ko + Ky + klyo + Ky + Wz)

1 \ (G4 BB+ EE Dy — )6 + K + (D Roaim, (kb + kb Dy —
1=1 ( + kg + Q ( tot Z))( + kr + Q ( tot — )) dzmz( Wwo + + ( tot 'L))
_ (6 + k) (Ko + Ky + Ko + kiy)

54+ BE 4 *E Doy — 2))(§ + Ko+ L (Dyog — 2)) Kogg, (kb + B + 5 (Dyoy —

(6 + Folna e (Dsot x))( + kp 4+ (Dsot x)) dzmz( wo T Ry T (Dsot x))

Dtot) 1+ = (a+a+a)—1 '

x Diot 1+ uf + ut + ull) + ult + uff + v

”ﬁ( (e + 26 ) (ully + ult + ulh +ud + (a+ a+ o)) _
( )

be+ € Oy (B + ¢ B Ry(ugt +ut + Cp=?

Dtot
e(ufh + uft + ubf) + u3)
plbe + ¢ Py (Be + € Cp) Ry (ug) + ut + B

(162)
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A
in which the final expression has been obtained by dividing numerator and denominator by (@)

in each of the factors. For x = Dy expression (162) can be written as

A
Dt di-vi _ (4 +a kM T kM + 5 - ks]z”
1 9i,(i-1) ¢D kA k‘A k: kL k2 k2
i=1 1" Q Dtot T Fiyg + Ry + kg + Ry + Ko + Ry
_ LA 7. /
i (6 + kg + 24‘)(%0 + Iy + Ky + by + )

R R . A A kA .
5 + k? (Dtot — Z))((S + k + (Dtot — Z))Kdsz (kWO + kW + #(Dtot — Z))
_ 5+kA V(Ko + K2 + Kl + k)
(0 + kE) (S + ki) Kaim, (Ko + Kiyy)

=(1+ (at+a+a)-1
1+ ug + ut + gl + uff + ugh + uf
Dﬁl< (6+26D:0t)(u10+u1 +u20+u%+(a+a+a)DH) >
i=1 ( )

Mbe—ke’(D]S";tz) (ﬁe+e (Dot — Z))K(uo + yA 4 D=t

Diot Dtot
e(ult + uft + ull) + u?)

p(be) ' (Be) Ky, (ug + ut)’

(163)
in which the final expression has been obtained by dividing numerator and denominator by (#)
in each of the factors. Now, in order to find an expression for 7(0), we use Z?“’Ot w(j) = Z?:“’f ( Z:l %) 7(0)
+7(0) = 1 and then we can express 7(0) as follows:
1
7(0) = . (164)

Dot J o dG-1),i
(1 T2 ( =1 qa(i—l)))
Substituting in (160) the 7(0) expression obtained in (164), the stationary probability m(x) can
finally be expressed as
z T2, di-ni
q@ 1),@7T(0) _ ~ i qz,Fz—li]( : ’
s ot ] i—1),1
=1 q’L,(l 1) (1 + Zj:tlt ( i=1 m))

for # € [1,Dyot). Then, assuming that € #0, comparlng (162) and (163) it is possible to notice
that in the condition e < 1, []/_, 2=1. 1) : ;< HD“Ot q“ L for any j € [1, Dot — 1]. This implies that,

1=1 ¢, (i
when € < 1, Z?“{f 7(j) =1 can be approxunated as follows.

Dot Dot [ J ) ) Dot . .
1=> "7 =D (H q(”> 7(0) +7(0) = [ Mw(o) + 7(0) (166)

=0 =1 \i=1 461 1 (i)

(165)

m(x) =

from which

1
(0 167
( ) 1 + HDtot Zfz 11)1; ( )
and, from equation (165),
HP—t(it d(i—1),3
- q7/ 1

7(Diot) ~ D Ezll)w - (168)

+ H 9i,(i—1)
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Then, the stationary probability is such that, under the condition € < 1, it can be expressed as
follows:

=p ifz=0
Te<1(z) & 4 0 if 2 # 0, Dyot (169)
H—LP if £ = Dot
with
P (uf +ut +ufh +uf +ubh +uh +a+a+d)
(ug +ut + udl) + ulf +udl + 03 + 1)
Dt (ol 4wl +uld +uh+ (a+a+a)po)) (ulh+uftuly+ady )
= ( pd € B =D i (ufh + uA + Bie=idy ) ' bBeKp,,, (ufh + uh)’
with

1 1
7+ —-
P R Py

KDtot = (171)

3.4 Derivation of time to memory loss formula for the 4D model

Now, in order to determine the time to memory loss of the fully repressed gene state, T]%tot, that is,
the expected value of the first time at which the state x hits 0, starting from x = Dy we can use
the formula (136) derived in Section 2.4, that is

r Dtot—1 1 Dtot—1 r
0 Dtot—1 i—1
el (I SIS K o £ (U0 SR ) | R

7Dtot i=1 7 ] 1 ]

with r; = 0,;11:223] . In particular, for the Markov chain associated with the one- dimensional reduced
el
. . . . . 7 1 ]
model of the chromatin modification system, introducing K; = e p— + - " +(a+ o , a; and
v; are given by
_ A L !
(6 4+ kit + 25E0) (2, + K2, + ko + by + EatEatha) ;) (D 4
Q; = = 7 tot — ¢
k4 ) kvi+kav+ky,)
Ko+ i+ 5 (Duw =)+ i+ Ry + g Ky -+ B0,
r (kng+knr+ky,) .
I T e et N W
= n . O
ug o+ S5 ull off +uff +uf (ot 6+ o),
tot tot (173)

SRR D NS ke B D iNE (kA 4 kA 1+ B,
Vi = (0 + kg + 5 (Dot = ))(0 + kg + -5 (Drot — ) Ki(kiyo + ki + 4" (Deot — 7)) i
ké/0+kA+@(Dtot_i)+k2 + k&, + Ky +k%+wi

/ —1 Ly )
plbe -+ ¢ B (Be + ¢ ) ik + ki + 4 (i — 1)) |
_ . /L7
u64+UA+%+U2o+U2 tufh +uf + (e +a+ad) 5

in which the final expressions are obtained by multiplying and dividing the intermediate formula
A ’
by w. Also in this case, in the absence of external input stimuli and assuming that € # 0, it is

possible to notice that, for € < 1, the dominant term of TBM is the first addend in (172). Then, by
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. . . k4D _ k4D . .
normalizing the time to memory loss with respect =4 (73 =70 =Mzt) 70 in the regime

€ < 1 can be re-written as follows:

Dtot—1 i
_ _ Kpg Kt
T = TR 73 <1+ Y s ) (174)

o’ €2 = hi(u)

with A} an increasing function, h(0) = 0, Kg and K}é functions independent of ¢, ul and pu, and

in which we redefine ?Btot as Tg to simplify the notation.

Similarly we can determine the time to memory loss of the fully activated gene state, 7'(? ot by
using the formula (139) derived in Section 2.4, that is

o ) Dot —1 Dot —1 i1 i—1 1
T = s | E + E — (1+> ] (175)
=1 TZ aDtot 1 ; ODyor—i j=1 Ty
with o; and ; as defined in (173) and 7; = 2tet=1Prot=2Trar—J 7'(]]) tot . In the absence of external

Dot 10Dyt —2-+ Dot —j
input stimuli and assuming that € # 0, it is possible to notice that, for ¢ < 1, the dominant term
of TD“’“ is the first addend in (175). Then, by normalizing the time to memory loss with respect

k4 D _ k4D . . .
Aot (7Dt — ptet IMtoty Dt i the regime € < 1 can be re-written as follows:

Dtot 1 hz /,LILL
Do _ (1+ > ) (176)

with h% an increasing function, h%(0) = 0, K4 and Kz functions independent of e, // and p, and

in which we redefine TD““ as T4 to simplify the notation.

3.5 Effect of ¢ on the stationary distributions

From Figs Q-T it is possible to notice that the parameter ¢ does not substantially affect the trend
with which e, ul, w1 and the inputs affect the distribution. If € > 1, the only states characterized
by high probability are the ones with either activating or repressive marks. The reason is that in
the parameter regime € >1 (that is the specifically recruited erasure reaction is fast compared to
the auto and cross-catalysis reactions), since the recruited erasure is very fast, the system tends
to reach a state in which the activating marks erased completely the repressive marks or viceversa
(the states are on the axes). When ¢ decreases compared to ¢, the peaks of the distribution become
less concentrated and in the extreme case where €’ < ¢, the distribution becomes unimodal (Fig U)

4 Derivation of the transcriptional regulation model

Transcription from nucleosome state D®. H3K9me3 is recognized and bound to by the chro-
modomain of the HP1a protein, which once bound contributes to nucleosomal compaction [5](Chap-
ter 3) through a mechanism where HP1a dimerizes and cross-links nucleosomes [5](Chapter 1),[62].
Concerning DNA methylation, it has been shown that it is essential for cell differentiation and
embryonic development, playing an important role in mediating gene expression [63]. In particular,
some studies have been conducted in order to determine the DNA methylation level in the region
(1kb-5kb window) around the transcription start sites (T'SS), showing a high correlation between
the level of methylated CpG and the gene repression [64]. Consistent with these observations, in
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our model we consider DI, DE and DL (nucleosome with repressive modifications that lead to
a more compacted structure of the chromatin) to be inaccessible to general TFs, and thus to be
transcriptionally “off” (silent).

Transcription from nucleosome state D*. Transcriptional activators recruit remodeling
complexes, such as the SWI/SNF complex, which become activated by the binding of their bro-
modomain with acetylated lysines. These remodelers open up nucleosomes for RNA pol IT and basal
TFs to bind and initiate transcription and then transcript elongation [5](Chapter 21), [1](Chapters
3-5). Histone acetylation is essential for transcriptional machinery to make its way on the DNA
despite the presence of nucleosomes. Also, H3K4me3 can interact with TFIID complex, which
is implicated in the recruitment of transcriptional machinery [14](Chapter 11), thus potentially
enhancing transcription rate. Therefore, the DNA wrapped around a nucleosome with activating
histone modification, D*, will be transcribed by the basal transcriptional machinery as it is largely
accessible to it. Enhanced transcription from D? will occur if A,, binds, creating the complex C& “
and recruits to it the basal transcriptional machinery more efficiently [1](Chapter 4).

