## Epigenetic cell memory: The gene's inner chromatin modification circuit

Simone Bruno<sup>1</sup>, Ruth J. Williams<sup>2</sup>, and Domitilla Del Vecchio<sup>1</sup>

<sup>1</sup>Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. Emails: (sbruno,ddv)@mit.edu <sup>2</sup>Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla CA

92093-0112. Email: rjwilliams@ucsd.edu

# Supporting information: S2 File

### 1 Detailed analysis of the positively autoregulated gene model

### 1.1 ODE model of the positive autoregulation system

By combining the ODEs of the chromatin modification circuit Main Text: Eqs (3) with those of gene expression Main Text: Eq (8) and defining  $X := n^X/D_{tot}$ , we obtain the ODE model of the positive autoregulation system:

$$\begin{split} \dot{\bar{D}}_{1}^{R} &= (\bar{u}_{1}^{R} + \alpha'(\bar{D}_{2}^{R} + \bar{D}_{12}^{R}))\bar{D} + \mu(b\epsilon + \epsilon'\bar{D}^{A})\bar{D}_{12}^{R} - (u_{20}^{R} + \alpha(\bar{D}_{2}^{R} + \bar{D}_{12}^{R}) + \bar{\alpha}(\bar{D}_{1}^{R} + \bar{D}_{12}^{R}))\bar{D}_{1}^{R} \\ &- \mu'(\beta\epsilon + \epsilon'\bar{D}^{A})\bar{D}_{1}^{R} \\ \dot{\bar{D}}_{2}^{R} &= (\bar{u}_{R}^{2} + \alpha(\bar{D}_{2}^{R} + \bar{D}_{12}^{R}) + \bar{\alpha}(\bar{D}_{1}^{R} + \bar{D}_{12}^{R}))\bar{D} + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A})\bar{D}_{12}^{R} - (u_{10}^{R} + \alpha'(\bar{D}_{2}^{R} + \bar{D}_{12}^{R}))\bar{D}_{2}^{R} \\ &- \mu(b\epsilon + \epsilon'\bar{D}^{A})\bar{D}_{2}^{R} \end{split}$$
(1)  
$$\dot{\bar{D}}_{12}^{R} &= (u_{10}^{R} + \alpha'(\bar{D}_{2}^{R} + \bar{D}_{12}^{R}))\bar{D}_{2}^{R} + (u_{20}^{R} + \alpha(\bar{D}_{2}^{R} + \bar{D}_{12}^{R}) + \bar{\alpha}(\bar{D}_{1}^{R} + \bar{D}_{12}^{R}))\bar{D}_{1}^{R} \\ &- (\mu'(\beta\epsilon + \epsilon'\bar{D}^{A}) + \mu(b\epsilon + \epsilon'\bar{D}^{A}))\bar{D}_{12}^{R} \\ \dot{\bar{D}}^{A} &= (u_{0}^{A} + u^{A} + \bar{D}^{A})\bar{D} - (\epsilon + \epsilon'(\bar{D}_{1}^{R} + \bar{D}_{12}^{R}) + \epsilon'(\bar{D}_{2}^{R} + \bar{D}_{12}^{R}))\bar{D}^{A} \\ \dot{\bar{X}} &= \bar{\alpha}_{x}\bar{D}^{A} - \bar{\gamma}_{x}\bar{X}, \end{split}$$

in which  $\overline{D} = (1 - \overline{D}_1^R - \overline{D}_2^R - \overline{D}_{12}^R - \overline{D}^A)$ . Here, we let  $u^A = \tilde{u}^A \overline{X}$  with  $\tilde{u}^A$  a constant defined in Eq (84) in S1 File.

#### **1.2** Qualitative understanding of the impact of the positive autoregulation

If we multiply both sides of the ODEs in (1) by  $D_{tot}(k_M^A D_{tot})$ , system (1) can be rewritten in a dimensional way:

$$\begin{split} \dot{D}_{1}^{R} &= (k_{W0}^{1} + k_{W}^{1} + k_{M}^{'}(D_{2}^{R} + D_{12}^{R}))D + (\delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A})D_{12}^{R} \\ &- (k_{W0}^{2} + k_{M}(D_{2}^{R} + D_{12}^{R}) + \bar{k}_{M}(D_{1}^{R} + D_{12}^{R}) + \delta' + k_{T}' + k_{T}'*D^{A})D_{1}^{R} \\ \dot{D}_{2}^{R} &= (k_{W0}^{2} + k_{W}^{2} + k_{M}(D_{2}^{R} + D_{12}^{R}) + \bar{k}_{M}(D_{1}^{R} + D_{12}^{R}))D + (\delta' + k_{T}' + k_{T}'*D^{A})D_{12}^{R} \\ &- (k_{W0}^{1} + k_{M}'(D_{2}^{R} + D_{12}^{R}) + \delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A})D_{2}^{R} \\ \dot{D}_{12}^{R} &= (k_{W0}^{1} + k_{M}'(D_{2}^{R} + D_{12}^{R}))D_{2}^{R} + (k_{W0}^{2} + k_{M}(D_{2}^{R} + D_{12}^{R}) + \bar{k}_{M}(D_{1}^{R} + D_{12}^{R}))D_{1}^{R} \\ &- (\delta' + k_{T}' + k_{T}'*D^{A} + \delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A})D_{12}^{R} \\ \dot{D}^{A} &= (k_{W0}^{A} + k_{W}^{A} + k_{M}^{A}D^{A})D - (\delta + \bar{k}_{E}^{A} + k_{E}^{A}(D_{2}^{R} + D_{12}^{R}) + k_{E}^{A}(D_{1}^{R} + D_{12}^{R}))D^{A} \\ \dot{X} &= \alpha_{x}D^{A} - \gamma_{x}X, \end{split}$$

$$(2)$$

in which all the parameters are defined as done for Eqs (79) in S1 File. In particular,  $k_W^A = \hat{k}_W^A X$ . Now, in order to gain a qualitative understanding of the impact of self-activation on the stability of the system, let us approximate first the reactions involving X are fast and then we can set the protein dynamics to the QSS (i.e,  $X = p_x D^A$  with  $p_x = \alpha_x / \gamma_x$ ), the ODEs (2) can be re-written as follows:

$$\begin{split} \dot{D}_{1}^{R} &= (k_{W0}^{1} + k_{W}^{1} + k_{M}^{'}(D_{2}^{R} + D_{12}^{R}))D + (\delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A})D_{12}^{R} \\ &- (k_{W0}^{2} + k_{M}(D_{2}^{R} + D_{12}^{R}) + \bar{k}_{M}(D_{1}^{R} + D_{12}^{R}) + \delta^{'} + k_{T}^{'} + k_{T}^{'*}D^{A})D_{1}^{R} \\ \dot{D}_{2}^{R} &= (k_{W0}^{2} + k_{W}^{2} + k_{M}(D_{2}^{R} + D_{12}^{R}) + \bar{k}_{M}(D_{1}^{R} + D_{12}^{R}))D + (\delta^{'} + k_{T}^{'} + k_{T}^{'*}D^{A})D_{12}^{R} \\ &- (k_{W0}^{1} + k_{M}^{'}(D_{2}^{R} + D_{12}^{R}) + \delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A})D_{2}^{R} \\ \dot{D}_{12}^{R} &= (k_{W0}^{1} + k_{M}^{'}(D_{2}^{R} + D_{12}^{R}))D_{2}^{R} + (k_{W0}^{2} + k_{M}(D_{2}^{R} + D_{12}^{R}) + \bar{k}_{M}(D_{1}^{R} + D_{12}^{R}))D_{1}^{R} \\ &- (\delta^{'} + k_{T}^{'} + k_{T}^{'*}D^{A} + \delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A})D_{12}^{R} \\ \dot{D}^{A} &= (k_{W0}^{A} + (\tilde{k}_{W}^{A} + k_{M}^{A})D^{A})D - (\delta + \bar{k}_{E}^{A} + k_{E}^{A}(D_{2}^{R} + D_{12}^{R}) + k_{E}^{A}(D_{1}^{R} + D_{12}^{R}))D^{A}. \end{split}$$

Comparing these ODEs with the ones related to the chromatin modification circuit alone in Eqs (79) in S1 File, it is possible to see that the introduction of the positive autoregulation leads to an increase of the auto-catalysis rate constant of the activating chromatin marks (that is, in the last ODE, before it was  $k_M^A$ , while now it is  $(\tilde{k}_W^A + k_M^A)$ ). Based on the bifurcation plots realized for the chromatin modification circuit (Fig K in S1 File), we know that a higher  $k_M^A$  can restore the stability of the active state.

### 1.3 Derivation of the stationary probability distribution formula for the positively autoregulated gene

Following the same procedure used to obtain the one-dimensional reduced model for the chromatin dynamics circuit S1 File: reactions (158) (Section 3.2 in S1 File), we obtain the following chemical

reaction system:

$$D^{A} \xrightarrow{k_{AR}} D^{R}_{12}, \quad k_{AR} = \left( \frac{(\delta + \bar{k}_{E}^{A} + 2k_{E}^{A}D_{12}^{R})(k_{W0}^{2} + k_{W}^{2} + k_{W0}^{1} + k_{W}^{1} + (k_{M} + \bar{k}_{M} + k_{M}^{A})D_{12}^{R})}{k_{W0}^{A} + k_{W}^{A} + k_{M}^{A}D^{A} + k_{W0}^{2} + k_{W}^{2} + k_{W0}^{1} + k_{W}^{1} + (k_{M} + \bar{k}_{M} + k_{M}^{A})D_{12}^{R}} \right);$$

$$D^{R}_{12} \xrightarrow{k_{RA}} D^{A}, \quad k_{RA} = \left( \frac{(\delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A})(\delta' + k_{T}' + k_{T}'^{*}D^{A})\bar{K}_{dim}(k_{W0}^{A} + k_{W}^{A} + k_{M}^{A}D^{A})}{k_{W0}^{A} + k_{W}^{A} + k_{M}^{A}D^{A} + k_{W0}^{2} + k_{W}^{2} + k_{W0}^{1} + k_{W}^{1} + (k_{M} + \bar{k}_{M} + k_{M}^{A})D_{12}^{R}} \right).$$

$$(4)$$

with  $\bar{K}_{dim} = \frac{1}{k_{W0}^1 + k'_M D_{12}^R} + \frac{1}{k_{W0}^2 + (k_M + \bar{k}_M) D_{12}^R}$  and  $k_W^A = \tilde{k}_W^A p_x D^A$ . Now, in order to derive the formula for the stationary distribution, we introduce  $x = n_{12}^R$ . Then, since the reactions (4) has the same form of the ones related to the chromatin modification system (S1 File: reactions (158)), in which  $k_W^A = \tilde{k}_W^A p_x D^A$ , we can use the same formula for  $\pi_{\epsilon \ll 1}(x)$  given by Eq (169) in S1 File, in which we substitute  $u^A$  with  $u^A = \frac{\tilde{k}_W^A}{k_M^A} p_x \frac{(D_{tot} - x)}{D_{tot}} = \tilde{u}^A p_x \frac{(D_{tot} - x)}{D_{tot}}$ . Then, the stationary probability distribution under the condition  $\epsilon \ll 1$  can be written as follows:

$$\pi_{\epsilon \ll 1}(x) \approx \begin{cases} \frac{1}{1+P} & \text{if } x = 0\\ 0 & \text{if } x \neq 0, D_{\text{tot}}\\ \frac{P}{1+P} & \text{if } x = D_{\text{tot}} \end{cases}$$
(5)

with

$$P = \frac{(u_{tot} + \alpha + \bar{\alpha} + \alpha')}{(u_{tot} + \tilde{u}^A p_x + 1)} \cdot \prod_{i=1}^{D_{tot} - 1} \left( \frac{2(\bar{u}_{12}^R + (\alpha + \bar{\alpha} + \alpha')\frac{i}{D_{tot}})}{\mu \mu' \epsilon' \frac{(D_{tot} - i)}{D_{tot}} \bar{K}_i (u_0^A + (\tilde{u}^A p_x + 1)\frac{(D_{tot} - i)}{D_{tot}})} \right) \cdot \frac{(\bar{u}_{12}^R)}{\mu \mu' b \beta \epsilon \bar{K}_{D_{tot}} (u_0^A)},$$
(6)

in which  $x = n^R$ ,  $u_{tot} = u_0^A + \bar{u}_{12}^R$ ,  $\bar{u}_{12}^R = u_1^R + u_{10}^R + u_2^R + u_{20}^R$  and  $\bar{K}_i$  defined in Eq (161) in S1 File.