Transcription from nucleosome state D. Nucleosome state D can also allow some (possibly
zero) basal transcription, lower than the one obtained by DA. In fact D is missing repressive histone
marks and, although not as accessible to basal transcriptional machinery and remodeling factors
as DA, it can in principle still allow for non-specific targeting by chromatin remodelers, many of
which contain DNA-binding domains [65]. This enables the formation of the pre-initiation complex
and consequent transcriptional initiation and elongation [1]. However, it has been shown that, once
RNA Pol II initiates transcription it can recruit SETs, which methylate H3K4 [15], which in turn
can further recruit HATs by the Thryotorax complex [8]. This promotes downstream acetylation
and hence further recruitment of remodeling complexes, thus allowing transcriptional elongation to
proceed [5](Chapter 21). This implies that transcription by RNA Pol II of DNA wrapped around
an unmodified nucleosome, D, occurs concurrently with the deposition of H3K4me3 and hence the
conversion of D to DA, We capture this in our model by allowing protein production only by the
DNA wrapped around a nucleosome with activating histone modification, D*.

In light of these observations, we can write the binding reactions related to C and CR as follows:

a, - a, -
A, +D* d:/* C4, R, +D* d:’? CR, (177)
A R

in which EL:4, d/R, and d A JR. Furthermore, denoting the expressed protein with X and lumping
for simplicity transcription and translation in a one-step reaction, we can write the set of gene
expression reactions as follows:

A 9% A A Y5 Ta = A 9% A A O =A
D* — D"+ X, Cp —=Cy+X, D* — D* + X, Cg — Cy +X, (178)

in which ozf and o’z;;‘ are the basal and the active protein production rate constants. The ODE for
X is then given by
X = a{(DA 4+ C4 + CR) + &' C4 + o' Cp — X (179)

in which ~, represent the rate of degradation and dilution of X. Now, let us introduce Djl,, which
is the total concentration of nucleosome characterlzed by actlvatm% histone modification, free or
bound by A,, or R,, (D, = DA+ C4+Cq), K4 = % T and KB = ¢x as the dissociation constants

of the first reactions in (7) and (9), respectively, K 2 = Z—,A and Kf = Zf*‘ as the dissociation

A A
constants of the reactions in (177). Then, considering as before the binding reactions much faster
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than the other reactions and then setting the complexes dynamics to the QSS (C’ﬁ = A?(BA and
A
C4 = BuD? , (179) becomes
af A
. KaK
X:@ﬁ+1 A ) DA — X (180)
T KaoK4 + KrK#

in which, with abuse of notation, we indicate D;é,t with D4. Defining oy = af, o = 64;)4, K j“ A=
KaK4, K& = KrK4#, we can re-write (180) as follows:
o A
VK,

A A
KAA KRR

X = (o + )DA — e X = a, DY — 4, X (181)

in which we define o, = ag + Now, let us define D4 = D4/Dyy; = n? /Dy,

X = X/Dyot = n /Dyot, the normalized time 7 = tkﬁDtot, and the non-dimensional parameters
Ve = %/(k:]Athot), Qp = am/(kf‘thOt). With these definitions and letting & := dx/dr, we can
rewrite the system model in terms of non-dimensional variables and non-dimensional parameters
as follows:

X = a,D* - 3, X. (182)
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5 Figures

(A) (B) 5

D kwo + kw DM

D
677
©) (D)
>0 +kyp
kwo + kw kwo + kw
D — DM ———> D — DM,
. X / ) .
4 o 1 +}v7' ’/'

~

—————————

g q, (_8'+d
kT = kg (6’+d+kn)

DY, = DM+ C°

Figure A: Establishment, erasure, and maintenance of DNA methylation. (A) Diagram repre-
senting the reactions making up the DNA methylation system as consistent with earlier models [31] (black
arrows). The key processes are de novo methylation, maintenance methylation and dilution due to DNA
replication/ cell division. In addition to passive erasure, DNA methylation can be actively removed through
the TET enzymatic pathway [14](Chapter 17) (blue arrows). Here, D represents a nucleosome with the DNA
wrapped around characterized by an unmethylated single CpG, DM represents a nucleosome with the DNA
wrapped around characterized by a methylated single CpG and DhM represents a nucleosome with the DNA
wrapped around characterized by a hydroxilmethylated CpG which is not recognized by DNMT1. Rate con-
stants are defined in the main text. (B) Diagram representing the reactions making up the DNA methylation
system, accounting for the mutual protection mechanism between MBD proteins and TET binding to DNA.
(C) Simplified diagram shows an effective catalytic rate constant of TET kép which is substantially smaller
than the theoretical one quantified in vitro. (D) Final simplified diagram obtained by introducing the fact
that & + kp < 4.
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Figure B: Competitive interactions between activating histone modifications D* and DNA
methylation Df. (A) Interaction diagram between DY and D* (nucleosome with an activating his-
tone modification, H3K4me3 or H3Kac). DNA methylation recruits erasers of H3K4me3/ac and, in turn,
H3K4me3 recruits TET enzymes for active removal of DNA methylation (see main text). We use colored
dotted lines to depict the recruitment process done by H3K4me3/ac (green lines), and CpGme (orange lines)
and we use dotted black arrows to depict the consequent effect on writing/erasing. The solid black arrow
represents the nucleosome modification. (B) Enzymes that write (writers) and erase (erasers) each modifica-
tion as explained in the main text. The socket on each of these enzymes represents a domain that binds to
protein readers of the corresponding modification, enabling the process by which each modification recruits
writers or erasers to nearby histones.

(A) (B)

)( writers
3 » DNMT3
° @
Pathway X}\ Pathway
(B) (A) KMT#
D W,

Figure C: Cooperative interactions between DN A methylation Df and repressive histone mod-
ification DZ. (A) Diagram of the chemical reaction model, in which the two possible cooperation pathways,
described in Section “Models” and Section 1.4, are highlighted. The species involved are D (unmodified nu-
cleosome), DR (nucleosome without any histone modification but with CpGme), DY (nucleosome with a
repressive histone modification, H3K9me3, but without methylated CpG) and DR, (nucleosome with both
H3K9me3 and CpGme). We use colored dotted lines to depict the recruitment process done by H3K9me3
(red lines), and CpGme (orange lines) and we use dotted black arrows to depict the consequent effect on
writing. The solid black arrow represents the nucleosome modification. (B) Enzymes that write (writers)
each modification as explained in the main text. The socket on each of these enzymes represents a domain
that binds to protein readers of the corresponding modification, enabling the process by which each modifi-
cation recruits writers to nearby histones.
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Figure D: Competition between activating (Act) and repressive (Rep) histone modifications.
Analysis of number and stability of steady states for the ODE model in (29) with no external input (*A =,

uf* = ul). In the plots, the arrows represent the vector field, the green line represents the nullcline DR = 0,

the red line represents the nullcline DA = 0 and their intersections, highlighted by a circle, represent the
steady states of the system. There are four different plots, one for each qualitatively different parameter
regime: e large (e > max{1, 5 }), € small - 11 intermediate (e < min{l, T}, p1 < p < p with gy and po
defined in (91)), € small -y small (e <min{l, 5}, p < p1) and € small - p large (e < min{l, 5}, p > p2).
The parameter values of each regime are listed in Table D.

1 1
—— =full system
=== =reduced system ;”—
DE DA
€ =0.1 \
e =0.01
0 0
0 time T 0 time T

Figure E: Trajectories of D and D# of the full and the reduced system become close as ¢
decreases. Trajectories of DF and D4 of the full system (95), solid lines, and of the reduced system (112)
dashed lines. We set (D¥(0), D“(0)) = (0.3, 0. 7) as initial conditions and we use three different values for €,
that is, from the lighter to the darker curve, ¢ = 1,0.1,0.01. The values of the other parameters are hsted
in Table E.
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Figure F: How the parameters ¢, y, u* and v affect the stationary probability distribution
of the histone modification circuit. The stationary distribution of our system, represented in Fig 1C,
obtained computationally. The stationary distributions are obtained by simulating the system of reactions
listed in the blue box of Fig 2 with the SSA. (A) We consider three values of € (¢ = 0.4,0.2,0.02) and five
values of p (= 10,1.2,1,0.83,0.1). (B) We consider € = 0.1, two values of p (1 = 1,0.83) and, in the plots
above, three values of u (u* = 0,0.1,1) and in the plots below three values of uf* (u® = 0,0.1,1). The
parameter values of each regime are listed in Table F. For all the simulations we consider o = 1, € =1 (Figs
H-I show different values of € ) and we decrease € by decreasing & + k4 (similar results can be obtained if we
change ¢ by varying kﬁ as shown in Fig G).
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Figure G: How the parameter ¢ affects the stationary probability distribution of the histone
modification circuit. The stationary distribution of our system, represented in Fig 1C, obtained compu-
tationally. The stationary distributions are obtained by simulating the system of reactions listed in Table
G with the SSA. In particular, defining the reaction volume as 2, we consider three different cases, € <1,
€ =1and € > 1, and for each case we determine how decreasing ¢ (by decreasing ¢ + l_cf7 or increasing
k4, /) affects the stationary distribution of the system. The parameter values of each regime are listed in
Table G. In particular, for the parameter regime ¢ < 1 we consider ¢ = 0.2,0.1,0.02,0.002 and € =0.2 for
the distribution in which we decrease § + k7 and € = O 2,0.1,0.02,0.002 and € = 0.2 for the distribution
in which we increase k%, 21/ for the parameter regime € =1 we consider € = 0.4,0.2,0.02, 0. 002 and € =1
for both cases and for the parameter regime € > 1 we consider € = 0.5,0.2,0.02,0.002 and ¢ =10 for both
cases.
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Figure H: How the parameter yu affects the stationary probability distribution of the histone
modification circuit for different values of ¢ . The stationary distribution of our system, represented
in Fig 1C, obtained computationally. The stationary distributions are obtained by simulating the system of
reactions listed in Table H with the SSA. We consider three different cases, ¢ < 1, ¢ =1 and € > 1, and
for each case we determine, for two values of € (e = 0.2,0.02), how p affect the stationary distribution of the

system. In particular, we consider three values of p (1 = 0.1,1,10). The parameter values of each regime
are listed in Table H.

71



€ <1 €>1

A A
nft nA 00 nft n 00 nft n 00 nf
K n
*x10° 1077 *10°7 1077
3 2 s 01 8 02
™ m™ ™ m WL
0. ‘ 0 0 OL ‘ 0 0
Deot Dot 5. Dtat Dot Deot J Diat T
D, D D D D, D,
A R Dot A R ot LA R r ot A " A ot
n 00 ™ n 0o M g n n 00 ™ n 0o nf n® 5 nft
a . o e
X102 x10-2 10 x10-2 10
15 6 8 02
T 7’ 7 ™ ™
o . D, e DUL D,
ot D,., Diot D,., Dot b ot D, Deot D D
A - a ot A ot A " ot
n® g aff oo " L nt g oM nt g g af
H n
%107
5 01 01 02 02
. ‘J J . J . J ; . J
0L 0- 0 k 0 o-
Diot Diot Diat Dy, (k Dot
D, D D, Dy Dt D, D
A R Deot A R Dut A R Det A 2 Dt Py 7 D a 7 Dt
" 0o M 00 " " op M " 0o M " 0o ™ " 0o m

Figure I: How the parameter u* and u” affect the stationary probability distribution of the
histone modification circuit for different values of ¢. The stationary distribution of our system,
represented in Fig 1C, obtained computationally. The stationary distributions are obtained by simulating
the system of reactions listed in Table T with the SSA. We consider, for two different regimes of € (¢ = 0.2
and € = 10), e = 0.1, two values of u (1 = 1,0.83) and, in the plots above, three values of u* (u? = 0,0.1,1)
and in the plots below three values of u* (uf* =0,0.1,1). The parameter values of each regime are listed in

Table 1.

—— = full system

=== = reduced system

NER [
D12‘

time T 0 time T

Figure J: Trajectories of D, and D* of the full and the reduced system are close as ¢ decreases.
Trajectories of Df, and D? of the full system (145), solid lines, and of the reduced system (155), dotted
lines. We set (D5,(0), DA(0)) = (0.7,0.3) as initial conditions and we use three different values for ¢ , that
is, from the lighter to the darker curve, € = 1,0.1,0.01. The values of the other parameters are listed in

Table J.
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Figure K: Bifurcation plots related to system Main Text: Eqs (3) with no external inputs
(ut = uff = uf = 0 and uf' = uf) = ul}) = up small). Here, defining n® = nft + nf +nf, DA :=n? /Dy
and DT := n® /Dy, represent the fractions of nucleosomes with activating or repressive modifications within
the gene with a total of Dy, nucleosomes. On the y axis we have D“ (green) and D (red) and on the x
axis we have u, (log scale). The solid line represents stable steady states, the dotted line represents unstable
steady states and the black circle represents the bifurcation point (saddle-node bifurcation). (A) On the
left side, we realize several bifurcation plots for different values of € (e = 0.1, 1,10, 100), different values of
(1 =0.1,1,10) and different values of € (¢ = 0.1,1,10). (B) On the right side we increase k%, of one order
of magnitude, and this, based on the definition of the dimensionless parameters as done in Main Text: Eqs
(3), leads to decrease ¢, el, ug, o, o and @ of one order of magnitude. A higher kf/[ increases the stability
of the active state.
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100 o
QO = monostable w/ D4, D < 0.5

@ = monostable w/ D > 0.5
@ = monostable w/ DA > 0.5

= bistable

. 0.1 .
0.01 7 10 0.01 Nl 10 0.01 7] 10

Figure L: Charts depicting the (e, /) combinations that result in a monostable (red, green or
white) or bistable (yellow) system for different values of u. Here, consider ¢ =1 and three different
values of o (1 = 0.1,1,10).
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Figure M: Input/output steady state characteristics displaying hysteresis related to system
Main Text: Eqgs (3) with u” as input. On the y axis we have D4 (green) or DF (red) and on the x axis
we have the external input u”. In particular, we set uj' = uff) = ull, = vy = 0.1, uf* = 0, as initial conditions
we consider (DF, D4) = (1,0) and we realize several 1/O plots for three values of z (i = 0.1,1,10), two
values of yu (u = 1,10), two values of € (¢ = 0.1,0.05), and three values of ¢ (¢ = 0.1,1,10). All the other
parameters are set equal to 1. In all plots u? := ki, / (k3 Diot), ult := ki / (k3 Diot) for i € {1,2}.
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Figure N: Input/output steady state characteristics displaying hysteresis related to system
Main Text: Eqgs (3) with u® as input. On the y axis we have D# (green) or DT (red) and on

the x axis we have the external input uf', with uf defined as uf* = uf = ug. In particular, we set
uf = ufy = ull = uy = 0.1, u* = 0, as initial conditions we consider (D%, DA) = (0,1) and and we

realize several 1/O plots for three values of ;i (1 = 0.1,1,10), two values of (1 = 1,10), two values of ¢
(e = 0.1,0.05), and three values of ¢ (e, = 0.1,1,10). All the other parameters are set equal to 1. In all
plots u?t := kit / (k4 Diot), uft := ki, / (k3 Dyor) for i € {1,2}.
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Figure O: Input/output steady state characteristics for the (u?, D) pair for different values of €
and 1/’ obtained from simulations of system Main Text: Eqs (3). (A) We consider (D%, D4) = (0,1)
as initial conditions and we set u? = 0, ¢ = 0.07, ug‘ = uﬁ) = uf@ =01, a=a= o = 0.1, and all the
other parameters equal to 1. (B) We consider (D, D4) = (0,1) as initial conditions and we set u4 = 0,
e = 0.1, p = 10, ,u, = 10, ué“ = ull = uf) = 0.1 and all the other parameters equal to 1. In all plots
u? = ki, (k3 Dior), ult = ki, / (k4 Diot) for i € {1,2}.

Figure P: Stationary probability distribution of the chromatin modification circuit with no
external inputs (u? = uff = ul' = 0 and v = uf) = ul} = up small) and all the parameters
with the same order of magnitude. The stationary distribution of our system, represented by the
circuit in Fig 3A, obtained computationally. The stationary distributions are obtained by simulating the
system of reactions listed in Table K with the SSA and we indicate with n® the total number of nucleosomes
characterized by repressive chromatin modifications, that is n® = nf + nf + nf,. The parameter values of
each regime are listed in Table K. In particular, we set u? = uff = uff = 0 and ué =uf =ull =0.1,e=1,

6/=1,;A:1,,u,=13nda:d:a/=1.
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Figure Q: How the parameter ¢ affects the stationary probability distribution of the chromatin
modification circuit. The stationary distribution of our system, represented by the circuit in Fig 3A,
obtained computationally. The stationary distributions are obtained by simulating the system of reactions
listed in Table L with the SSA and we indicate With n® the total number of nucleosomes characterized by
repressive chromatin modifications, that is nft = n;l +nd 4+ nft. In particular, defining the reaction volume
as 2, we consider three different cases, € < 1, ¢ =1 and € > 1, and for each case we determine how
decreasing € (by decreasing & + ki or increasing k4, /) affect the stationary probability distribution of the
system. The parameter values of each regime are listed in Table L. In particular, for the parameter regime
€ < 1 we consider € = 0.16,0.12,0.02,0.002 and ¢ = 0.2 for the distribution in which we decrease § + l_cg
and € = 0.16,0.12,0.02,0.002 and € = 0.2,0.17,0.025,0.0025 for the distribution in which we increase kAA/I/Q;
for the parameter regime ¢ =1 we consider ¢ = 0.19,0.12,0.02,0.002 and ¢ =1 for both cases and for the
parameter regime € > 1 we consider € = 0.36,0.12,0.02,0.002 and ¢ = 10 for both cases.
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Figure R: How the parameters e, ,u,, u” and u” affect the stationary probability distribution
of the chromatin modification circuit. The stationary distributions are obtained by simulating the
system of reactions listed in Fig 3A with the SSA and we indicate with n* the total number of nucleosomes
characterized by repressive chromatin modifications, that is nft = nf + nf +nf,. (A) We consider three
values of € (e = 0.19,0.12,0.02) and five values of y’ (u = 10,1.2,1,0.8,0.1). (B) We consider € = 0.12, two
values of 11 (= 1,0.8) and, in the plots above, three values of u* = 0,0.07,1 and in the plots below three
values of u? (uff = 0,0.05,1), in which v = uff = uf’. The parameter values of each regime are listed in
Table M. For all the simulations we consider « = @ = o = 0.2, € =1and u =1 (Figs S-T show different
values of € and 1) and we decrease € by decreasing J + l_fg (similar results can be obtained if we change €
by varying k4, as shown in Fig Q).
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Figure S: How the parameters u and ul affect the stationary probability distribution of the
chromatin modification circuit for different values of ¢ . The stationary distribution of our system,
represented by the circuit in Fig 3A, obtained computationally. The stationary distributions are obtained
by simulating the system of reactions listed in Table N with the SSA and we indicate with n® the total
number of nucleosomes characterized by repressive chromatin modifications, that is nf = nft + nlt + nft.
We consider three different cases, € < 1, € =land e > 1, and for each case we determine, for two values
of € (¢ =0.12,0.02), how u and ,u' affect the stationary probability distribution of the system. In particular,
we consider two values of u (u = 1,10) and three values of x’ (i = 0.1,1,10). For all the simulations we
consider « = @ =o' = 0.2. The parameter values of each regime are listed in Table N.
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Figure T: How the parameter u* and u” affect the stationary probability distribution of the
chromatin modification circuit for different values of ¢ . The stationary distribution of our system,
represented by the circuit in Fig 3A, obtained computationally. The stationary distributions are obtained
by simulating the system of reactions listed in Table O with the SSA and we indicate with n* the total
number of nucleosomes characterized by repressive chromatin modifications, that is nf = nft + nlt + nft.
We consider, for two different regimes of € (€ = 0.2 and € = 10), e = 0.12, . = 1, two values of z
(1 = 1,0.8) and, in the plots above, three values of u” (u = 0,0.07,1) and in the plots below three values
of uft (uf* =0,0.05,1). For all the simulations we consider o = & = o =0.2. The parameter values of each
regime are listed in Table O.
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Figure U: The effect of € < € on the stationary probability distribution of the chromatin
modification circuit. The stationary distribution of our system, represented by the circuit in Fig 3A,
obtained computationally. The stationary distributions are obtained by simulating the system of reactions
listed in Table P with the SSA and we indicate with n* the total number of nucleosomes characterized by
repressive chromatin modifications, that is nf* = nff + nf + nf. We set ¢ = 0.12, ul =1, p =1 and we

consider four values of ¢ (e/ =1,0.12,0.01,0.001). The parameter values of each regime are listed in Table
P.
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Figure V: How the key parameters affect the time to memory loss of the active and repressed
state of the chromatin modification circuit for different values of ¢ . The plots on the left side
are related to the time to memory loss of the repressed state. In particular, we indicate with n® the total
number of nucleosomes characterized by repressive chromatin modifications, that is nf* = nff + nf +nf, and
we plot, for several values of ¢, ,u/ and € , the time trajectories of system starting from a repressed chromatin
state n? = 5, nff = nf = nf}, = 15 and we stop the simulation when the trajectory reaches n* = 6 for
the first time. The plots on the right side are related to the time to memory loss of the active state and in
this case we plot, for several values of ¢, ,ul and el, the time trajectories of system starting from an active
chromatin state n* = 45, nf, = 5 and we stop the simulation when the trajectory reaches n* = 6 for the