# 1.4 Derivation of time to memory loss formula for the positively autoregulated gene

Now, let us derive the formula for the time to memory loss of the active gene state,  $\tau_0^{D_{tot}}$ . In particular, for the Markov chain related to the S1 File: reactions (158) we obtain the formula Eq (175) in S1 File for  $\tau_0^{D_{tot}}$ . Now, since our current reactions (4) differ from those in S1 File: reactions (158) by  $k_W^A = \tilde{k}_W^A p_x (D_{tot} - D_{12}^R)$ , we can directly use the formula for  $\tau_0^{D_{tot}}$  previously computed in Eq (175) in S1 File and substitute  $u^A = \frac{k_W^A}{k_M^A D_{tot}}$  with  $u^A = \frac{\tilde{k}_W^A}{k_M^A} p_x \frac{(D_{tot} - D_{12}^R)}{D_{tot}} = \tilde{u}^A p_x \frac{(D_{tot} - D_{12}^R)}{D_{tot}}$ . We then obtain that  $\tau_0^{D_{tot}}$  can be defined as follows:

$$\tau_0^{\rm D_{tot}} = \frac{\tilde{r}_{\rm D_{tot}-1}}{\alpha_0} \left( 1 + \sum_{j=1}^{\rm D_{tot}-1} \frac{1}{\tilde{r}_i} \right) + \frac{1}{\alpha_{\rm D_{tot}-1}} + \sum_{i=2}^{\rm D_{tot}-1} \left[ \frac{\tilde{r}_{i-1}}{\alpha_{\rm D_{tot}-i}} \left( 1 + \sum_{j=1}^{i-1} \frac{1}{\tilde{r}_j} \right) \right]$$
(7)

in which  $\alpha_i$  and  $\gamma_i$  are defined as

$$\alpha_{i} = \left(\frac{(\epsilon + 2\epsilon'\frac{i}{D_{\text{tot}}})(k_{W}^{2} + k_{W0}^{2} + k_{W}^{1} + k_{W0}^{1} + \frac{(k_{M} + \bar{k}_{M} + k'_{M})}{\Omega}i)}{u_{0}^{A} + (\tilde{u}^{A}p_{x} + 1)\frac{(D_{\text{tot}} - i)}{D_{\text{tot}}} + u_{2}^{R} + u_{20}^{R} + u_{1}^{R} + u_{10}^{R} + (\alpha + \bar{\alpha} + \alpha')\frac{i}{D_{\text{tot}}}}\right)(D_{\text{tot}} - i)$$

$$\gamma_{i} = \left(\frac{\mu(b\epsilon + \epsilon'\frac{(D_{\text{tot}} - i)}{D_{\text{tot}}})\mu'(\beta\epsilon + \epsilon'\frac{(D_{\text{tot}} - i)}{D_{\text{tot}}})\bar{K}_{i}(k_{W0}^{A} + (\frac{\tilde{k}_{W}^{A}}{\Omega}p_{x} + \frac{k_{M}^{A}}{\Omega})(D_{\text{tot}} - i))}{u_{0}^{A} + (\tilde{u}^{A}p_{x} + 1)\frac{(D_{\text{tot}} - i)}{D_{\text{tot}}} + u_{2}^{R} + u_{20}^{R} + u_{1}^{R} + u_{10}^{R} + (\alpha + \bar{\alpha} + \alpha')\frac{i}{D_{\text{tot}}}}\right)i,$$
(8)

and  $\tilde{r}_j = \frac{\gamma_{\mathrm{D_{tot}}-1}\gamma_{\mathrm{D_{tot}}-2}...\gamma_{\mathrm{D_{tot}}-j}}{\alpha_{\mathrm{D_{tot}}-1}\alpha_{\mathrm{D_{tot}}-2}...\alpha_{\mathrm{D_{tot}}-j}}$ . Then, assuming that  $\epsilon' \neq 0$ , it is possible to notice that, for  $\epsilon \ll 1$ , the dominant term of  $\tau_0^{\mathrm{D_{tot}}}$  is the first addend in (7).

Then, by normalizing the time to memory loss with respect  $\frac{k_M^A D_{tot}}{\Omega}$   $(\bar{\tau}_0^{D_{tot}} = \tau_0^{D_{tot}} \frac{k_M^A D_{tot}}{\Omega}), \tau_0^{D_{tot}}$  in the regime  $\epsilon \ll 1$  can be re-written as follows:

$$\bar{\tau}_{0}^{\mathrm{D}_{\mathrm{tot}}} = \bar{\tau}_{A} \approx \frac{f_{2}(p_{x})}{\epsilon} \left( 1 + \sum_{i=1}^{\mathrm{D}_{\mathrm{tot}}-1} \frac{h_{2}^{i}(p_{x},\mu\mu')}{K_{A}^{i}} \right), \tag{9}$$

in which  $f_2$  and  $h_2^i$  are increasing functions of their arguments,  $h_2^i(p_x, 0) = 0$ ,  $K_A^i$  are functions independent of  $\epsilon$ ,  $\mu'$ ,  $\mu$  and  $p_x$ , and in which we redefine  $\bar{\tau}_0^{D_{\text{tot}}}$  as  $\bar{\tau}_A$  to simplify the notation.

### 2 Detailed analysis of the mutual repression circuit model

# 2.1 Expressions of the $k_W^{1,\ell}$ , $k_W^{2,\ell}$ and $k_W^{A,\ell}$ with $\ell = X, Z$

Based on the formula of  $k_W^A$ ,  $k_W^1$  and  $k_W^2$  given in Eqs (82) and (83) in S1 File,  $k_W^{1,\ell}$ ,  $k_W^{2,\ell}$  and  $k_W^{A,\ell}$  with  $\ell = X, Z$  can be written as follows:

$$k_{W}^{A,X} = \frac{\tilde{k}_{W}^{A}}{\Omega} \frac{n^{X}}{1 + \frac{n^{X}}{\Omega K} + \frac{n^{Z}}{\Omega K}}; \quad k_{W}^{1,X} = \frac{\tilde{k}_{W}^{1}}{\Omega} \frac{n^{Z}}{1 + \frac{n^{X}}{\Omega K} + \frac{n^{Z}}{\Omega K}}; \quad k_{W}^{2,X} = \frac{\tilde{k}_{W}^{2}}{\Omega} \frac{n^{Z}}{1 + \frac{n^{X}}{\Omega K} + \frac{n^{Z}}{\Omega K}}, \quad (10)$$

$$k_{W}^{A,Z} = \frac{\tilde{k}_{W}^{A}}{\Omega} \frac{n^{Z}}{1 + \frac{n^{X}}{\Omega K} + \frac{n^{Z}}{\Omega K}}; \quad k_{W}^{1,Z} = \frac{\tilde{k}_{W}^{1}}{\Omega} \frac{n^{X}}{1 + \frac{n^{X}}{\Omega K} + \frac{n^{Z}}{\Omega K}}; \quad k_{W}^{2,Z} = \frac{\tilde{k}_{W}^{2}}{\Omega} \frac{n^{X}}{1 + \frac{n^{X}}{\Omega K} + \frac{n^{Z}}{\Omega K}}.$$

in which we set

$$K_{XX} = K_{ZZ} = K. \tag{11}$$

Now, let us define  $u^{A,\ell},\, u_1^{R,\ell}$  and  $u_2^{R,\ell}$  as

$$u^{A,\ell} = k_W^{A,\ell} / (k_M^A D_{tot}); \quad u_1^{R,\ell} = k_W^{1,\ell} / (k_M^A D_{tot}); \quad u_2^{R,\ell} = k_W^{2,\ell} / (k_M^A D_{tot}),$$
(12)

with  $\ell = X, Z$ . Then, if we assume  $n^X/\Omega \ll K$  and  $n^Z/\Omega \ll K$ ,  $u^{A,\ell}$ ,  $u_1^{R,\ell}$  and  $u_2^{R,\ell}$  can be written as

$$u_{A}^{X} = \frac{\tilde{k}_{W}^{A} n^{X}}{\Omega k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{A} n^{X}}{k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{A}}{k_{M}^{A}} \bar{X} = \tilde{u}^{A} \bar{X}; \quad u_{1}^{R,X} = \frac{\tilde{k}_{W}^{1} n^{Z}}{\Omega k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{1} n^{Z}}{k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{1} \bar{Z}}{k_{M}^{A}} \bar{Z} = \tilde{u}_{1}^{R} \bar{Z};$$

$$u_{2}^{R,X} = \frac{\tilde{k}_{W}^{2} n^{Z}}{\Omega k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{2} n^{Z}}{k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{2} \bar{Z}}{k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{2} \bar{Z}}{k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{2} \bar{Z}; \quad u_{Z}^{R} \bar{Z}; \quad u_{Z}^{R} = \frac{\tilde{k}_{W}^{A} n^{Z}}{\Omega k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{A} \bar{Z}}{k_{M}^{A} \bar{Z}} = \tilde{u}^{A} \bar{Z};$$

$$u_{1}^{R,Z} = \frac{\tilde{k}_{W}^{1} n^{X}}{\Omega k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{1} n^{X}}{k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{1} \bar{X}; \quad u_{2}^{R,Z} = \frac{\tilde{k}_{W}^{2} n^{X}}{\Omega k_{M}^{A} D_{tot}} = \frac{\tilde{k}_{W}^{2} \bar{X}}{k_{M}^{A} \bar{X}} = \tilde{u}_{2}^{R} \bar{X},$$

in which we define  $X := n^X / \mathcal{D}_{\text{tot}}, \ Z := n^Z / \mathcal{D}_{\text{tot}}, \ \tilde{u}^A = \tilde{k}^A_W / k^A_M, \ \tilde{u}^R_1 = \tilde{k}^1_W / k^A_M \text{ and } \ \tilde{u}^R_2 = \tilde{k}^2_W / k^A_M.$ 

### 2.2 ODE model of the mutual repression system

The ODEs of the system are obtained by combining the ODEs of the chromatin modification circuit and those of the gene expression circuit (Main Text: Eqs (3) and (8), respectively) for each gene and by properly setting the inputs according to Eqs (13). In particular, we assume equal

parameters for the two chromatin modification circuits, we let X and Z denote the genes' products, and indicate the species within each of the corresponding chromatin modification circuits by "X" and "Z" superscripts, respectively. Furthermore, we define  $X := n^X/D_{tot}$ ,  $Z := n^Z/D_{tot}$ . Thus, the ODE model in terms of non-dimensional variables and non-dimensional parameters can be written as follows:

$$\begin{split} \dot{\bar{D}}_{1}^{R,X} &= (u_{10}^{R} + u_{1}^{R,X} + \alpha'(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}))\bar{D}^{X} + \mu(b\epsilon + \epsilon'\bar{D}^{A,X})D_{12}^{R,X} \\ &- (u_{20}^{R} + \alpha(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}) + \bar{\alpha}(\bar{D}_{1}^{R,X} + \bar{D}_{12}^{R,X}) + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,X}))\bar{D}_{1}^{R,X} \\ \dot{\bar{D}}_{2}^{R,X} &= (u_{20}^{R} + u_{2}^{R,Z} + \alpha(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}) + \bar{\alpha}(\bar{D}_{1}^{R,X} + \bar{D}_{12}^{R,X}))\bar{D}^{X} + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,X})\bar{D}_{12}^{R,X} \\ &- (u_{10}^{R} + \alpha'(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}) + \mu(b\epsilon + \epsilon'\bar{D}^{A,X}))\bar{D}_{2}^{R,X} \\ \dot{\bar{D}}_{12}^{R,X} &= (u_{10}^{R} + \alpha'(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}))\bar{D}_{2}^{R,X} + (u_{20}^{R} + \alpha(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}))\bar{D}_{1}^{R,X} \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,X}) + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,X}))\bar{D}_{2}^{R,X} + (u_{20}^{R} + \alpha(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}))\bar{D}^{A,X} \\ \dot{\bar{X}} &= (u_{0}^{A} + u_{A}^{X} + \bar{D}^{A,X})\bar{D}^{X} - (\epsilon + \epsilon'(\bar{D}_{2}^{R,X} + \bar{D}_{12}^{R,X}) + \epsilon'(\bar{D}_{1}^{R,X} + \bar{D}_{12}^{R,X}))\bar{D}^{A,X} \\ \dot{\bar{X}} &= \bar{\alpha}_{x}\bar{D}^{A,X} - \bar{\gamma}_{x}\bar{X} \\ \dot{\bar{D}}_{1}^{R,Z} &= (u_{10}^{R} + u_{1}^{R,Z} + \alpha'(\bar{D}_{2}^{R,Z} + \bar{D}_{12}^{R,Z}))\bar{D}^{Z} + \mu(b\epsilon + \epsilon'\bar{D}^{A,Z})D_{12}^{R,Z} \\ &- (u_{20}^{R} + \alpha(\bar{D}_{2}^{R,Z} + \bar{D}_{12}^{R,Z}))\bar{D}^{Z} + \mu(b\epsilon + \epsilon'\bar{D}^{A,Z})D_{12}^{R,Z} \\ &- (u_{20}^{R} + \alpha(\bar{D}_{2}^{R,Z} + \bar{D}_{12}^{R,Z}) + \bar{\alpha}(\bar{D}_{1}^{R,Z} + \bar{D}_{12}^{R,Z}))\bar{D}^{Z} + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,Z})\bar{D}_{1}^{R,Z} \\ &- (u_{10}^{R} + \alpha'(\bar{D}_{2}^{R,Z} + \bar{D}_{12}^{R,Z}) + \mu(b\epsilon + \epsilon'\bar{D}^{A,Z}))\bar{D}_{2}^{R,Z} \\ &- (u_{10}^{R} + \alpha'(\bar{D}_{2}^{R,Z} + \bar{D}_{12}^{R,Z}) + \mu(b\epsilon + \epsilon'\bar{D}^{A,Z}))\bar{D}_{2}^{R,Z} \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,Z}))\bar{D}_{1}^{R,Z} \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,Z}))\bar{D}_{1}^{R,Z} \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,Z}))\bar{D}_{1}^{R,Z} \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) + \mu'(\beta\epsilon + \epsilon'\bar{D}^{A,Z}))\bar{D}_{1}^{R,Z} \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) + \bar{D}_{2}^{Z}, \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) + \bar{D}_{2}^{Z}, \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) - \bar{\gamma}_{z}\bar{Z}, \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z}) - \bar{\gamma}_{z}\bar{Z}, \\ &- (\mu(b\epsilon + \epsilon'\bar{D}^{A,Z$$

in which  $\bar{D}^X = (1 - \bar{D}_1^{R,X} - \bar{D}_2^{R,X} - \bar{D}_{12}^{R,X} - \bar{D}^{A,X})$  and  $\bar{D}^Z = (1 - \bar{D}_1^{R,Z} - \bar{D}_2^{R,Z} - \bar{D}_{12}^{R,Z} - \bar{D}^{A,Z})$ . Based on the expression for  $k_W^{1,\ell}$ ,  $k_W^{2,\ell}$  and  $k_W^{A,\ell}$  given in Eqs (10), we approximate  $u^{A,\ell} = \tilde{u}^A \ell$  and, for  $i \in \{1, 2\}$ ,  $u_i^{R,\ell} = \tilde{u}_i^R j$ , with  $\ell, j = X, Z$  and  $\ell \neq j$  (Section (2.1), Eqs (11),(13)).

#### 2.3 Deterministic analysis

For this deterministic analysis, we exploit the results obtained for the positive autoregulation circuit viewed as an input/output system. In fact, the block diagram in Fig 6B makes it explicit that the mutual repression circuit is the input/output composition of two positively autoregulated genes, in which the output of one gene,  $n^X$  or  $n^Z$ , is used as an input to the other gene by increasing  $k_W^{R,Z}$  or  $k_W^{R,X}$ , respectively. Defining  $p_x = \bar{\alpha}_x/\bar{\gamma}_x$  and  $p_z = \bar{\alpha}_z/\bar{\gamma}_z$ , at steady state  $\bar{X} = p_x \bar{D}^{A,X}$  and  $\bar{Z} = p_z \bar{D}^{A,Z}$ . Then for a state of system (14) to be a steady state, the  $(\bar{D}^{A,X}, \bar{D}^{A,Z})$  pair must lie on the intersection of the input/output steady state characteristics of the X gene and of the Z gene as shown in Fig F. In particular, we assume  $\tilde{u}_1^R = \tilde{u}_2^R = \tilde{u}^R$  and we consider, for the X gene, the  $(u^{R,X}, \bar{D}^{A,X})$  input/output steady state characteristic, with  $u^{R,X} = u_1^{R,X} = u_2^{R,X} = \tilde{u}^R \bar{Z}$ , that, at steady state, can be written as  $u^{R,X} = \tilde{u}^R p_z \bar{D}^{A,Z}$ . Similarly, for the Z gene, we consider the  $(u^{R,Z}, \bar{D}^{A,Z})$  input/output steady state characteristic, with  $u^{R,Z} = u_1^{R,Z} = u_2^{R,Z} = \tilde{u}^R \bar{X}$ , that, at steady state, can be written as  $u^{R,X} = \tilde{u}^R p_x \bar{D}^{A,X}$ . It is also possible to show that for each of the intersections shown in Fig F, there is a unique combination of positive values for the remaining

variables such that the system is at steady state. We determined stability of these steady states numerically by evaluating the eigenvalues of the Jacobian of the system.

In summary, for low p values, the system has a unique stable steady state about the origin. By increasing p, the system acquires two stable steady states, in which one gene is "on" and the other is "off". That is, one equilibrium with  $\bar{D}^{A,X} \gg \bar{D}^{A,Z}$  and the other equilibrium with  $\bar{D}^{A,X} \ll \bar{D}^{A,Z}$ . When  $\epsilon$  is large, also the steady state about the origin is stable, while when  $\epsilon$  is small, it is not. Thus, when p is large (high expression rate) and  $\epsilon$  is small (small basal erasure rate), the system is tri-stable. When  $\mu'$  is increased, the system can have four co-existing stable steady states (Fig F).

#### 2.4 Analytical analysis

For this analysis, as we did for the previous system analyzed, we consider the parameter regime  $\epsilon' \ll 1$  and we assume that the reactions involving X and Z are fast compared to the other reactions (that is, considering  $\epsilon = c\epsilon'$ , let us assume  $\bar{\gamma}_x, \bar{\gamma}_z \gg \epsilon', \epsilon'\mu, \epsilon'\mu'$ ) so that we can set the protein dynamics to the QSS ( $X = p_x D^{A,X}$  and  $Z = p_z D^{A,Z}$ ). Then, by considering the one-dimensional approximation of the chromatin dynamics circuit S1 File: reactions (158), we obtain the following chemical reaction system:

$$D^{A,X} \xrightarrow{k_{AR}^X} D_{12}^{R,X}, \qquad D_{12}^{R,X} \xrightarrow{k_{RA}^X} D^{A,X},$$

$$D^{A,Z} \xrightarrow{k_{AR}^Z} D_{12}^{R,Z}, \qquad D_{12}^{R,Z} \xrightarrow{k_{RA}^Z} D^{A,Z},$$
(15)

with

$$k_{AR}^{X} = \left(\frac{(\delta + \bar{k}_{E}^{A} + 2k_{E}^{A}D_{12}^{R,X})(k_{W0}^{2} + k_{W0}^{1} + k_{W}^{1,X} + k_{W}^{2,X} + (k_{M} + \bar{k}_{M} + k'_{M})D_{12}^{R,X})}{k_{W0}^{A} + k_{W}^{A,X} + k_{M}^{A}D^{A,X} + k_{W0}^{2} + k_{W0}^{1} + k_{W}^{1,X} + k_{W}^{2,X} + (k_{M} + \bar{k}_{M} + k'_{M})D_{12}^{R,X}}\right),$$

$$k_{RA}^{X} = \left(\frac{(\delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A,X})(\delta' + k'_{T} + k'_{T}^{*}D^{A,X})\bar{K}_{dim}^{X}(k_{W0}^{A} + k_{W}^{A,X} + k_{M}^{A}D^{A,X})}{k_{W0}^{A} + k_{W}^{A,X} + k_{M}^{A}D^{A,X} + k_{W0}^{2} + k_{W0}^{1} + k_{W0}^{1,X} + k_{W}^{2,X} + (k_{M} + \bar{k}_{M} + k'_{M})D_{12}^{R,X}}\right),$$

$$k_{AR}^{Z} = \left(\frac{(\delta + \bar{k}_{E}^{A} + 2k_{E}^{A}D_{12}^{R,Z})(k_{W0}^{2} + k_{W0}^{1} + k_{W}^{1,Z} + k_{W}^{2,Z} + (k_{M} + \bar{k}_{M} + k'_{M})D_{12}^{R,Z}}{k_{W0}^{A} + k_{W}^{A,Z} + k_{M}^{A}D^{A,Z} + k_{W0}^{2} + k_{W0}^{1} + k_{W}^{1,Z} + k_{W}^{2,Z} + (k_{M} + \bar{k}_{M} + k'_{M})D_{12}^{R,Z}}\right),$$

$$k_{RA}^{Z} = \left(\frac{(\delta + \bar{k}_{E}^{R} + k_{E}^{R}D^{A,Z})(\delta' + k'_{T} + k'_{T}^{*}D^{A,Z})\bar{K}_{dim}^{Z}(k_{W0}^{A} + k_{W}^{A,Z} + k_{M}^{A}D^{A,Z}})}{(\delta + \bar{k}_{W}^{A} + k_{W}^{A,Z} + k_{W}^{2} + k_{W0}^{1} + k_{W}^{1,Z} + k_{W}^{2,Z} + (k_{M} + \bar{k}_{M} + k'_{M})D_{12}^{R,Z}}\right),$$

$$(16)$$

with  $\bar{K}_{dim}^i = \frac{1}{k_{W0}^1 + k'_M D_{12}^{R,i}} + \frac{1}{k_{W0}^2 + (k_M + \bar{k}_M) D_{12}^{R,i}}, k_W^{A,i} = \tilde{k}_W^{A,i} p_i (D_{tot} - D_{12}^{R,i}), k_W^A = \tilde{k}_W^A p_x (D_{tot} - D_{12}^{R,i}), k_W^A = \tilde{k}_W^A p_x (D_{tot} - D_{12}^{R,i}), k_W^{A,i} = \tilde{k}_W^A p_i (D_{tot} - D_{12}^{R,i}), k_W^A = \tilde{k}_W^A p_x (D_{tot} - D_{12}^{R,i}), k_W^{A,i} = \tilde{k}_W^A p_i (D_{tot} - D_{12}^{R,i}), k_W^A = \tilde{k}_W^A p_x (D_{tot} - D_{12}^{R,i}), k_W^{A,i} = \tilde{k}_W^A p_i (D_{tot} - D_{12}^{R,i}), k_W^A = \tilde{k}_W^A p_x (D_{tot} - D_{tot}^{R,i}), k_W^A = \tilde{k}_W^A p_x (D_{tot} - D_{t$ 

transition rates between the states can be written as follows:

$$\begin{aligned} q_{(v,w),(v+1,w)} &= \left( \frac{(\epsilon + 2\epsilon' \frac{v}{D_{tot}})(k_{W0}^2 + k_{W0}^1 + \frac{\tilde{k}_W^2}{\Omega}p(D_{tot} - w) + \frac{(k_M + \tilde{k}_M + k'_M)}{\Omega}v)}{u_0^A + (\tilde{u}^A p + 1) \frac{(D_{tot} - v)}{D_{tot}} + u_{20}^R + u_{10}^R + \tilde{u}^R p \frac{(D_{tot} - w)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{v}{D_{tot}}} \right) (D_{tot} - v) \\ q_{(v,w),(v-1,w)} &= \left( \frac{\mu(b\epsilon + \epsilon' \frac{(D_{tot} - v)}{D_{tot}})\mu'(\beta\epsilon + \epsilon' \frac{(D_{tot} - v)}{D_{tot}})\bar{K}^v(k_{W0}^A + (\frac{\tilde{k}_W^A}{\Omega}p + \frac{k_M^A}{\Omega})(D_{tot} - v))}{D_{tot}} \right) v \\ q_{(v,w),(v-1,w)} &= \left( \frac{(\epsilon + 2\epsilon' \frac{w}{D_{tot}})(k_{W0}^2 + k_{10}^1 + \tilde{u}^R p \frac{(D_{tot} - v)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{v}{D_{tot}}}}{u_0^A + (\tilde{u}^A p + 1) \frac{(D_{tot} - w)}{D_{tot}} + u_{20}^R + u_{10}^R + \tilde{u}^R p \frac{(D_{tot} - v)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{w}{D_{tot}}} \right) v \\ q_{(v,w),(v,w+1)} &= \left( \frac{(\epsilon + 2\epsilon' \frac{w}{D_{tot}})(k_{W0}^2 + k_{10}^1 + \frac{\tilde{k}_W^R}{\Omega}p(D_{tot} - v) + \frac{(k_M + \bar{k}_M + k'_M)}{\Omega}w)}{u_0^A + (\tilde{u}^A p + 1) \frac{(D_{tot} - w)}{D_{tot}} + u_{20}^R + u_{10}^R + \tilde{u}^R p \frac{(D_{tot} - v)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{w}{D_{tot}}} \right) (D_{tot} - w) \\ q_{(v,w),(v,w-1)} &= \left( \frac{\mu(b\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}})\mu'(\beta\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}})}{u_0^A + (\tilde{u}^A p + 1) \frac{(D_{tot} - w)}{D_{tot}} + u_{20}^R + u_{10}^R + \tilde{u}^R p \frac{(D_{tot} - v)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{w}{D_{tot}}} \right) w \right) \\ q_{(v,w),(v,w-1)} &= \left( \frac{\mu(b\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}})\mu'(\beta\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}})}{u_0^A + (\tilde{u}^A p + 1) \frac{(D_{tot} - w)}{D_{tot}} + u_{20}^R + u_{10}^R + \tilde{u}^R p \frac{(D_{tot} - v)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{w}{D_{tot}}} \right) w \right) \\ q_{(v,w),(v,w-1)} &= \left( \frac{\mu(b\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}})\mu'(\beta\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}})}{u_0^A + (\tilde{u}^A p + 1) \frac{(D_{tot} - w)}{D_{tot}} + u_{20}^R + u_{10}^R + \tilde{u}^R p \frac{(D_{tot} - v)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{w}{D_{tot}}} \right) w \right) \\ q_{(v,w),(v,w-1)} &= \left( \frac{\mu(b\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}} + u_{20}^R + u_{10}^R + \tilde{u}^R p \frac{(D_{tot} - v)}{D_{tot}} + (\alpha + \bar{\alpha} + \alpha') \frac{w}{D_{tot}}} \right) w \right) \\ q_{(v,w),(v,w-1)} &= \left( \frac{\mu(b\epsilon + \epsilon' \frac{(D_{tot} - w)}{D_{tot}})\mu'($$

in which  $\bar{K}^i = \frac{1}{u_{10}^R + \alpha' i} + \frac{1}{u_{20}^R + (\alpha + \bar{\alpha})i}$  for i = v, w, and the rate of leaving the state (v, w) as

$$\bar{q}_{(v,w)} = q_{(v,w),(v+1,w)} + q_{(v,w),(v-1,w)} + q_{(v,w),(v,w+1)} + q_{(v,w),(v,w-1)}.$$
(18)

The total number of states characterizing the Markov chain is  $(D_{tot} + 1)^2$ . Furthermore, let us introduce the infinitesimal generator of the Markov chain Q, that is a matrix whose  $(r, l)_{th}$  entry, for  $1 \le r \ne l \le (D_{tot} + 1)^2$  is the transition rate of going to the state l, starting from the state r and the  $(r, r)_{th}$  entry is the opposite of the rate of leaving the state r [1]. Then, introducing  $\pi = [\pi(0, 0), \pi(0, 1), \pi(0, 2), ..., \pi(D_{tot}, D_{tot} - 1), \pi(D_{tot}, D_{tot})]$ , the stationary distribution can be evaluated by solving the system of equations given by

$$\pi Q = 0. \tag{19}$$

For example, the generic  $r^{th}$  equation of the system (19) associated with the state r = (v, w) is written as follows:

$$\bar{q}_{(v,w)}\pi(v,w) = q_{(v,w),(v+1,w)}\pi(v-1,w) + q_{(v,w),(v-1,w)}\pi(v+1,w) + q_{(v,w),(v,w+1)}\pi(v,w-1) + q_{(v,w),(v,w-1)}\pi(v,w+1).$$
(20)

Now, let us write explicitly the  $\bar{q}_{(v,w)}$  for the four extremal states  $(0,0), (0, D_{tot}), (D_{tot}, 0)(D_{tot}, D_{tot})$ :

$$\begin{split} \bar{q}_{(0,0)} &= 2 \left( \frac{(\epsilon)(k_{W0}^2 + k_{W0}^1 + \frac{\tilde{k}_W^R}{\Omega} p(\mathbf{D}_{\text{tot}}))}{u_0^A + (\tilde{u}^A p + 1) + u_{20}^R + u_{10}^R + \tilde{u}^R p} \right) \mathbf{D}_{\text{tot}} \\ \bar{q}_{(0,\text{D}_{\text{tot}})} &= \left( \frac{(\epsilon)(k_{W0}^2 + k_{W0}^1)}{u_0^A + (\tilde{u}^A p + 1) + u_{20}^R + u_{10}^R} \right) \mathbf{D}_{\text{tot}} + \left( \frac{\mu(b\epsilon)\mu'(\beta\epsilon)\bar{K}^{\text{D}_{\text{tot}}}(k_{W0}^A)}{u_0^A + u_{20}^R + u_{10}^R + \tilde{u}^R p + (\alpha + \bar{\alpha} + \alpha')} \right) \mathbf{D}_{\text{tot}} \\ \bar{q}_{(\text{D}_{\text{tot}},0)} &= \left( \frac{(\epsilon)(k_{W0}^2 + k_{W0}^1)}{u_0^A + (\tilde{u}^A p + 1) + u_{20}^R + u_{10}^R} \right) \mathbf{D}_{\text{tot}} + \left( \frac{\mu(b\epsilon)\mu'(\beta\epsilon)\bar{K}^{\text{D}_{\text{tot}}}(k_{W0}^A)}{u_0^A + u_{20}^R + u_{10}^R + \tilde{u}_{10}^R} \right) \mathbf{D}_{\text{tot}} \\ \bar{q}_{(\text{D}_{\text{tot}},0)} &= 2 \left( \frac{\mu(b\epsilon)\mu'(\beta\epsilon)\bar{K}^{\text{D}_{\text{tot}}}(k_{W0}^A)}{u_0^A + u_{20}^R + u_{10}^R + (\alpha + \bar{\alpha} + \alpha')} \right) \mathbf{D}_{\text{tot}}. \end{split}$$

Then, if we assume  $\epsilon' \neq 0$  and  $\epsilon \ll 1$ , looking at the expressions in (21), it is possible to notice that  $\bar{q}_{(0,0)}, \bar{q}_{(0,\mathrm{D_{tot}})}, \bar{q}_{(\mathrm{D_{tot}},0)}$  and  $\bar{q}_{(\mathrm{D_{tot}},\mathrm{D_{tot}})}$  are very small  $(\bar{q}_{(0,0)}, \bar{q}_{(0,\mathrm{D_{tot}})}, \bar{q}_{(\mathrm{D_{tot}},0)}, \bar{q}_{(\mathrm{D_{tot}},\mathrm{D_{tot}})} \approx 0)$ 

and then, by solving the system of equation in (19), we obtain that  $\pi(s) \approx 0$  except for  $s = (0,0), (0, D_{tot}), (D_{tot}, 0), (D_{tot}, D_{tot})$ . Since  $\sum_{s=1}^{(D_{tot}+1)^2} \pi(s) = 1$ , we can conclude that, under the condition  $\epsilon, \pi(0,0) + \pi(0, D_{tot}) + \pi(D_{tot}, 0) + \pi(D_{tot}, D_{tot}) \approx 1$ . This implies that, for a sufficiently small  $\epsilon$ , the peaks of the distribution are concentrated in the four extremal states and the probability of finding the state outside of these states approaches zero. Now, let us determine the effect of p on the distribution: in particular, if we assume a sufficiently high p ( $p: \frac{1}{p} \ll \epsilon \ll 1$ ), it is possible to notice by comparing the expressions in (21) that  $\bar{q}_{(0,D_{tot})}, \bar{q}_{(D_{tot},0)} \ll \bar{q}_{(0,0)}, \bar{q}_{(D_{tot},D_{tot})}^{(D_{tot}+1)^2} \pi(s) = 1$ , we obtain that  $\pi(s) \approx 0$  except for  $s = (0, D_{tot}), (D_{tot}, 0)$  and then  $\pi(0, D_{tot}) + \pi(D_{tot}, 0) \approx 1$ . This implies that, for a sufficiently high p, the peaks of the distribution are concentrated only in correspondence of the two states (0, D\_{tot}) and (D\_{tot}, 0).

### 3 Figures



Figure A: Bifurcation plots for different parameter values. Bifurcation plots related to system (1) with no external inputs ( $u^A = u_1^R = u_2^R = 0$  and  $u_0^A = u_{10}^R = u_{20}^R = u_0$  small). For all the plots, solid lines represent stable steady states, dotted lines represent unstable steady states and the black circle represents the bifurcation point. In this case we have a saddle-node bifurcation. Furthermore, we set  $\alpha = \bar{\alpha} = \alpha' = 1$  and  $\bar{\gamma}_x = 1$ . (A) On the y axis we have  $\bar{D}^A$  (green) and  $\bar{D}^R = \bar{D}_1^R + \bar{D}_2^R + \bar{D}_{12}$  (red) and on the x axis we have  $\mu'$  (log scale). We realize several bifurcation plots for different values of  $\epsilon$  ( $\epsilon = 0.1, 1, 10$ ), different values of  $\mu_x$  ( $p_x = 0, 1, 10$ ) and set  $\epsilon' = 1$  and  $\mu = 1$ . (B) On the y axis we have  $\bar{D}^A$  (green) and  $\bar{D}^R = \bar{D}_1^R + \bar{D}_2^R + \bar{D}_{12}^R$  (red) and on the x axis we have  $\mu$  (log scale). We realize several bifurcation plots for different values of  $\epsilon = 0.1, 1, 10$ ), different values of  $\epsilon = 0.1, 1, 10$ , different values of  $\epsilon = 0.1, 1, 10$ , different values of  $\rho_x$  ( $p_x = 0, 1, 10$ ), different values of  $p_x$  ( $p_x = 0, 1, 10$ ) and set  $\epsilon' = 1$  and  $\mu = 1$ . (B) and set  $\epsilon' = 1$  and  $\mu' = 1$ .



Figure B: How the parameter  $p_x$  affects the stationary probability distribution for different values of  $\epsilon'$ . The stationary distribution of our system, represented by the circuit in Fig 5A, obtained computationally. The stationary distributions are obtained by simulating the system of reactions listed in Table B with the SSA and we indicate with  $n^R$  the total number of nucleosomes characterized by repressive chromatin modifications, that is  $n^R = n_1^R + n_2^R + n_{12}^R$ . We consider two different cases,  $\epsilon' \ll 1$  and  $\epsilon' \gg 1$ , and for each case we determine how varying  $\mu'$  and  $p_x$  affect the stationary probability distribution of the system. The parameter values of each regime are listed in Table B. In particular, we set  $\epsilon = 0.12$ ,  $\mu = 1$  and we consider two values of  $\epsilon'$  ( $\epsilon' = 10, 0.2$ ), three values of  $p_x$  ( $p_x = 0, 0.1, 10$ ) and two values of  $\mu'$  ( $\mu' = 1, 0.5$ ).