A
first time. In all the plots on the x axis we have the time normalized with respect to %‘”Dtot. The parameter

values of each panel are listed in Table Q. In particular, we consider ¢ = 0.36,0.12, ,u/ =1,0.5, p =1 and
€ =0.4,1,10. In each panel, the number of trajectories plotted is 10.
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Figure W: How the key parameters affect the reactivation of repressed chromatin state for
different values of ¢ . Time trajectories of system starting from n® = 45n4 = 5 and considering an input
u? that, at steady state, leads to a unimodal distribution in the proximity of the active chromatin state
n? = Dyot. The parameter values of each panel are listed in Table R. In particular, we set u* = 1.62 and we
consider two values of i’ (1 = 0.6,0.2), two values of € (¢ = 0.48,0.16) and three values of € (¢ =5,1,0.3).
In each panel, the number of trajectories plotted is 10.
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Figure X: Time trajectories of D4 for different values of ¢, ,u/ and p. We set u? = 20, uf' =

€ =1 € =5
‘l s
DA(r)
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time T 50
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1
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1
DA(7)
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R=ull=01,a=a= o =1 and realize several time trajectories of DA for different values of ul, I, €

Ujp =

and € , starting from D4(0) = 0.1, D®(0) = 0.9. In all the plots on the z axis we have the normalized time
A

k
T = tﬁMDtofn
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Figure Y: Effect of e and ' on the the silencing and reactivation processes. (A) Graph representing
the % of reprogrammed cells (% of time trajectories, starting from n* = 0, that reach n4 > 40) as function
of time for two different values of e. (B)-(C) Time trajectories obtained by simulating the system of reactions
= 0,n* = 50. The parameter values of each panel are
listed in Table S. In particular, we set s = 0.2, u =1 and € =1, e = 0.03 in (B) and e = 0.05 in (C). (D)
Graph representing the % of reprogrammed cells (% of time trajectories, starting from n = 0, that reach
n? > 40) as function of time for two different values of 1. (E)-(F) Time trajectories obtained by simulating
the system of reactions listed in Table S with the SSA, starting from n* = 0,n* = 50. The parameter values
of each panel are listed in Table S. In particular, we set ¢ = 0.03, p = 1 and € = 1, // = 0.2 in (E) and

listed in Table S with the SSA, starting from n'

p =05 in (F).
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6 Tables

It is important to point out that Do represents the total number of nucleosomes in a gene. Since
we can assume about one nucleosome per 200 pb [66](Chapter 4) and we can assume that an
average gene spans 10,000-20,000 bp [67], D¢ot can be considered on average between 50 and 100.
In particular, in our computational analysis we consider Dy = 50.
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R; Reaction Prop.Func.(a;) Param. Value (h7!) Value (h™!)

Fig 4A Fig 4B
1 D, pa ay = kf}onP ki 3.5 3.5
ki)
2 D 2%, DA as = k{?‘,nD k{% 0 0, 50 (upper plots)
0 0 (lower plots)
3 DA *> D az = kijn? ki 4.7,0.5 3
4 DA D ay = on? ) 4.7,0.5 3
A
5 DDA, pA g pa aS:WnD A L 1 1
A
6 DA+DRE,DiDR g — 2 pAnk L 1 1
K A
7 DA4DR L D4DR g = 5nAnu L 1 1
ka3 A
8 DA+DEELD4DE  ag = SEndnf L 1 1
ki k4 ki
9 DA+DE - D+DE  ag = -Entnll = 1 1
K}
10 D M D} ayg = kiyon? ko 3.5 3.5
1 D L> D} ay = kiy nP kly 0 0 (upper plots)
0 0, 50 (lower plots)
kp / '
12 DR D ars = kpnft kp 4.7, 0.5 (upper plots) 2.4
4.7, 0.47 (lower plots)
13 DR 2.p a3 = d'nft 5 4.7, 0.5 (upper plots) 2.4
4.7, 0.47 (lower plots)
14 D+DE2LDRADE  ay = anPnk 0.2 0.2
k‘,/ ! ’
15 D+DR 2L DR4DE a5 = funPnf A 0.2 0.2
Ky o -
16 DR+4+DA -5 D+DA alg = %n{?’n/‘ k& 1 (upper plots) 1,0.8
1,0.1 (lower plots)
17 p H, D} ary = kP ko 3.5 3.5
K2
18 D% DE ars = kP k2, 0 0 (upper plots)
0 0, 50 (lower plots)
19 DR *> D arg = kfinf kR 4.7, 0.5 (upper plots) 3
4.7 (lower plots)
20 DR LI ) ay = onf 5 4.7, 0.5 (upper plots) 3
4.7 (lower plots)
21 D+D} % DE4+DE gy = Bunlnf  ku 0.2 0.2
22 D+D} 2L DE4DR, gy = ’ff—;npnﬁ ’% 0.2 0.2
23 D4DRELDEYDR gy = EupPpk  ku 0.2 0.2
20 D+DEBLDELDR  an = BeaPnf R 0.2 0.2
95 DF4DAN DDA gy = it 1 1
K2 ; .
26 DY % DY asg = ki ko 3.5 3.5
R _ _
27 DF, £, DR axr = kfnf kR 4.7, 0.5 (upper plots) 3
4.7 (lower plots)
28 DF ELEN D} ass = onfy 1) 4.7, 0.5 (upper plots) 3
4.7 (lower plots)
29 DR4DE L, DR 4 DR gy = Epfpk  ka 0.2 0.2
. k y >
30 DR+DR "5 DR +DY  az = Brnfnll LY 0.2 0.2
31 DR+DREL DR 4 DR gy = Eynfefo) by 0.2 0.2
Ex
32 DR+DE "5 DR+ DY azp = Brnfinll L 0.2 0.2
LR
33 D+ DA FELDRADA = Mot 1 1
34 DF % o DY azy = kfyonk kivo 3.5 3.5
k. / /
35 DF 5 D ags = kpnly kp 4.7, 0.5 (upper plots) 2.4
4.7, 0.47 (lower plots)
36 DF SLEN D} aze = &'l 5 4.7, 0.5 (upper plots) 2.4
4.7, 0.47 (lower plots)
37 DE4+DE DR DR gy = By rECioD Ky 0.2 0.2
K, _, ’
38 DE4+DR L DR 4 DR g = Srpfinf E 0.2 0.2
kot L I
39 D +DA 5 DRE4DA g = }%n{‘;n/‘ kg 1 (upper plots) 1,0.8

1,0.1 (lower plots)

Table A: Reactions and parameter values used to generate the plots in Fig 4A,4B.
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R, Reaction Prop.Func.(a;) Param. Value (h™!) Value (h7')

Fig 4C Fig 4D
ki
1 D% DpA a1 = kiyon? Ko 5 5
kY A A
2 DD = kitnP ki, 0 0
kg =
3 DA 5D ag = kpn? k 9,3 9,3
4 DAsD ay = ont § 9,3 9,3
k._-’\ LA
5 D+ DA 25 DA £ DA as = 1};, nPnA % 1 1
‘G'A A A
6 DA+DEE,D4DE ag = Endnf L} 1 1
ki A
7  DA+D¥ —2D+DY a7:anAanz kﬁE 1 1
kA A
8 DA+DR -, D+DE ag = QnAnR kﬁE 1 1
K !
9 DA + D}, —25 D + D}, ag = er nAnf kﬁr 1 1
ki,
10 D% DR ay = kiyon?” o 5 5
ki,
11 D L> D} ayy = kiynP ki 0 0
12 DR, p a1z = kpnft kp 9,45 9, 4.5 (left side)
3,15 3, 1.5 (right side)
13 DR2,D ayg = o'l 5 9,45 9, 4.5 (left side)
3,15 3, 1.5 (right side)
14 D4+DF 2L DRADE  ay = Eealnf A 0.2 0.2
K \
15 D+DE 2LDR4DE a5 =t nDn{g by 0.2 0.2
16 DR+DALL,DyDA g = kg nfipd A 1,05 1,05
k3,
b ‘:0 DY arr = kfjyon” Ko 5 5
18 D DR ars = kfnP k3, 0 0
2 _ -
19 DR LD ayg = kfinf kR 9,3 9,3
20 DF-24D ag = onk 5 9,3 9,3
21 D+DFELDRLDE oy = EpPnf  kx 0.2 0.2
22 D+DR ML DRIDR gy = Euplpl A 0.2 0.2
23 D+DF L DRIDR gy = RappR Ry 0.2 0.2
24 D+DR % DE4+DE, gy = Runlnl, A 0.2 0.2
25 DE+DA DDA gy — Ly A 1 1
k2 5 5
26 DE % tw DY ass = kjyonf Ko 5 5
k —
27 DY, % D} asr = kEnfy kR 9,3 9,3
28 DR 2, DR ass = onf, 5 9,3 9,3
29 Df‘ +DR k” DR + DR agy = ’%‘L’n{?ng % 0.2 0.2
30 DR+DR BLDR DR gy = Buphnl Ry 0.2 0.2
31 DR4+DRIM, DR DR gy = %L”f D By 0.2 0.2
32 DRDR DR DR gy = Bepfinfy R 0.2 0.2
R R
33 DR 4+DA L, DRyDA gy — B plina ke 1 1
kel
34 DR % DR agy = klyonk iyo 5 5
k ’ ’
35 D, — DR ags = kpnly k. 9,4.5 9, 4.5 (left side)
3,1 3, 1.5 (right side)
36 DR -2 DR ase = o'nll 5 9,45 9, 4.5 (left side)
3,15 3, 1.5 (right side)
37 DF+DF 5 DR DR gy = GpnfCfD hy 0.2 0.2
K, § ;
38 DR+ DR ;> D{g +DR, agg = Suplinf u 0.2 0.2
39 DR +DA L DE4DA  agy = Hafipt M 1,05 1,05

Table B: Reactions and parameter values used to generate the plots in Fig 4C,4D.