Figure C: How the parameter  $p_x$  affects the stationary probability distribution for different values of  $\mu$ . The stationary distribution of our system, represented by the circuit in Fig 5A, obtained computationally. The stationary distributions are obtained by simulating the system of reactions listed in Table I with the SSA and we indicate with  $n^R$  the total number of nucleosomes characterized by repressive chromatin modifications, that is  $n^R = n_1^R + n_2^R + n_{12}^R$ . We consider two different cases: in the first one (left side) we set  $\mu = 1$  and vary  $\mu'$  (i.e.,  $\mu' = 1, 0.5$ ) and in the second one (right side) we set  $\mu' = 1$  and vary  $\mu$  (i.e.,  $\mu = 1, 0.5$ ). The parameter values of each regime are listed in Table I. In particular, for both cases we set  $\epsilon = 0.12$ ,  $\epsilon' = 1$  and we consider three values of  $p_x$  ( $p_x = 0, 0.1, 10$ ).



Figure D: How the positive autoregulation affects the time to memory loss of the active state for different values of  $\epsilon'$ . We consider  $\epsilon = 0.36$ ,  $\mu' = 0.5$ ,  $\mu = 1$ , three different values of  $\epsilon'$  ( $\epsilon' = 0.4, 1, 10$ ), three different values of  $p_x$  ( $p_x = 0, 0.2, 5$ ) and we realize several time trajectories of the system starting with initial conditions  $n^A = 45$ ,  $n_{12}^R = 5$  and  $n^X = p_x n^A$ . Simulations are stopped the first time at which  $n^A = 6$ . In all plots, time is normalized according to  $\tau = t \frac{k_M^A}{\Omega} D_{\text{tot}}$ . The parameter values of each panel are listed in Table C. In each panel, the number of trajectories plotted is 10.



Figure E: How the key parameters affect the reactivation of repressed state for different values of  $\epsilon'$ . Time trajectories of system starting from  $n^R = 45, n^A = 5, n^X = p_x 5$  and considering an input  $u_0^A$  that leads to a unimodal distribution in correspondence of the active gene state. The parameter values of each panel are listed in Table J. In particular, we set  $u^A = 1.62, \mu = 1, \epsilon = 0.16$  and we consider two values of  $\mu'$  ( $\mu' = 0.4, 0.2$ ), two values of  $p_x$  ( $p_x = 0, 10$ ) and three values of  $\epsilon'$  ( $\epsilon' = 5, 1, 0.3$ ). In each panel, the number of trajectories plotted is 10.



Figure F: Location and stability of the equilibria as  $p_x$ ,  $p_z$ ,  $\epsilon$  and  $\mu'$  are changed. Here,  $p_x = p_z = p$ as indicated and we assume  $\tilde{u}_1^R = \tilde{u}_2^R = \tilde{u}^R$ . The filled circles represent stable steady states while the open circles represent unstable steady states. The blue line depicts the  $(u^{R,Z}, \bar{D}^{A,Z})$  input/output steady state characteristic for the Z gene, with  $u^{R,Z} = u_1^{R,Z} = u_2^{R,Z} = \tilde{u}^R \bar{X}$ , that, at steady state, can be written as  $u^{R,Z} = \tilde{u}^R p_x \bar{D}^{A,X}$  and the black line represents the  $(u^{R,X}, \bar{D}^{A,X})$  input/output steady state characteristic of the X gene, with  $u^{R,X} = u_1^{R,X} = u_2^{R,X} = \tilde{u}^R \bar{Z}$ , that, at steady state, can be written as  $u^{R,X} = \tilde{u}^R p_z \bar{D}^{A,Z}$ . We consider four values of  $\epsilon$  ( $\epsilon = 100, 10, 1, 0.1$ ), three values of  $\mu'$  ( $\mu' = 10, 1, 0.1$ ), three values of p(p = 10, 1, 0.1), we set  $u_0^A = u_{10}^R = u_{20}^R = u_0 = 0.1$  and all the other parameters are set equal to 1.



Figure G: How the parameter  $p_x$  and  $p_z$  affect the stationary probability distribution for different values of  $\epsilon'$ . The stationary distribution of our system, represented by the circuit in Fig 6A, obtained computationally. The stationary distributions are obtained by simulating the system of reactions listed in Tables K-L with the SSA and we indicate with  $n^{A,\ell}$  with  $\ell = X, Z$  the total number of nucleosomes in each gene characterized by activating chromatin modifications. In particular, we consider  $p_x = p_z$  (i.e., the production and degradation rate constants are the same for protein X and Z) and we define p as  $p = p_X = p_z$ . Furthermore, we consider three different cases,  $\epsilon' \ll 1$  and  $\epsilon' = 1$  and  $\epsilon' \gg 1$ , and for each case we determine how decreasing  $\epsilon$  and increasing p affect the stationary probability distribution of the system. The parameter values of each regime are listed in Tables K-L. In particular, we set  $\mu = 1$ ,  $\mu' = 0.6$  and we consider three values of  $\epsilon'$  ( $\epsilon' = 0.2, 1, 10$ ), two values of  $\epsilon$  ( $\epsilon = 0.48, 0.2$ ) and two values of p (i.e., p = 0, 10).



Figure H: How the parameter  $p_x$  and  $p_z$  affect the stationary probability distribution for different values of  $\mu'$ . The stationary distribution of our system, represented by the circuit in Fig 6A, obtained computationally. The stationary distributions are obtained by simulating the system of reactions listed in Tables K-L with the SSA and we indicate with  $n^{A,\ell}$  with  $\ell = X, Z$  the total number of nucleosomes in each gene characterized by activating chromatin modifications. In particular, we consider  $p_x = p_z$  (i.e., the production and degradation rate constants are the same for protein X and Z) and we define p as  $p = p_x = p_z$ . Furthermore, we consider two different cases,  $\mu' = 0.3$  and  $\mu' = 0.1$ , and for each case we determine how decreasing  $\epsilon$  and increasing p affect the stationary probability distribution of the system. The parameter values of each regime are listed in Tables K-L. In particular, we set  $\epsilon' = 1$ ,  $\mu = 1$  and we consider two values of  $\epsilon$  ( $\epsilon = 0.48, 0.2$ ) and three values of p (i.e., p = 0, 0.1, 10).



Figure I: How the parameter  $p_x$  and  $p_z$  affect the stationary probability distribution. The stationary distribution of the system obtained by simulating the reactions listed in Tables E-F with the SSA, in which by  $n^{A,\ell}$  with  $\ell = X, Z$  we denote the number of nucleosomes in each gene with activating histone modifications. Here,  $\epsilon = 0.48$ ,  $p_z = 0, 10$ , and  $p_x = 0, 10$ . The parameter values of each plot are listed in Tables E-F. For all simulations we have  $\mu = 1$ ,  $\mu' = 0.6$ , and  $\epsilon' = 1$ .



Figure J: Mutual repression circuit enables long-term, yet reconfigurable memory of multiple gene expression patterns. Time trajectories of  $n^{A,X}$  and  $n^{A,Z}$  starting from  $n^{A,X} = D_{tot}$  and  $n^{A,Z} = 0$ . Time is still normalized with respect to  $\frac{k_M^A}{\Omega} D_{tot}$ . The reactions and parameter values are listed in Tables G-H at which we add the reactions  $\emptyset \xrightarrow{\alpha_i^s} i$  with i = X,Z. The rate constants  $\alpha_X^s \cdot \Omega$  and  $\alpha_Z^s \cdot \Omega$  vary as shown in the Figure. In particular, p = 0.15,  $\mu' = 0.6$ ,  $\mu = 1$ ,  $\epsilon' = 1$  and  $\epsilon = 0.3, 0.07$ . In all plots we assume equal parameters for both chromatin circuits.

### 4 Tables

It is important to point out that  $D_{tot}$  represents the total number of nucleosomes in a gene. Since we can assume about one nucleosome per 200 pb [2](Chapter 4) and we can assume that an average gene spans 10,000–20,000 bp [3],  $D_{tot}$  can be considered on average between 50 and 100. In particular, in our computational analysis we consider  $D_{tot} = 50$ .

| Param.               | Value                                   |
|----------------------|-----------------------------------------|
| $u_0^A$              | 0.1                                     |
| $u_{10}^{\check{R}}$ | 0.1                                     |
| $u_{20}^R$           | 0.1                                     |
| $u_1^R$              | 0                                       |
| $u_2^R$              | 0                                       |
| $\alpha$             | 0.1                                     |
| $\bar{lpha}$         | 0.1                                     |
| $\alpha^{\prime}$    | 0.1                                     |
| $\epsilon$           | 0.1                                     |
| $\epsilon^{\prime}$  | 1                                       |
| b                    | 1                                       |
| $\beta$              | 1                                       |
| $\mu$                | 1                                       |
| $\mu^{'}$            | 0.7                                     |
| $\tilde{u}^A$        | 6                                       |
| $ar{lpha}_x$         | 0.5, 1, 5                               |
| $ar{\gamma}_x$       | 1                                       |
| $\bar{D}^R(0)$       | 0                                       |
| $\bar{D}^A(0)$       | 1                                       |
| $\bar{X}(0)$         | $\frac{\bar{\alpha}_x}{\bar{\gamma}_x}$ |

Table A: Parameter values relative to the plots in Fig 5C.

| $\mathbf{R}_{j}$ | Reaction                                                                                                                         | <b>Prop.Func.</b> $(a_j)$                                                               | Param.                                     | Value $(h^{-1})$  | Value $(h^{-1})$       | Value $(h^{-1})$ |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------|-------------------|------------------------|------------------|
|                  |                                                                                                                                  |                                                                                         |                                            | Fig 5D            | Fig B                  | Fig B            |
| 1                | $\mathbf{D} + \mathbf{V} = \mathbf{a} + \mathbf{C}$                                                                              | a D X                                                                                   | a                                          | 10                | lert plots             | right plots      |
| 1                | $D + X \longrightarrow C_A$<br>$C_A \xrightarrow{d} D + X$                                                                       | $a_1 = \frac{1}{\Omega}n^- n^-$<br>$a_2 = dn^C$                                         | $\overline{\Omega}$                        | 10                | 10                     | 10               |
| 3                | $D \xrightarrow{k_{W0}^A} D^A$                                                                                                   | $a_2 = k_A^A \cdot n^D$                                                                 | kA.                                        | 3.5               | 3.5                    | 3.5              |
| 4                | $C_A \xrightarrow{k_{W0}^A} D^A + X$                                                                                             | $a_3 = h_{W0}^A n$<br>$a_4 = k_{W0}^A n^D$                                              | kA.                                        | 3.5               | 3.5                    | 3.5              |
| 5                | $C_A \xrightarrow{k_W^A} D^A + X$                                                                                                | $a_4 = \kappa_{W0}n$<br>$a_5 = k^A n^C$                                                 | hW0<br>LA                                  | 300               | 300                    | 300              |
| 6                | $D^{A} \xrightarrow{\bar{k}_{E}^{A}} D$                                                                                          | $u_5 = \kappa_W n_A$<br>$a = \bar{k}^A n^A$                                             | $\bar{h}_W$<br>$\bar{h}A$                  | 2                 | 2                      | 2                |
| 7                | $D^{A} \xrightarrow{\delta} D$                                                                                                   | $a_6 = \kappa_E n$<br>$a_7 = \delta n^A$                                                | $\delta^{n_E}$                             | 3                 | 3                      | 3                |
| 8                | $D + D^A \xrightarrow{k_M^A} D^A + D^A$                                                                                          | $a_s = \frac{k_M^A}{m} n^D n^A$                                                         | $\frac{k_M^A}{m}$                          | 1                 | 1                      | 1                |
| o<br>o           | $C_A + D^A \xrightarrow{k_M^A} D^A + D^A + X$                                                                                    | $a_0 = \frac{k_M^A}{n} n C n^A$                                                         | $\frac{\Omega}{k_M^A}$                     | 1                 | 1                      | 1                |
| 10               | $D^A + D^R \xrightarrow{k^A_E} D + D^R$                                                                                          | $a_{3} = \frac{k_{E}^{A}}{\Omega} n_{A}^{A} n_{B}^{R}$                                  | $\Omega \frac{k_E^A}{E}$                   | 1                 | 0.2                    | 10               |
| 11               | $D^A + D_1^R \xrightarrow{k_E^A} D + D_1^R$                                                                                      | $a_{10} = \frac{k_E^A}{\Omega} n^A n_1^R$                                               | $\Omega \frac{k_E^A}{E}$                   | 1                 | 0.2                    | 10               |
| 10               | $D^{+} + D_{12} \xrightarrow{k_{E}^{A}} D^{+} D_{12}^{12}$                                                                       | $u_{11} = \frac{1}{\Omega} n n_{12}$<br>$a = \frac{k_E^A}{k_E^A} n_A^A n_B^R$           | $\frac{\Omega}{k_E^A}$                     | 1                 | 0.2                    | 10               |
| 12               | $D^{+} + D_{2}^{-} \xrightarrow{k_{E}^{A}} D + D_{2}^{-}$                                                                        | $u_{12} = \frac{1}{\Omega} n n_2^{-1}$<br>$k_E^A = A = R$                               | $\frac{\overline{\Omega}}{k_{E}^{A}}$      | 1                 | 0.2                    | 10               |
| 13               | $D^{12} + D_{12}^{12} \longrightarrow D + D_{12}^{12}$<br>$p^{k_{W0}^1} p^R$                                                     | $a_{13} = \frac{1}{\Omega} n^{-1} n_{12}^{-1}$                                          | Ω                                          | 1                 | 0.2                    | 10               |
| 14               | $D \longrightarrow D_1^n$<br>$a \xrightarrow{k_{W0}^1} D_R^R = V$                                                                | $a_{14} = k_{W0}^* n^D$                                                                 | $k_{W0}$                                   | 3.5               | 3.5                    | 3.5              |
| 15               | $C_A \xrightarrow{k_T} D_1^n + X$                                                                                                | $a_{15} = k_{W0}^{L} n^{D}$                                                             | $k_{W0}^{i}$                               | 3.5               | 3.5                    | 3.5              |
| 16               | $D_1^R \xrightarrow{I} D$                                                                                                        | $a_{16} = k_T n_1^R$                                                                    | $k'_T$                                     | 1.5               | 3, 1.5                 | 3, 1.5           |
| 17               | $D_1^R \xrightarrow{b} D_{\mu'}$                                                                                                 | $a_{17} = \delta n_1^R$                                                                 | δ                                          | 1.5               | 3, 1.5                 | 3, 1.5           |
| 18               | $D + D_2^R \xrightarrow{\kappa_M} D_1^R + D_2^R$                                                                                 | $a_{18} = \frac{k_M}{\Omega} n^D n_2^R$                                                 | $\frac{k_M}{\Omega}$                       | 0.2               | 0.2                    | 0.2              |
| 19               | $C_A + D_2^R \xrightarrow{k_M} D_1^R + D_2^R + X$                                                                                | $a_{19} = \frac{k'_M}{\Omega} n^D n_2^R$                                                | $\frac{k'_M}{\Omega}$                      | 0.2               | 0.2                    | 0.2              |
| 20               | $D + D_{12}^R \xrightarrow{k_M} D_1^R + D_{12}^R$                                                                                | $a_{20} = \frac{k'_M}{\Omega} n^D n^R_{12}$                                             | $\frac{k'_M}{\Omega}$                      | 0.2               | 0.2                    | 0.2              |
| 21               | $C_A + D_{12}^R \xrightarrow{k'_M} D_1^R + D_{12}^R + X$                                                                         | $a_{21} = \frac{k'_M}{\Omega} n^D n^R_{12}$                                             | $\frac{k'_M}{\Omega}$                      | 0.2               | 0.2                    | 0.2              |
| 22               | $D_1^R + D^A \xrightarrow{k_T'^*} D + D^A$                                                                                       | $a_{22} = \frac{k_T'^*}{\Omega} n_1^R n^A$                                              | $\frac{k_T'^*}{\Omega}$                    | 0.5               | 0.2, 0.1               | 10, 5            |
| 23               | $D \xrightarrow{k_{W0}^2} D_2^R$                                                                                                 | $a_{23} = k_{W0}^2 n^D$                                                                 | $k_{W0}^2$                                 | 3.5               | 3.5                    | 3.5              |
| 24               | $C_A \xrightarrow{k_{W0}^2} D_2^R + X$                                                                                           | $a_{24} = k_{W0}^2 n^D$                                                                 | $k_{W0}^2$                                 | 3.5               | 3.5                    | 3.5              |
| 25               | $D_{\Omega}^{R} \xrightarrow{\bar{k}_{E}^{R}} D$                                                                                 | $a_{25} = \bar{k}_{2}^{R} n_{2}^{R}$                                                    | $\bar{k}_{E}^{R}$                          | 3                 | 3                      | 3                |
| 26               | $D_2^{\mathbb{R}} \xrightarrow{\delta} D$                                                                                        | $a_{26} = \delta n_2^R$                                                                 | δ                                          | 3                 | 3                      | 3                |
| 27               | $D + D_2^R \xrightarrow{k_M} D_2^R + D_2^R$                                                                                      | $a_{27} = \frac{k_M}{\Omega} n^D n_2^R$                                                 | $\frac{k_M}{\Omega}$                       | 0.2               | 0.2                    | 0.2              |
| 28               | $C_A + D_2^R \xrightarrow{k_M} D_2^R + D_2^R + X$                                                                                | $a_{28} = \frac{k_M}{\Omega} n^D n_2^R$                                                 | $\frac{k_M}{\Omega}$                       | 0.2               | 0.2                    | 0.2              |
| 29               | $D + D_{12}^R \xrightarrow{\kappa_M} D_2^R + D_{12}^R$                                                                           | $a_{29} = \frac{k_M}{\Omega} n^D n_{12}^R$                                              | $\frac{k_M}{\Omega}$                       | 0.2               | 0.2                    | 0.2              |
| 30               | $C_A + D_{12}^R \xrightarrow{\kappa_M} D_2^R + D_{12}^R + X$                                                                     | $a_{30} = \frac{\kappa_M}{\Omega} n^D n_{12}^R$                                         | $\frac{\kappa_M}{\Omega}$                  | 0.2               | 0.2                    | 0.2              |
| 31               | $D + D_1^R \xrightarrow{\bar{k}} D_2^R + D_1^R$<br>$G \rightarrow D^R \xrightarrow{\bar{k}} D_2^R \rightarrow D^R \rightarrow N$ | $a_{31} = \frac{\kappa_M}{\Omega} n^D n_1^R$<br>$\bar{k}_M D R$                         | $\frac{k_M}{\Omega}$                       | 0.2               | 0.2                    | 0.2              |
| 32               | $C_A + D_1^{**} \longrightarrow D_2^{**} + D_1^{**} + \Lambda$<br>$D + D_1^{**} = \bar{k}_M + D_2^{**}$                          | $a_{32} = \frac{M}{\Omega} n^D n_1^R$<br>= $\bar{k}_M = D = B$                          | $\frac{\overline{\Omega}}{\overline{k}_M}$ | 0.2               | 0.2                    | 0.2              |
| ээ<br>24         | $D + D_{12}^{*} \longrightarrow D_{2}^{*} + D_{12}^{*}$<br>$C + D^{R} = \bar{k}_{M} + D^{R} + D^{R} + V$                         | $a_{33} = \frac{1}{\Omega} n^2 n_{12}^2$<br>$a_{33} = \frac{\bar{k}_M}{\Omega} n^D n^R$ | $\frac{\overline{\Omega}}{\overline{k}_M}$ | 0.2               | 0.2                    | 0.2              |
| 25               | $D_A^R + D_{12} \xrightarrow{k_E^R} D_2 + D_{12} + A$                                                                            | $u_{34} = \frac{\alpha}{\Omega} n n_{12}$<br>= $k_E^R = R = A$                          | $\frac{\Omega}{k_{E}^{R}}$                 | 1                 | 0.2                    | 10               |
| 30               | $D_2 + D \longrightarrow D + D$<br>$D_2^R \stackrel{k^2_{W0}}{\longrightarrow} D_R^R$                                            | $u_{35} = \frac{1}{\Omega} n_2 n$                                                       | $\overline{\Omega}$                        | 1                 | 0.2                    | 10               |
| 30               | $D_1 \longrightarrow D_{12}$<br>$D_1^R \xrightarrow{\bar{k}_E^R} D_1^R$                                                          | $a_{36} = \kappa_{W0}n_1$<br>$\bar{n}_B R$                                              | $\kappa_{W0}$<br>$\bar{\iota} B$           | ə.ə               | ə.ə                    | 0.0              |
| 31<br>38         | $D_{12} \xrightarrow{\delta} D_1$<br>$D_R^R \xrightarrow{\delta} D_R^R$                                                          | $a_{37} = \kappa_E n_{12}$<br>$a_{22} = \delta n_E^R$                                   | $\kappa_E$<br>$\delta$                     | 3<br>3            | 3                      | 3                |
| 39               | $D_{12}^R + D_2^R \xrightarrow{k_M} D_{12}^R + D_2^R$                                                                            | $a_{38} = 5n_{12}$<br>$a_{39} = \frac{k_M}{n_1}n_2^Rn_2^R$                              | k <sub>M</sub>                             | 0.2               | 0.2                    | 0.2              |
| 40               | $D_1^R + D_{12}^R \xrightarrow{k_M} D_{12}^R + D_{12}^R$                                                                         | $a_{40} = \frac{k_M}{\Omega} n_1^R n_{12}^R$                                            | $\frac{k_M}{\Omega}$                       | 0.2               | 0.2                    | 0.2              |
| 41               | $D_1^R + D_1^R \xrightarrow{\bar{k}_M} D_{12}^R + D_1^R$                                                                         | $a_{41} = \frac{\bar{k}_M}{\Omega} \frac{n_1^R(n_1^R - 1)}{2}$                          | $\frac{\bar{k}_M}{\Omega}$                 | 0.2               | 0.2                    | 0.2              |
| 42               | $D_1^R + D_{12}^R \xrightarrow{\bar{k}_M} D_{12}^R + D_{12}^R$                                                                   | $a_{42} = \frac{\bar{k}_M}{\Omega} n_1^R n_{12}^R$                                      | $\frac{\bar{k}_M}{\Omega}$                 | 0.2               | 0.2                    | 0.2              |
| 43               | $D_{12}^R + D^A \xrightarrow{k_E^R} D_1^R + D^A$                                                                                 | $a_{43} = \frac{k_E^R}{\Omega} n_{12}^R n^A$                                            | $\frac{k_E^R}{\Omega}$                     | 1                 | 0.2                    | 10               |
| 44               | $D_2^R \xrightarrow{k_{W0}^1} D_{12}^R$                                                                                          | $a_{44} = k_{W0}^1 n_2^R$                                                               | $k_{W0}^1$                                 | 3.5               | 3.5                    | 3.5              |
| 45               | $D_{12}^R \xrightarrow{k'_T} D_2^R$                                                                                              | $a_{45} = k'_T n^R_{12}$                                                                | $k'_T$                                     | 1.5               | 3, 1.5                 | 3, 1.5           |
| 46               | $D_{12}^R \xrightarrow{\delta'} D_2^R$                                                                                           | $a_{46} = \delta' n_{12}^R$                                                             | δ                                          | 1.5               | 3, 1.5                 | 3, 1.5           |
| 47               | $D_2^R + D_2^R \xrightarrow{\vec{k'_M}} D_{12}^R + D_2^R$                                                                        | $a_{47} = \frac{k'_M}{\Omega} \frac{n_2^R(n_2^R-1)}{2}$                                 | $\frac{k'_M}{\Omega}$                      | 0.2               | 0.2                    | 0.2              |
| 48               | $D_{0}^{R} + D_{10}^{R} \xrightarrow{k'_{M}} D_{10}^{R} + D_{10}^{R}$                                                            | $a_{48} = \frac{k'_M}{k'_M} n_R^R n_R^R$                                                |                                            | 0.2               | 0.2                    | 0.2              |
| 40               | $D_{12}^{R} + D_{12}^{A} \xrightarrow{k_{T}^{\prime *}} D_{12}^{R} + D_{12}^{A}$                                                 | $\alpha_{10} = \frac{k_T' *}{mR} R mA$                                                  | $\frac{\Omega}{k_T'^*}$                    | 0.5               | 0.2 0.1                | 10.5             |
| 49<br>50         | $D_{12}  D  D_2  D_2$<br>$D^A \xrightarrow{\alpha_x} D^A + X$                                                                    | $a_{49} = \overline{\Omega} n_{12} n$<br>$a_{50} = \alpha_x n^A$                        | $\frac{\overline{\Omega}}{\alpha_x}$       | 0.0<br>0, 0.1, 10 | 0.2, 0.1<br>0, 0.1, 10 | 0, 0.1, 10       |
| 51               | $X \xrightarrow{\gamma_x} \emptyset$                                                                                             | $a_{51} = \gamma_x n^X$                                                                 | $\gamma_x$                                 | 1                 | 1                      | 1                |
| 52               | $C_A \xrightarrow{\delta} D + X$                                                                                                 | $a_{52} = \delta n^A$                                                                   | δ                                          | 3                 | 3                      | 3                |