88



R; Reaction Prop.Func.(a;) Param. Value (h™!)

ki,
1 D-'%DpA a1 = kion? Ko 5
2 D —> DA a = kijn? K, 160
3 DA i» D az = kEn l}g 4,6
4 DA L D ay = onA s 46
A A
5 D+ DA DA + DA as = %nDnA %’ 1
1 A A
6 DA4+DR —)" D+ D} ag = hn"nR %’" 1
ki A
7 DA+DE —>: D+ D}, ay = & Eninl, %" 1
k A
8 D* + D} —)E1 D + D} ag = %n“‘n? %" 1
k4 LA LA
9 DA + D}, > D+ DY ag = %?nAn{‘; %" 1
10 Dty DY aio = kiyon? ko 5
ki,
1 D L> D ay = kiynP Kk, 0
12 DRltr,p a2 = kpnft ko 0.4,0.6
13 DR 5—) D a1g = o'nft § 0.4,0.6
14 D+DE2LDRADE  ay i 0.2
R v, DR Ky
15 D+DR 2LDR4DR a5 o 0.2
Kl T
16 DE+DY =5 D4 DY g = s 0.1
17 Dty DY a7 ko 5
k3,
18 D L> D} ars k2, 0
19 DF *> D ag kR 4,6
20 DR HLEN D as 5 4.6
21 D+D}F PLDR4DRE  ay L 0.2
22 D+DL AL DE4DE  ax by 0.2
23 D+DRELDEYDR gy by 0.2
24 D+DY B DRYDE gy Ey 0.2
2 Df+DA M DEDA ay = % 1
26 D % Kivo DY, as ko 5
k' — _
27 DF, £ DR axr = kBnf, KR 4,6
28 DY —1, DR ags = onk, 5 46
29 DR+ DR £y "k" DR+ DF gy = Rnfinkl  ku 0.2
30 DP+DR 2L DR DR ay = k&’n] nih Eu 0.2
31 DR+DR B DR DR gy = By mied SE! By 0.2
32 DR+DR S5 DR DR g = %anRQ Ey 0.2
33 DR +DA ML DR DA gy = HEmaa M 1
ki,
34 D % DR azq = klyonk Eiyo 5
k ’ ’
35 DR — DE ass = kynfy kp 0.4,0.6
36 DR DR ase = o'k 5 0.4,0.6
37 DF4+DE DR 4 DE gy = Syerfefn Ky 0.2
38 DR+DY ‘—'» D, + DR ags = g; nfinty b 0.2
kgt >
39 DR 4+DA L, DRy DA gy = ﬁTnFQnA Led 0.1

Table C: Reactions and parameter values used to generate the plots in Fig 4F.
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Param. Value Value Value Value
1%t plot 27 plot  37% plot 4" plot

ug) 0.001  0.001 0.001 0.001
ut 0 0 0 0

ull 0.001  0.001 0.001 0.001
ult 0 0 0 0

o 1 1 1 1

€ 3 0.3 0.3 0.3

¢ 0.3 0.3 0.3 0.3

b 1 1 1 1

m 1 1 0.1 2

Table D: Parameter values relative to the plots in Fig D, going from left to right.

Param. Value

DE(©0) 0.3
DA(0) 0.7
uf 0.1
uf 0
ufl 0.1
ul 0
o 1
¢ 0, 0.1, 0.01
c 1

b 1
o 1

Table E: Parameter values relative to the plots in Fig E.
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R; Reaction Prop.Func.(a;) Param. Value (h71) Value (h™1)

Fig FA Fig FB
kA
1 D % DA a; = k‘{}/onD k‘{;‘vo 5 5
k
2 D % DA as = k{j‘VnD k{j}, 0 0, 5, 50 (upper plots)
0 0 (lower plots)
id _ _
3 DA%D a3 = kiin4 k4 10,5,0.5 2.5
§
4 DA5D ay = on? 5 10,5,0.5 25
A R _*& R kp A R kR
5 D*+D" —D+D as = 4nn = 1 1
kA LA LA
6 D+ DA M, DA + DA ag = %”DnA kgl{! 1 1
kR
7 D-%DR ar = kfton? ko 5 5
kf
3 D %, DR as = kfnP k&, 0 0 (upper plots)
0 0, 5, 50 (lower plots)
k2 _ ~
9 DR ZE,D ag = kfnf kE 100, 12, 10, 8.3, 0.1(left plots) 2.5, 2.075
50, 6.5, 5, 4.15, 0.05(central plots)
5, 0.65, 0.5, 0.415, 0.005(right plots)
10 DR, D ai = onk 5 10,5,0.5 2.5, 2.075
kR R R
11 DR4DAE, DDA ay = SEnfind B2 10, 1.2, 1, 0.83, 0.1 1,0.83
kR
12 D+DR L DR DR g, = BipDpr KL 1 1

Table F: Reactions and parameter values used to generate the plots in Fig F.

R, Reaction Prop.Func.(a;) Param. Value (h7!) Value (h™!) Value (h™!) Value (h™!) Value (h7!) Value (h™!)
1%t plots 274 plots 37 plots 4" plots 5t plots 6" plots

1 p o pa a1 = kiyon? Kb 5 5 5 5 5 5

2 DA, pa ay = kiynP kY, 0 0 0 0 0 0

3 pAlEp a3 = kpnt ki 5,2.5,05,005 5 10, 5,0.5,0.05 5 12.5,5, 0.5, 0.05 5

4 pr 5D ag = ont ) 5,2.5,0.5, 005 5 10, 5, 0.5, 0.05 5 12.5,5,0.5,0.05 5

5 DALDRE,pipR g = kg K 0.2 0.2 1 05, 1,10, 100 10 4, 10, 100, 1000
6 DDA ALY g = g—?fn”n" % 1 1,2,10,100 1 0.5,1, 10,100 1 0.4, 1, 10, 100
7 D ”?A) DR a7 = kt{f;OHU k{f,o 5 5 5 5 5 5

§ D, pr as = kfin? Kl 0 0 0 0 0 0

9 DR’ p ag = kfinf k# 5,2.5,05,005 5 10, 5, 0.5, 0.05 5 5, 0.5, 0.05 5

10 D24 D aip = onft ) 5,2.5,0.5, 005 5 10, 5, 0.5, 0.05 5 12.5,5,0.5,0.05 5

11 DDA pypr gy = Hamga K 0.2 0.2 1 0.5,1,10,100 10 4,10, 100, 1000
12 DD DRy DR gy, = %nﬁn’f % 1 1,2,10,100 1 0.5,1, 10,100 1 0.4, 1, 10, 100

Table G: Reactions and parameter values used to generate the plots in Fig G, going
from the top to the bottom.
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R; Reaction Prop.Func.(a;) Param. Value (h™!) Value (h™') Value (h7!)
left plots central plots  right plots

1 D i, pa ay = kP Eibo 5 5 5

2 DA, pa as = k{inP ki, 0 0 0

3 pr i p a3 = kipn? kg 5,0.5 5,0.5 5, 0.5

4 DM ,D ag = onA b 5,05 5,05 5,05

5 DA4+DR i D+DR a5 = Spaph 5 0.2 1 10

6 D+l DA M, DA L DA g = BipDpa B 1 1 1

7 D, pr a7 = kffonP kB, 5 5 5

g D, pr ag = kfin? KE 0 0 0

9 DR k—E> D ag = kEnf kE 50, 5, 0.5 50, 5, 0.5 50, 5, 0.5 (left plots)
5,0.5,0.05  5,0.5,0.05  5,0.5, 0.05 (right plots)

10 DR2.D ai = onk 5, 0.5 5,0.5 5,0.5

11 DR+DA i D+DA ay = HEnfnd  EE 2,02,002  10,1,01 100,10, 1

12 D4+DR M, DR DR gy = Hipopr M 1 1 1

Table H: Reactions and parameter values used to generate the plots in Fig H.

R; Reaction Prop.Func.(a;) Param. Value (h™!) Value (h7!)
left plots right plots
1 D ﬂ) a1 = k{j‘VOnD k{j‘vo 5 5
2 pln, 2 = kijn” ki, 0, 5, 50 0, 5, 50 (upper plots)
0 0 (lower plots)
3 pr i p a3 = kfnA k4 2.5 2.5
4 DMN24D as = onA 5 2.5 2.5
5 DA+DR i D+DR a5 = "ptpk 2 0.2 10
6 D+l DA S, DAL DA g = EpDpa  E 1 1
7 DM, pr ar = kifonP k&, 5 5
8 D as = kiinP kR, 0 0 (upper plots)
0, 5, 50 0, 5, 50 (lower plots)
9 DR i D ag = kEnf kE 2.5,2.075 2.5,2.075
10 DR-5D ay = onk 2.5 2.5
11 DR4DA i D+DA gy = tEpRpa K 0.2,0.166 10,8.3
12 D+DR X DR DR gy = Hipopr M 1 1

Table I: Reactions and parameter values used to generate the plots in Fig I.
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Param. Value

DE(0) 0.7
DA(0) 03
'11,64 0.1
uh 0
uﬁ) 0.1
u{? 0
ul 0.1
ul 0
a 1
a 1
o 1
€ 1, 0.1, 0.01
c 1
b 1
7 1
B 1
i 1

Table J: Parameter values relative to the plots in Fig J.
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R; Reaction Prop.Func.(a;) Param. Value (h7!)
Fivo, A A D A
1 D2 p a1 = kion Ko 3.5
2 D *> DA as = k{inP kil 0
3 DA *> D a3 = kpn? kg 25
4 DA %, D ay = on? 0 25
LA
5 D+DAILDALDA gy = Hippa L 1
.A LA
6 DALDEEiDiDR = tnanl i 1
kg kA kA
A 3 LA L
7 D +D¥2%>D+D§‘2 a7 = &nnlh = 1
kA A A
8 DA 4 D} _EA> D+ D} ag = %EnAnf %E 1
k A A
9 DA+DR 2 D+DY ag:%n"‘n{"z % 1
10 D '”L% D} at0 = Klygn? Ky 35
1 plh, D} ayy = kiyn? kl, 0
ko , '
12 DD arg = kypnff ko 25
13 DR25D aig = §'nk 5 25
’C/, U ’
14 D+DF i)D{H»Dg‘ an = SnPnf B 1
15 D+DE —> DRE4DY, a5 = Salnf,  Ax 1
16 DR + DA L} D+ DA alg = kg; n‘fin’/1 kn* 1
17 p S, D} ar7 = kP ko 3.5
k2, 5 5
18 D% DR ars = knP k%, 0
19 D? —) D ayg = kEnf kR 25
20 DF 5D as = onk 5 25
21 D+DR Far DR+DR as = k’nﬁnDng % 1
22 D+ DR 25 kar DY + DR ag = %nun{‘; % 1
23 D+DR Fas DR+DR asy = %nDn{? % 1
2 D+DR 2L DELDE gy = EynPuly 1
R R
25 DR +DA —) D+ DA agss = %ngn/‘ %3 1
k3
26 D % DR aze = kot ko 3.5
kR - _
27 DF, = DR az; = kfnf kR 25
28 DY - DR ass = onl} 5 2
20 D +Df 25 b DY, + D} age = Byaftnlt  hw 0.2
30 D{{ + DR kar D{{z + D12 azy = %'n{{nﬁ %,
R R_
31 DR4+DREL DR 4 DR gy = Eyofefo kb 1
k) 3
32 DR+DR, 25 DR+ DY, ag = Balinfl, A 1
33 DY +DA—>DR+DA agy = Lnlint A 1
34 DR % Hiro DY, azq = kiyond ko 3.5
k ’ ’
35 DF, — DE ags = kpnty ko 25
36 DY - DR ags = &'nl} 5 2
K, t nR(nE_ !
37 DE+DE *w" D+ DF gy = RprnaCesl) by 1
K, k)
38 DR+DR —> DR + DY, ass = Jtnfinlh u 1
k2 K
39 D +DA LN DE+DA  agy = Enfhnt + 1

Table K: Reactions and parameter values used to generate the plots in Fig P.