Table B: Reactions and parameter values used to generate the plots in Figs 5D and B.

| $\mathbf{R}_{j}$ | Reaction                                                                                                                                        | <b>Prop.Func.</b> $(a_j)$                                                                              | Param.                                   | Value $(h^{-1})$ |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|
| 1                | $D + X \xrightarrow{a} C_A$                                                                                                                     | $a_1 = \frac{a}{\Omega} n^D n^X$                                                                       | $\frac{a}{\Omega}$                       | 10               |
| 2                | $C_A \xrightarrow{d} D + X$                                                                                                                     | $a_2 = dn_A^C$                                                                                         | d                                        | 10               |
| 3                | $D \xrightarrow{k_{W0}^A} D^A$                                                                                                                  | $a_3 = k^A_{W0} n^D$                                                                                   | $k^A_{W0}$                               | 5                |
| 4                | $C_A \xrightarrow{k_{W0}^A} D^A + X$                                                                                                            | $a_4 = k_{W0}^A n^D$                                                                                   | $k_{W0}^A$                               | 5                |
| 5                | $C_A \xrightarrow{k_W^A} D^A + X$                                                                                                               | $a_5 = k_W^A n_A^C$                                                                                    | $k_W^A$                                  | 50               |
| 6                | $D^A \xrightarrow{\bar{k}^A_E} D$                                                                                                               | $a_6 = \bar{k}_E^A n^A$                                                                                | $\bar{k}_{E}^{A}$                        | 9                |
| 7                | $D^A \xrightarrow{\delta} D$                                                                                                                    | $a_7 = \delta n^A$                                                                                     | δ                                        | 9                |
| 8                | $\mathbf{D} + \mathbf{D}^{\mathbf{A}} \xrightarrow{k_{M}^{A}} \mathbf{D}^{\mathbf{A}} + \mathbf{D}^{\mathbf{A}}$                                | $a_8 = \frac{k_M^A}{\Omega} n^D n^A$                                                                   | $\frac{k_M^A}{\Omega}$                   | 1                |
| 9                | $C_A + D^A \xrightarrow{k_M^A} D^A + D^A + X$                                                                                                   | $a_9 = \frac{k_M^A}{\Omega} n_A^C n^A$                                                                 | $\frac{k_M^A}{\Omega}$                   | 1                |
| 10               | $D^{A} + D_{1}^{R} \xrightarrow{k_{E}^{A}} D + D_{1}^{R}$                                                                                       | $a_{10} = \frac{k_E^A}{k_E^A} n^A n_1^R$                                                               | $\frac{k_E^A}{O}$                        | 0.4, 1, 10       |
| 11               | $D^A + D^R_{10} \xrightarrow{k^A_E} D + D^R_{10}$                                                                                               | $a_{11} = \frac{k_E^A}{k_E^A} n^A n_{10}^R$                                                            | $\frac{k_E^A}{E}$                        | 0.4. 1. 10       |
| 12               | $D^{A} + D^{R} \xrightarrow{k_{E}^{A}} D + D^{R}$                                                                                               | $a_{11} = \frac{M_E^A}{\Omega} n^A n_{12}^R$                                                           | $\frac{\Omega}{k_E^A}$                   | 0.4 1 10         |
| 12               | $D^{A} + D^{R} \xrightarrow{k_{E}^{A}} D + D^{R}$                                                                                               | $a_{12} = \frac{k_E^A}{\Omega} n^2 n_2^2$                                                              | $\Omega k_E^A$                           | 0.4, 1, 10       |
| 14               | $D + D_{12} \longrightarrow D + D_{12}$<br>$D \stackrel{k_{W0}^1}{\longrightarrow} D^R$                                                         | $a_{13} = \frac{1}{\Omega} n n_{12}$                                                                   | $\overline{\Omega}$                      | 5                |
| 14               | $D \longrightarrow D_1$<br>$C \xrightarrow{k_{W0}^1} D_R + Y$                                                                                   | $u_{14} = \kappa_{W0} n$                                                                               | κ <sub>W0</sub>                          | 5                |
| 15               | $C_A \longrightarrow D_1^* + A$                                                                                                                 | $a_{15} = \kappa_{W0} n^{-1}$                                                                          | $\kappa_{W0}$                            | 5                |
| 16               | $D_1^R \xrightarrow{\delta'} D$                                                                                                                 | $a_{16} = k_T n_1^R$                                                                                   | $k_T$                                    | 4.5              |
| 17               | $D_1^R \xrightarrow{\circ} D_{\mu'}$                                                                                                            | $a_{17} = \delta n_1^R$                                                                                | δ                                        | 4.5              |
| 18               | $D + D_2^R \xrightarrow{n_M} D_1^R + D_2^R$                                                                                                     | $a_{18} = \frac{\kappa_M}{\Omega} n^D n_2^R$                                                           | $\frac{\kappa_M}{\Omega}$                | 0.2              |
| 19               | $C_A + D_2^R \xrightarrow{\kappa_M} D_1^R + D_2^R + X$                                                                                          | $a_{19} = \frac{k_M}{\Omega} n^D n_2^R$                                                                | $\frac{k_M}{\Omega}$                     | 0.2              |
| 20               | $\mathbf{D} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{k_M} \mathbf{D}_1^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$                          | $a_{20} = \frac{k'_M}{\Omega} n^D n^R_{12}$                                                            | $\frac{k'_M}{\Omega}$                    | 0.2              |
| 21               | $C_A + D_{12}^R \xrightarrow{k'_M} D_1^R + D_{12}^R + X$                                                                                        | $a_{21} = \frac{k'_{M}}{\Omega} n^{D} n^{R}_{12}$                                                      | $\frac{k'_M}{\Omega}$                    | 0.2              |
| 22               | $D_1^R + D^A \xrightarrow{k_T^{'*}} D + D^A$                                                                                                    | $a_{22} = \frac{k_T'^*}{\Omega} n_1^R n^A$                                                             | $\frac{k_T^{\prime *}}{\Omega}$          | 0.2, 0.5, 5      |
| 23               | $D \xrightarrow{k_{W0}^2} D_2^R$                                                                                                                | $a_{23} = k_{W0}^2 n^D$                                                                                | $k_{W0}^2$                               | 5                |
| 24               | $C_A \xrightarrow{k_{W0}^2} D_2^R + X$                                                                                                          | $a_{24} = k_{W0}^2 n^D$                                                                                | $k_{W0}^2$                               | 5                |
| 25               | $D_{\Omega}^{R} \xrightarrow{\bar{k}_{E}^{R}} D$                                                                                                | $a_{25} = \bar{k}_{k}^{R} n_{2}^{R}$                                                                   | $\bar{k}^R_{R}$                          | 9                |
| 26               | $D_2^R \xrightarrow{\delta} D$                                                                                                                  | $a_{26} = \delta n_2^R$                                                                                | $\delta$                                 | 9                |
| 27               | $D + D_2^R \xrightarrow{k_M} D_2^R + D_2^R$                                                                                                     | $a_{27} = \frac{k_M}{\Omega} n^D n_2^R$                                                                | $\frac{k_M}{\Omega}$                     | 0.2              |
| 28               | $C_A + D_2^R \xrightarrow{k_M} D_2^R + D_2^R + X$                                                                                               | $a_{28} = \frac{k_M}{\Omega} n^D n_2^R$                                                                | $\frac{k_M}{\Omega}$                     | 0.2              |
| 29               | $\mathbf{D} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{k_M} \mathbf{D}_2^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$                          | $a_{29} = \frac{k_M}{\Omega} n^D n_{12}^R$                                                             | $\frac{k_M}{\Omega}$                     | 0.2              |
| 30               | $C_A + D_{12}^R \xrightarrow{k_M} D_2^R + D_{12}^R + X$                                                                                         | $a_{30} = \frac{k_M}{\Omega} n^D n_{12}^R$                                                             | $\frac{k_M}{\Omega}$                     | 0.2              |
| 31               | $D + D_1^R \xrightarrow{k_M} D_2^R + D_1^R$                                                                                                     | $a_{31} = \frac{k_M}{\Omega} n^D n_1^R$                                                                | $\frac{k_M}{\Omega}$                     | 0.2              |
| 32               | $C_A + D_1^R \xrightarrow[\bar{\iota}]{\kappa_M} D_2^R + D_1^R + X$                                                                             | $a_{32} = \frac{k_M}{\Omega} n^D n_1^R$                                                                | $\frac{k_M}{\Omega}$                     | 0.2              |
| 33               | $D + D_{12}^R \xrightarrow{k_M} D_2^R + D_{12}^R$                                                                                               | $a_{33} = \frac{k_M}{\Omega} n^D n_{12}^R$                                                             | $\frac{k_M}{\Omega}$                     | 0.2              |
| 34               | $C_A + D_{12}^R \xrightarrow{\kappa_M} D_2^R + D_{12}^R + X$                                                                                    | $a_{34} = \frac{k_M}{\Omega} n^D n_{12}^R$                                                             | $\frac{k_M}{\Omega}$                     | 0.2              |
| 35               | $D_2^R + D^A \xrightarrow{\kappa_E} D + D^A$                                                                                                    | $a_{35} = \frac{k_E^{*}}{\Omega} n_2^R n^A$                                                            | $\frac{k_E^{\alpha}}{\Omega}$            | 0.4, 1, 10       |
| 36               | $D_1^R \xrightarrow{\kappa_{W0}}{1} D_{12}^R$                                                                                                   | $a_{36} = k_{W0}^2 n_1^R$                                                                              | $k_{W0}^2$                               | 5                |
| 37               | $D_{12}^R \xrightarrow{\kappa_E^*} D_1^R$                                                                                                       | $a_{37} = \bar{k}_E^R n_{12}^R$                                                                        | $\bar{k}_E^R$                            | 9                |
| 38               | $D_{12}^{R} \xrightarrow{o} D_{1}^{R}$                                                                                                          | $a_{38} = \delta n_{12}^R$                                                                             | δ                                        | 9                |
| 39               | $D_1^R + D_2^R \xrightarrow{\kappa_M} D_{12}^R + D_2^R$<br>$D_1^R + D_2^R \xrightarrow{\kappa_M} D_{12}^R + D_2^R$                              | $a_{39} = \frac{\kappa_M}{\Omega} n_1^R n_2^R$                                                         | $\frac{\kappa_M}{\Omega}$                | 0.2              |
| 40               | $D_1^{r_1} + D_{12}^{r_1} \xrightarrow{\dots} D_{12}^{r_k} + D_{12}^{r_k}$<br>$D_1^{R_1} + D_{12}^{R_k} \xrightarrow{\bar{k}_M} D_1^{R_k} = -P$ | $a_{40} = \frac{\kappa_M}{\Omega} n_1^R n_{12}^R \\ \frac{\bar{k}_M}{\bar{k}_M} n_1^R (n_{12}^R - 1)$  | $\frac{\kappa_M}{\Omega}$<br>$\bar{k}_M$ | 0.2              |
| 41               | $D_1^n + D_1^n \xrightarrow{m} D_{12}^n + D_1^n$ $D_1^R + D_1^R \xrightarrow{\bar{k}_M} D_{12}^R = D_1^R$                                       | $a_{41} = \frac{\kappa_M}{\Omega} \frac{\alpha_1 (\alpha_1 - 1)}{2}$ $\bar{k}_M = \frac{\rho}{\rho} p$ | $\frac{n_M}{\Omega}$ $\bar{k}_M$         | 0.2              |
| 42               | $D_1^{n} + D_{12}^{n} \xrightarrow{k_E^R} D_{12}^{n} + D_{12}^{n}$                                                                              | $a_{42} = \frac{\alpha_M}{\Omega} n_1^R n_{12}^R$ $k^R = p$                                            | $\frac{n_M}{\Omega}$<br>$k_R^R$          | 0.2              |
| 43               | $D_{12}^{r_{L}} + D^{A} \xrightarrow{E} D_{1}^{R} + D^{A}$                                                                                      | $a_{43} = \frac{n_E}{\Omega} n_{12}^R n^A$                                                             | $\frac{n_E}{\Omega}$                     | 0.4, 1, 10       |
| 44               | $D_2^{\mathbf{R}} \xrightarrow{w_0} D_{12}^{\mathbf{R}}$                                                                                        | $a_{44} = k_{W0}^1 n_2^K$                                                                              | $k_{W0}^{1}$                             | 5                |
| 45               | $D_{12}^R \xrightarrow{\sim_T} D_2^R$                                                                                                           | $a_{45} = k'_T n_{12}^R$                                                                               | $k_T'$                                   | 4.5              |
| 46               | $D_{12}^R \xrightarrow{\sigma} D_2^R$                                                                                                           | $a_{46} = \delta' n_{12}^R$                                                                            | δ΄                                       | 4.5              |
| 47               | $D_2^R + D_2^R \xrightarrow{k_M} D_{12}^R + D_2^R$                                                                                              | $a_{47} = \frac{k_M}{\Omega} \frac{n_2^R (n_2^R - 1)}{2}$                                              | $\frac{k_M}{\Omega}$                     | 0.2              |
| 48               | $\mathbf{D}_2^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{k_M} \mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$        | $a_{48} = rac{k'_M}{\Omega} n_2^R n_{12}^R$                                                           | $\frac{k'_M}{\Omega}$                    | 0.2              |
| 49               | $\mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}^{\mathbf{A}} \xrightarrow{k_T^{'*}} \mathbf{D}_2^{\mathbf{R}} + \mathbf{D}^{\mathbf{A}}$             | $a_{49} = \frac{k_T'^*}{\Omega} n_{12}^R n^A$                                                          | $\frac{k_T^{\prime *}}{\Omega}$          | 0.2              |
| 50               | $D^A \xrightarrow{\alpha_x} D^A + X$                                                                                                            | $a_{50} = \alpha_x n^A$                                                                                | $\alpha_x$                               | 0, 0.2, 5        |
| 51<br>50         | $X \xrightarrow{\delta} \emptyset$<br>$C \xrightarrow{\delta} D + Y$                                                                            | $a_{51} = \gamma_x n^A$                                                                                | $\gamma_x$                               | 1                |
| 52               | $\cup_A \longrightarrow D + A$                                                                                                                  | $u_{52} = on^{-1}$                                                                                     | 0                                        | 9                |