94



R, Reaction Prop.Func.(a¢;) Param. Value (h™!) Value (h7!) Value (h™1) Value (h7!) Value (h™!) Value (h7!)

1% plots 24 plots 37 plots 4" plots 5! plots 6 plots
1 Dl pa a1 = kij,gn? ko 3.5 3.5 3.5 3.5 3.5 3.5
2 pli,pa az = kijn? ki), 0 0 0 0 0 0
3 prlEp az = kpn? kb 4,3,05,0.05 4 4.7,3,0.5,0.05 4.7 9,3,0.5, 005 9
4+ DA D as = on? 5 4,3,05,005 4 4.7,3,05,0.05 4.7 9,3,0.5,005 9
5 DiDAMLpAipr g - Migopa M 1 1,133, 8, 80 1 1, 157, 9.4, 94 1 1,3, 18, 180
6 DA+DR f—‘A‘Q D+ D} ag = %Ew*n{‘ % 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800
7 DA+DR L +DF, a7 = kT’n nfh % 0.2 0.2 1 1,1.57,94, 94 10 10, 30, 180, 1800
8 DA+DR N D + D} ag = %571 Anft % 0.2 0.2 1 1,1.57,9.4, 94 10 10, 30, 180, 1800
9  DA+DE i> D+DE  ag= ﬁln%{g % 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800
10 Dt D} a1 = kjyn? Kiyo 3.5 3.5 3.5 3.5 3.5 3.5
11 D 'l» D} ary = kiyn” Ky 0 0 0 0 0 0
12 DR Ly arz = kynft kp 4,3,05,005 4 4.7,3,0.5,0.05 4.7 9,3,0.5, 005 9
13 D} L» D ayy = o'nfl 5 4,3,05,005 4 4.7,3,05,0.05 4.7 9,3,0.5,005 9
14 D+ DR DI + D ay = ﬁfn ndt L,;i 0.2 0.2, 0.266, 1.6, 16 0.2 0.2,0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36
15 D+ DE - “‘ DR +DE, a5 = %‘r bl %‘f 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 188 0.2 0.2, 0.6, 3.6, 36
16 DR +DA M, pypa ag = (; nfind ‘Q 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800
17 DA, D} a7 = kfjn” k2 3.5 3.5 3.5 3.5 3.5 3.5
18 D i DE as = kfjnP k3, 0 0 0 0 0 0
19 D§ ~—> D kR 4,3,05,0.05 4 4.7, 3,0.5,0.05 4.7 9,3,0.5,005 9
20 D} ->D 5 4,3,05,005 4 4.7,3,05,0.05 4.7 9,3,0.5,005 9
21 D+DF L kar D} + D nPnl Far 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36
22 D+ DY, 24, DR 4 DR, nPnfy Eu 0.2 0.2, 0.266, 1.6, 16 0.2 0.2,0.314, 1.88, 18.8 0.2 0.2,0.6, 3
23 D+DR 2L Fa D} + D} ag3 = EnPnft ’% 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3
24 D+Df, =5 Fur DE+DR, a4 = *Tn nfh By 0.2 0.2, 0.266, 1.6, 16 0.2 0.2,0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36
25 DR + DA —> D+ DA ass = %gngnA %-'”f 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800
26 DIt 1% Kivo DY, aze = kfjonft ko 3.5 3.5 3.5 3.5 3.5 3.5
27 D}, %o k D} ax = kfnfy kR 4,3,05,005 4 4.7,3,05,0.05 4.7 9,3,0.5,005 9
28 DY, N D} azs = onlh § 4,3,05,0.05 4 4.7,3,0.5,0.05 4.7 9,3,0.5,005 9
29 DI+ DR -4 I DY, + DE gy = Barpfint Ea 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36
30 DR+ DF, 54, DR 4 DR Ea 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36
31 D} +DR 2, Fa D}, + DR Far 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.
32 D +DE Far, DY, + D}, by 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36
33 D, +D* L» DIt + DA "ﬁg 0.2 0.2 1 1, 1.57, 9.4, 94 10 10, 30, 180, 1800
34 DR % Hiro DE, azy = Ko 3.5 3.5 3.5 3.5 3.5 3.5
35 DY, L} D} ass kp 4,3,05,0.05 4 4.7, 3,05, 0.05 4.7 9,3,0.5,005 9
36 DY, AN DR aze 5 4,3,05,005 4 4.7,3,05,0.05 4.7 9,3,0.5,005 9
37 DR+ DR D, + DY azr = L,;i 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 18.8 0.2 0.2, 0.6, 3.6, 36
38 DR +DF, ‘—> DY, + DY, ags = #nfﬂﬁz %L 0.2 0.2, 0.266, 1.6, 16 0.2 0.2, 0.314, 1.88, 188 0.2 0.2, 0.6, 3.6, 36
30 DB DA ML, DR DA gy = e nfynA "Q 0.2 0.2 1 1,1.57, 9.4, 94 10 10, 30, 180, 1800

Table L: Reactions and parameter values used to generate the plots in Fig Q, going
from the top to the bottom.
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R; Reaction Prop.Func.(a;) Param. Value (h™!) Value (h™!)

Fig RA Fig RB
ki
1 D % DA a1 = kiyon? Ko 35 3.5
K
2 DDA az = k{inP kil 0 0, 3.5, 50 (upper plots)
0 0 (lower plots)
A . .
3 DM %D ag = kpn? kg 4.7,3,0.5 3
4 pr 24D as = onA 5 47,3,05 3
. A K A LA Ky DA kg
5 D+D* = D*+D az = ~4n"n & 1 1
ki A A
6 D +Df=5D+Df  ag= MopAnR o 1 1
kg A A
7 DA + DY, —£5 D + D}, ar = kﬁEnAn{{z ’?{ 1 1
ki 4 o
8 DA+DF 5D+ DR ag = %En“nf %E 1 1
ki A
9 DA4DE EsD4DE  ay = ndnf o 1 1
kL
10 D% DR ayo = kjon?” ko 3.5 3.5
Kl
1 D% DR ay = kiynP kL, 0 0 (upper plots)
0 0, 2.5, 50 (lower plots)

Ky ,
12 DD a1y = kpnft K 47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4
30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)
47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4

30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)

13 DR LN ) aj3 = d'nf 0

~
£~
S}
N3
=

k) :
14 D+DE} % DF + DR ayy = JnPn AL 0.2 0.2
15 D+DE 2L DRLDE a5 = Spbpl A 02 0.2
Kl e I
16 DE4DA DDA a5 = Hplina i 10,1.2,1,0.8,0.1 1,0.8
Ky
17 D% DR a7 = kP k2o 3.5 3.5
k2, 5
18 D DY arg = knP Kk, 0 0 (upper plots)
0 0, 2.5, 50 (lower plots)
;,H. — —
19 DfF D ayg = kfnf kR 4.7,3,0.5 3
20 DF 5D as = onk 5 47,3,05 3
21 D4+DEBLDRYDE  qy = BupDplt Au 0.2 0.2
22 D+DE PLDE4DE  an=falef A 0.2 0.2
23 D4+DRELDRY DR gy = BupDpk  Eu 0.2 0.2
24 D+DR B DRLDR gy = BupDpl Eu 0.2 0.2
KB R R
25 DR+DA -5 D+DA azs = kﬁEngn/t %f 1 1
k3, ;
26 DR % DR azs = kionf ko 3.5 3.5
iE . -
27 DR £, DR ayr = kinf} kR 4.7,3,0.5 3
28 DR, -, DR ags = onf, 5 47,3,05 3
20 DR4DE ML DR 4 DR gy = upfipl  ka 0.2 0.2
30 DF+DE MLDE DY am = Safafy, b 0.2 0.2
ki N RipR_
31 DF+DE S5 DR+ DY agy = Byl by 0.2 0.2
32 DR+4DR % DY, + DR, agp = Bupfnl, B 02 0.2
k R R
33 D+ DY =5 Df + DA agy = tEnfind A 1 1
kiy,
34 DR &> DY, azs = kiyon¥ ko 3.5 3.5
kg ’ ’
35 DF — DE ags = kpndy ko 47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4
30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)
36 DR, DR aze = 0 nl 5 47, 5.64, 4.7, 3.76, 0.47 (left plots) 3, 2.4

30, 3.6, 3, 2.4, 0.3 (central plots)
5, 0.6, 0.5, 0.4, 0.05 (right plots)

. Ky Ky nfinfi-1) &
37 DF+DR DR, + DR} ag = fu 3 (nF-1)  ky

: il Ky 0.2 0.2

38 DE4+DR, 2L DR 4 DR ag = frpfinl  ka 0.2 0.2
Kox /x %

30 DR +DA L DE4+DA g = Hnfina b 10,1.2,1,0.8,0.1 1,08

Table M: Reactions and parameter values used to generate the plots in Fig R.

96



R; Reaction Prop.Func.(a;) Param. Value (h™!) Value (h~!) Value (h~!) Value (h!) Value (h™!) Value (h™?)

upper side upper side upper side lower side lower side lower side
left plots central plots  right plots left plots central plots  right plots
ki,
1 D% pA ay = kilygn? kibo 3.5 3.5 3.5 3.5 35 3.5
K,
2 D L» DA az = k{yn? kil 0 0 0 0 0 0
3 prlip az = kpn? ki 3,05 5 3,05 3,05 3,05 3,05
4 DM 5D ay = ont 5 3,05 ) 3,05 3,05 3 3,0
kY "
5 D+DASLpALDA g = “annA L 1 1 1 1 1 1
o A
6 D +DF -5 D+DEF  ag= ﬂ L ke 0.2 1 10 0.2 1 10
7 DAEDE D iDE g = Ml kg 0.2 1 10 0.2 1 10
12 12 7 57 VN Q
A
8 DA+DRIE,D4DE g = EpAnl L 0.2 1 10 0.2 1 10
kA A
9 DA+DE-EDADY, g = Eptnf s 0.2 1 10 02 1 10
k)
10 D-*%DR ayo = kjygn? 3.5 3.5 3.5 3.5 3.5 3.5 3.5
K
11 D —5—> DR ayy = kjyn? Ky 0 0 0 0 0 0
12 D} Jrp az = kynlt ky 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 (left side)
505,005 5,05 005 505005 505005 505005 5 0.5 005 (right side)
13 DR25D a3 = §'nf 5 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 (left side)

5,0.5,005 505005 505005 505005 505005 5 05,005 (right side)

14 D+ DR DR+ DR 0.2 0.2 0.2 0.2 0.2 0.2

15 D+Df, L» D} + DY, i 0.2 0.2 0.2 0.2 0.2 0.2

16 DR +DA LN D+ DA *é 2,0.2,0.02 10,1,0.1 100,10,1 2,0.2,0.02 10,1,0.1 100,10,1

17 p e, Df ko 3.5 3.5 3.5 3.5 3.5 3.5

18 D, DE k2 0 0 0 0 0 0

19 D} i D kR 3,05 3,05 3,05 30,5 30,5 30,5

20 DD ) 3,05 3,05 3,05 3,05 3,05 3,05

21 D+DF ™, DE 4 D L 0.2 0.2 0.2 0.2 0.2 0.2

22 D+DE 2L DREADE  ap = BunPnf, kg 0.2 0.2 0.2 0.2 0.2 0.2

23 D4+DRMLDRIDR gy = ’”g nPnf Ry 0.2 0.2 0.2 0.2 0.2 0.2

2 D+Dh L DR4DR,  ag = EnPpl,  Ra 0.2 0.2 0.2 0.2 0.2 0.2

25 DR + DA E DDA = et B 0.2 1 10 2 10 100

26 DR % Hiro DY, azs = kfyonft ko 3.5 3.5 3.5 3.5 3.5 3.5

27 DY i D kR 3,05 3,05 3,05 30,5 30,5 30,5

28 DR 2, DR ) 3,05 3,05 3,05 3,05 3,05 3,05

29 Df'+Df =4 b D, + D ' 0.2 0.2 0.2 0.2 0.2 0.2

30 DR+ DR £, DR 4 DR b 0.2 0.2 0.2 0.2 0.2 0.2

31 DF 4 DR M, pR oy pR Ey 0.2 0.2 0.2 0.2 02 02

32 DR+ DR S, DR 4 DR, agy = Enfinfy Ey 0.2 0.2 0.2 0.2 0.2 0.2

33 DY, + pA M, Df+ DA ag = ﬁngnf‘ % 0.2 1 10 2 10 100

34 DR Hro DY, asy = klyon§ Kivo 3.5 3.5 3.5 3.5 3.5 3.5

35 D LN DY ass = kynfh kp 30,3,0.3 30,3,0.3 30,3,0.3 30,3,03 30,3,03 30, 3, 0.3 (left side)
505,005 505005 505005 505005 505005 5, 0.5 005 (right side)

36 D LN DY azs = 8 30,3,0.3 303,03 30, 3,03 30, 3, 0.3 30, 3, 0.3 30, 3, 0.3 (left side)
505,005 505005 505005 505005 505005 5 0.5 005 (right side)

37 DR+ DR DR +D}  ayr = % 0.2 0.2 0.2 0.2 0.2 0.2

38 DY +DE k—» DY, + DY ags = % 0.2 0.2 0.2 0.2 0.2 0.2

39 DE +DA A, DE4+DA gy = X ﬁlz 2,0.2,0.02 10,1,0.1 100,10,1 2,0.2,0.02 10,1,0.1 100,10,1

Table N: Reactions and parameter values used to generate the plots in Fig S.
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R; Reaction Prop.Func.(a;) Param. Value (h™!) Value (h7!)
left plots right plots
)
1 D % DA ay = kij;gn” Kivo 3.5 3.5
ki A
2 D % DA as = ké,nn ki 0, 3.5, 50 0, 3.5, 50 (upper plots)
0 0 (lower plots)
B _ _
3 DA D ag = kpn? Ep 3 3
4 DASLD as = onA 5 3 3
= A R A L pA Ky DA kY
5 D+DA 2L DALD 3 o 1 1
i A M
6 DA+DR —E: D+ D} = 0.2 10
kg o
7 DM4D§, 5 D4DE, s 0.2 10
8 DA4+D} 5 pypR L] 0.2 10
kA A
9 DU4DR 5 DD = Fatel L3 0.2 10
ki,
10 D % D} ayo = kjygn? Klyo 3.5 3.5
Ky
1 D% Dl} aj; = kllynD k{v 0 0 (upper plots)
0, 2.5, 50 0, 2.5, 50 (lower plots)
ke , ,
12 D} 5D ayy = kynf kp 3,24 3,24
13 DR25D a1y = 'kt 5 3,24 3,24
. . ,
14 D+DE L DR4DE  ay =tyalaf M 0.2 02
I ; ;
15 D+DR 2L DR4DE  apy=tunlel,  fu 0.2 0.2
16 DR +4DA L ppA as = ‘5 nlinA %' 0.2, 0.16 10, 8
k2 5
17 D %» D a7 = kygn? ko 3.5 3.5
Ky :
18 D5 DF ays = kn? k2, 0 0 (upper plots)
0, 2.5, 50 0, 2.5, 50 (lower plots)
19 DR p ay = kfinf 3 3
20 DF-5D az = onkt 3 3
21 D+DEF L DE4DE gy = BunPnf 0.2 0.2
2 D+Dh L DE4DR gy = BnPpf 0.2 0.2
23 D+DFLDREL DR gy = By Dyl 0.2 0.2
24 D4+DR, L DE4DE a4y = BnPnll 0.2 0.2
kB R
25 DRE4DA DDA gy = Aenlind 0.2 10
k2,
26 DF % DR az = konf 3.5 3.5
o
27 DR % DR ay = kfnfy 3 3
28 DR 2. DR asg = 3 3
20 DR4DREL DR DR gy = 0.2 0.2
30 DR+DE £ DR 4 DR gy = 0.2 0.2
31 DR4+DREL DR DR gy 0.2 0.2
32 DR4DE S5 DR 4 DY agy = Eynfinfl 0.2 0.2
33 DR DA B DRy DA gy = M e 0.2 10
ko,
34 DR % DR azq = kjyon§ 3.5 3.5
P
35 Df, %5 D§ ags 3,24 3,24
36 D, DR ase 3, 2.4 3, 2.4
F
37 DR+DF L DE+DE asr 0.2 0.2
.
38 DR +DF -5 DR, + DY ass 0.2 0.2
Ky
39 DR 4+DA L DE DA ayy = 0.2, 0.16 10, 8
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Table O: Reactions and parameter values used to generate the plots in Fig T.



R, Reaction Prop.Func.(a;)  Param. Value (h™!)
ki)
1 D-*%DA ay = kiyn” Kilo 3.5
5 plpa as = kijyn? ki 0
R
3 D*—5D a3 = kfin? ks 3
4 DA L» D ay = ont 5 3
o
5 D+DA‘ L, DA + DA 115:""nD7z4 % 1
o
6 DA4DR —E; D+DF  ag = EnAnf b 1,0.12,0.01,0.001
kg A A
7 DA4DE E,DyDR ar = EEatnl e 1,0.12,0.01,0.001
kf A A
8 DA4DF -5 D4+DE  ag= *;n/*nf Ll 1,0.12,0.01,0.001
K a
9 D N DR, 5 D+DE a9 = ﬁn Anfh s 1,0.12,0.01,0.001
10 D ﬂ) DY ao = kiyon? Kyvo 3.5
11 bt pr any = Kyn? Ky 0
Ky , 3
12 D} —T> D as = kpnfl kp 3
13 DR D a1g = o'kt 5 3
14 DDE L DRYDE ey = Ml R 0.2
15 D+DF 4 Kur D“ D8 as = aPnl 0.2
16 DE+DN DDA gy = Epfin ud 1,0.12,0.01,0.001
k2, 5
17 D% DR a7 = k'fmnn k‘?m 3.5
18 DA, pr arg = k3 nP 2 0
k - -
19 D¥ *} D arg = kin§ kR 3
20 D§ D asp = Jnf § 3
21 D+DF ML DEYDE gy = BynPnf  Ey 0.2
22 D+DR L DRE4DE  ap ky 0.2
23 D+DF L DR4DR gy 0.2
24 DD Ly D£‘+D12 0.2
25 DRE4DAELDiDA  ay 1,0.12,0.01,0.001
k2,
26 DR wo DR as 3.5
27 D§‘? LN DR ay 3
28 D DR as 3
29 DR+ DF S DR 4 DR gy 0.2
30 DR DR S pR L DR gy 0.2
31 DR4+DF A4 DR DR gy 0.2
32 DR+DE 4 DR 4 DR 4y 0.2
33 D{3+D" 2B DD g 1,0.12,0.01,0.001
34 DR Hro DE, azy = kiyond Ko 3.5
A‘ ’ ’
35 DE 4—’—> DR ags = kypnlh kp 3
36 DR 2 DR azs = §'nfy 3 3
o , ,
37 DE4+DF L DR ADR gy = %"y(”; D 0.2
o ;
38 DE4+DR 5 DR +DY as = Ky “Atndinfy k—“z’ 0.2
39 D+ DA ST, DE DA gy = Mafar A 1,0.12,0.01,0.001

Table P: Reactions and parameter values used to

parameter values with
in Fig 4E.

by _ kR
=4 =0a-=

1,0.001 h™!
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R, Reaction Prop.Func.(a;) Param. Value (h™!) Value (h™!)

left plots right plots
kb
1 D % DA ay = kiyon? Ko 5 5
ki
2 D L; DA az = kfyn? kil 0 0
3 DA, p a3 = kinA = 9,3 9,3
4 DA L> D ay = ont 5 9,3 9,3
5 D+DASLDALDA g = Migppa 1 1
A
6 DA+DR *p +DR g = MEpanl 2 0.4, 1, 10 0.4, 1, 10
ki A
7 DA+DR 5. D4DE,  ar = Endnk 2 0.4, 1, 10 0.4, 1, 10
ki A
8§ DA+DF-E:D+D  ax=Endnf o 0.4, 1, 10 0.4, 1, 10
) 4
9 DA+DE ED4DE  ag = "Endnll e 0.4, 1, 10 0.4, 1, 10
ki,
10 D% DR ayo = kiyon?” kivo 5 5
’Cw R 1
11 D—)Dl ay :kn nP kyy 0 0
12 pf,yp a1z = kpnft Ky 9,4.5 9, 4.5 (left side)
3,15 3, 1.5 (right side)
13 D} ) ary = d'nfl 5 9, 4.5 9, 4.5 (left side)
3, 1.5 3, 1.5 (right side)
14 D+DE2LDRADE  ay = mnDngf il 0.2 0.2
k J
15 D+D, 2L DE+DY, a5 = MnDn{g by 0.2 0.2
3 .
16 DR + DA L5 D+ DA ajg = kgl nfinA *g 0.4,02-1,05-105 0.4,0.2-1,0.5-105
17 D A, Df ary = kP ko 5 5
k2, -
18 D L‘: D} ais = knP K, 0 0
& _ _
19 DfF—%D ayg = kfinf kR 9,3 9,3
20 DRE5D asy = onft 5 9,3 9,3
21 D+DF L DR4DE gy = Eanlpll kw 0.2 0.2
22 D+4DR AL DRADE  ay = Enlply A 0.2 0.2
23 D+DRELDE4DR gy = ’W nPnft g 0.2 0.2
24 D+DR BLDRLDR gy = ’W nPnk,  Ex 0.2 0.2
. R
255 DF4DA DDAy = %n?n*‘ L 0.4, 1,10 0.4, 1,10
k3 5 .
26 DR % ‘f" DY, ass = k¥ ko 5 5
k - _
27 DY ? D} asr = kfnf kR 9,3 9,3
28 DF, —— D} ass = onfhy 5 9,3 9,3
29 DR 4 DR 2, fa DR 4+ DR agy = EunBpl k. 0.2 0.2
30 DR4DY, M DR 4 DR ag = unfin, B 0.2 0.2
. R(p,R_ .
31 DR4DRHL DR DR gy = B D Ry 0.2 0.2
32 DR+DR 2L DR DY ap = Eenfnf, I 0.2 0.2
R R
33 DR +DA KE, DR+ DA agy = "Enlind L 0.4, 1, 10 0.4, 1, 10
34 DY fivo DR, azs = kiyond! Kiyvo 5 g
k ’
35 DI — DF ags = kynfy k. 9,45 9, 4.5 (left side)
3, 1.5 3, 1.5 (right side)
36 DL, DR ase = o'l 5 9,45 9, 4.5 (left side)
3, 1.5 3, 1.5 (right side)
37 DE+DF L DR 4 DRy = it 0.2 0.2
. S
38 DR +DR HD{{Z+DH ass L 0.2 0.2
39 DR +DA T DRLDA gy = i 0.4,02-105-105 04,02-1,05-105

Table Q: Reactions and parameter values used to generate the plots in Fig V.
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R, Reaction Prop.Func.(a;) Param. Value (h™!) Value (h™!) Value (h7})
lower plots upper plots upper plots

left plots right plots

1 D '“”% DA ay = kiyyn” Eivo 5 5 5

2 p ¥, pa az = kfinP ki) 81 81 81

3 DA i> D ag = kpn? K 12, 4 12,4 12, 4

4 DA L> D ay = onA 5 12, 4 12,4 12, 4

5 D+DA L, DA + DA a;,:%“annA %1/“1 1 1 1

6 DAYDRE D iDR g = ks kg 1 0.3 5

7 DADRE DD ar = Eatnf kg 1 0.3 5

8 DA4DEE,DyDE g - —nAnR kg 1 0.3 5

9 DA+Df DD ag = MEndnf L 1 0.3 5

10 D M, pr a1 = klygn? ko 5 5 5

1 D l> D} a = kfyn? ki, 0 0 0

12 prTyp ary = kymft kh 7.2,24 7.2,24 7.2, 2.4 (left side)
2.4,0.8 2.4, 0.8 2.4, 0.8 (right side)

13 DR “p ayg = 6'nlt 5 72,24 7.2,2.4 7.2, 2.4 (left side)
24,08 24,08 2.4, 0.8 (right side)

14 D+ DR D} + D} apy = M nDnR kéy 0.2 0.2 0.2

15 D+D} '”—> DE+DR, a5 = ﬁynf’n{g Ky 0.2 0.2 0.2

16 DR4+DA L, DADA gy = %nfn“‘ ‘5 0.6, 0.2 0.18, 0.06 3,1

17 D o, pr arr = Kypgn® Ky 5 5 5

18 D, pE ars = k3P i3 0 0 0

19 DR k—E> D arg = kfinf k% 12, 4 12,4 12, 4

20 DF-5D azo = onkt ) 12, 4 12,4 12, 4

21 D+DFBLDR4DE gy = Eunlplt kw 0.2 0.2 0.2

22 D+DL AL DR4DE  am = ’”é’nDnﬁ L 0.2 0.2 0.2

23 D+DREELDRLDR gy = EupPpR Eu 0.2 0.2 0.2

24 D4DY B, DDy = bupbpk Ry 0.2 0.2 0.2

25 DEDAE DDA gy = H s L 1 0.3 5

26 DY B, DY, 2 ko 5 5 5

27 DY i D} kR 12, 4 12, 4 12, 4

28 DR, -5 DR b 12, 4 12, 4 12,4

29 DR +DR 2L b DE, + D§ by 0.2 0.2 0.2

30 DR+ DR S, DR 4 DR LIt 0.2 0.2 0.2

31 DR+ DR, DR 4 DR by 0.2 0.2 0.2

32 DRy DE ™, pR DR Ex 0.2 0.2 0.2

33 DR 4+ DA Y, Ry pA L 1 0.3 5

34 DR Mo, pr kbyvo 5 5 5

35 DY LN Df ke 7.2,24 72,24 7.2, 2.4 (left side)
24,08 24,08 2.4, 0.8 (right side)

36 DY <, D} aze = &'l ' 7.2, 2.4 7.2, 2.4 7.2, 2.4 (left side)
24,08 24,08 2.4, 0.8 (right side)

57 DR+ DF DR 4 DR ay Ky 0.2 0.2 0.2

38 DE+ DB L> DY, + DY as = Enfinf,  Au 0.2 0.2 0.2

39 DR +DA L DE 4 DA agy = Lfln{gm ";Z 0.6,0.2 0.18, 0.06 3,1

Table R: Reactions and parameter values used to generate the plots in Fig W.
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R; Reaction Prop.Func.(a;) Param. Value (h™!) Value (h~!) Value (h™') Value (h™')
Fig YB Fig YC Fig YE Fig YF
1 Do, pa a1 = kion? ki 0.14 0.14 0.14 0.14
2 D i DA a = kjinP ki} 0.7280 0.7280 0.7280 0.7280
3 DA —> D ag = kpn? kg 0.0788 0.0788 0.0788 0.0788
4 DAL, D ag = on? ) 0.0263 0.0526 0.0263 0.0263
5 D+DANILDALDA g5 = "79" nPnA ’%\’ 0.07 0.07 0.07 0.07
6 DA+DF M + DR ag = Q n/‘n{? % 0.07 0.07 0.07 0.07
7 D*+D} *p +D%,  ar= ﬁn"nﬁ % 0.07 0.07 0.07 0.07
§ DAIDEE,DiDE gy = kEnank kg 0.07 0.07 0.07 0.07
9 D4Df MDDl ag=tEntl, 0.07 0.07 0.07 0.07
10 Db, DR aip = kiyon? ko 0.14 0.14 0.14 0.14
11 p A, pr an = KynP Ky 0 0 0 0
12 DRALp arz = kypnft ky 0.0158 0.0158 0.0158 0.0394
13 DR L D a3 = d'nf & 0.0053 0.0106 0.0053 0.0132
14 D+DE2LDRADE  ay = %nf’ng ﬁfy 0.0014 0.0014 0.0014 0.0014
15 D+DE "—> DEF+DY, a5 = "g‘; nPnf ké; 0.0014 0.0014 0.0014 0.0014
16 DR + pA M,y pa a5 = %n{?nf‘ %T 0.0014 0.0014 0.0014 0.0014
17 D &» D} a7 = kP ko 0.14 0.14 0.14 0.14
18 D L> D} ars = kP k2, 0 0 0 0
19 DF —> D ayg = kfnk kR 0.0788 0.0788 0.0788 0.0788
20 DE-5D asg = ondt ) 0.0263 0.0526 0.0263 0.0263
21 D+D} L DR4DE  ay = BaPnl A 0.0014 0.0014 0.0014 0.0014
22 D+DR L DRADR ay = BunDpk,  ku 0.0014 0.0014 0.0014 0.0014
23 D+DRELDEYDR gy = EunPpk 0.0014 0.0014 0.0014 0.0014
24 D+D} i> DY} +DR,  apq = Falal, 0.0014 0.0014 0.0014 0.0014
25 DR +4DA M DEDA ay = L L 0.07 0.07 0.07 0.07
26 D % Kiro DY, ase = kionft ko 0.14 0.14 0.14 0.14
27 DY, k—> DY axr = kfinf} kR 0.0788 0.0788 0.0788 0.0788
28 DB —L, DR ass = onfhy 5 0.0263 0.0526 0.0263 0.0263
29 Df +D§ =5 b D, + DR agy = Barnfinf L% 0.0014 0.0014 0.0014 0.0014
30 DR4+DB S, DR 4 DR gy = *Xynl nfl, LY 0.0014 0.0014 0.0014 0.0014
31 DR4+DF L DR DR gy — “MW By 0.0014 0.0014 0.0014 0.0014
32 DR+DE =5 Far DY, + D, ag = Bunfnf # 0.0014 0.0014 0.0014 0.0014
33 D +DA HE, DY 4+DA  ag = %n{gn** % 0.07 0.07 0.07 0.07
34 D Mo, pr azs = klyon Ko 014 0.14 0.14 0.14
35 DY LN D} azs = kpnlh k- 0.0158 0.0158 0.0158 0.0394
36 DE LN DR azs = 0'nlh 5 0.0053 0.0106 0.0053 0.0132
37 DE+DE 25 DR 4D ay = ’“g i) ‘"é;' 0.0014 0.0014 0.0014 0.0014
38 DE+DR k—> DY, + DB, ag = ‘gnfnf, 0.0014 0.0014 0.0014 0.0014
39 D +DA M, DR +DA  ag = *S% nfynA %T 0.0014 0.0014 0.0014 0.0014

Table S: Reactions and parameter values used to generate the plots in Fig Y.
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