Table C: Reactions and parameter values used to generate the plots in Fig D. Furthermore, these (with  $\frac{k_E^A}{\Omega} = 1$ ,  $\frac{k_E^R}{\Omega} = 1$  and  $\frac{k_T'^*}{\Omega} = 1, 0.5$ ) are also the parameter values used for the simulations in Fig 5E.

| $\mathbf{R}_{j}$ | Reaction                                                                                                                                 | <b>Prop.Func.</b> $(a_j)$                                                          | Param.                                | Value $(h^{-1})$ |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------|------------------|
| 1                | $D + X \xrightarrow{a} C_A$                                                                                                              | $a_1 = \frac{a}{\Omega}n^D n^X$                                                    | $\frac{a}{\Omega}$                    | 10               |
| 2                | $C_A \xrightarrow{d} D + X$                                                                                                              | $a_2 = dn_A^C$                                                                     | d                                     | 10               |
| 3                | $D \xrightarrow{k_{W0}^A} D^A$                                                                                                           | $a_3 = k_{W0}^A n^D$                                                               | $k_{W0}^A$                            | 5                |
| 4                | $C_A \xrightarrow{k_{W0}^A} D^A + X$                                                                                                     | $a_A = k_{W0}^A n^D$                                                               | $k_{Wo}^A$                            | 5                |
| 5                | $C_A \xrightarrow{k_W^A} D^A + X$                                                                                                        | $a_{\bar{z}} = k_{\bar{z}}^A n_{\bar{z}}^C$                                        | kA.                                   | 300              |
| 6                | $D^{A} \xrightarrow{\bar{k}^{A}_{E}} D$                                                                                                  | $a_3 = \bar{k}AnA$                                                                 | $\bar{k}_W$<br>$\bar{k}A$             | 10.05            |
| 7                | $D \longrightarrow D$<br>$D^{A} \xrightarrow{\delta} D$                                                                                  | $a_6 = \kappa_E n$<br>$a_7 = \delta n^A$                                           | $\kappa_E$<br>$\delta$                | 10, 0.5          |
| ,<br>e           | $D + D^A \xrightarrow{k_M^A} D^A + D^A$                                                                                                  | $a_i = bh$<br>$a_0 = \frac{k_M^A}{m} p m^A$                                        | $k_M^A$                               | 10, 0.0          |
| 0                | $D + D \longrightarrow D + D$<br>$C \rightarrow D^A \stackrel{k^A_M}{\longrightarrow} D^A \rightarrow D^A \rightarrow V$                 | $u_8 = \frac{1}{\Omega} n n$<br>$k_M^A C A$                                        | $\frac{\Omega}{k_M^A}$                | 1                |
| 9                | $C_A + D^A \longrightarrow D^A + D^A + X$                                                                                                | $a_9 = \frac{M}{\Omega} n_A^2 n^A$                                                 | $\frac{M}{\Omega}$<br>$k^{A}$         | 1                |
| 10               | $D^{A} + D_{1}^{R} \xrightarrow{k}{\longrightarrow} D + D_{1}^{R}$                                                                       | $a_{10} = \frac{n_E}{\Omega} n^A n_1^R$                                            | $\frac{n_E}{\Omega}_{hA}$             | 1                |
| 11               | $D^{A} + D_{12}^{R} \xrightarrow{n_{E}} D + D_{12}^{R}$                                                                                  | $a_{11} = \frac{\kappa_E}{\Omega} n^A n_{12}^R$                                    | $\frac{\kappa_E}{\Omega}$             | 1                |
| 12               | $D^A + D_2^R \xrightarrow{\kappa_E^R} D + D_2^R$                                                                                         | $a_{12} = \frac{k_E^A}{\Omega} n^A n_2^R$                                          | $\frac{k_E^A}{\Omega}$                | 1                |
| 13               | $D^{A} + D_{12}^{R} \xrightarrow{k_{E}^{A}} D + D_{12}^{R}$                                                                              | $a_{13} = \frac{k_E^A}{\Omega} n^A n_{12}^R$                                       | $\frac{k_E^A}{\Omega}$                | 1                |
| 14               | $D \xrightarrow{k_{W0}^1} D_1^R$                                                                                                         | $a_{14} = k_{W0}^1 n^D$                                                            | $k_{W0}^1$                            | 5                |
| 15               | $C_A \xrightarrow{k_{W0}^1} D_1^R + X$                                                                                                   | $a_{15} = k_{W0}^1 n^D$                                                            | $k_{W0}^1$                            | 5                |
| 16               | $D_1^R \xrightarrow{k'_T} D$                                                                                                             | $a_{16} = k'_m n_1^R$                                                              | $k'_{\pi}$                            | 1 0.05           |
| 17               | $D_1^R \xrightarrow{\delta'} D$                                                                                                          | $a_{16} = h_I h_1$<br>$a_{17} = \delta' n_I^R$                                     | $\delta'$                             | 1, 0.05          |
| 11               | $D_1 \longrightarrow D$                                                                                                                  | $a_{17} = 0 n_1$<br>$k'_{17} = 0 R$                                                | k'                                    | 1, 0.05          |
| 18               | $D + D_2^n \xrightarrow{\longrightarrow} D_1^n + D_2^n$                                                                                  | $a_{18} = \frac{n_M}{\Omega} n^D n_2^n$                                            | $\frac{\alpha_M}{\Omega}$             | 0.2              |
| 19               | $C_A + D_2^R \xrightarrow{\kappa_M} D_1^R + D_2^R + X$                                                                                   | $a_{19} = \frac{\kappa_M}{\Omega} n^D n_2^R$                                       | $\frac{\kappa_M}{\Omega}$             | 0.2              |
| 20               | $\mathbf{D} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{k_M} \mathbf{D}_1^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$                   | $a_{20} = \frac{k_M}{\Omega} n^D n_{12}^R$                                         | $\frac{k_M}{\Omega}$                  | 0.2              |
| 21               | $C_A + D_{12}^R \xrightarrow{k'_M} D_1^R + D_{12}^R + X$                                                                                 | $a_{21} = \frac{k'_M}{\Omega} n^D n^R_{12}$                                        | $\frac{k'_M}{\Omega}$                 | 0.2              |
| 22               | $D_1^R + D^A \xrightarrow{k_T^{\prime *}} D + D^A$                                                                                       | $a_{22} = \frac{k_T'^*}{\Omega} n_1^R n^A$                                         | $\frac{k_T'^*}{\Omega}$               | 0.1              |
| 23               | $D \xrightarrow{k_{W0}^2} D_{n}^R$                                                                                                       | $a_{22} = k_{2}^2 m^D$                                                             | $k^2$                                 | 5                |
| 20               | $C = \frac{k_{W0}^2}{DR} + X$                                                                                                            | $a_{23} = h_{W0}^2 n^D$                                                            | hW0<br>12                             | 5                |
| 24               | $D_A \xrightarrow{\bar{k}_E^R} D_2 + A$                                                                                                  | $u_{24} = \kappa_{W0}n$<br>$\bar{\iota}B_{\nu\nu}B$                                | $\bar{\kappa}_{W0}$<br>$\bar{\iota}R$ | 10.05            |
| 20<br>26         | $D_2^{\sim} \longrightarrow D$<br>$D_R^R \xrightarrow{\delta} D$                                                                         | $a_{25} \equiv \kappa_E n_2^*$<br>$a_{25} \equiv \delta n^R$                       | $\kappa_{\tilde{E}}$                  | 10, 0.5          |
| 20               | $D_2 \xrightarrow{k_M} D$<br>$D + D_R^R \xrightarrow{k_M} D_R^R + D_R^R$                                                                 | $a_{26} = bn_2$<br>$a_{27} = \frac{k_M}{2}n^D n_2^R$                               | $\frac{k_M}{k_M}$                     | 10, 0.5          |
| 28               | $D_1 + D_2^R \xrightarrow{k_M} D_2^R + D_2^R + X$                                                                                        | $a_{21} = \frac{k_M}{\Omega} n^D n_2^R$ $a_{22} = \frac{k_M}{\Omega} n^D n_2^R$    | $\Omega \frac{k_M}{M}$                | 0.2              |
| 29               | $\mathbf{D} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{k_M} \mathbf{D}_2^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$                   | $a_{29} = \frac{k_M}{\Omega} n^D n_{12}^R$                                         | $\frac{M}{k_M}$                       | 0.2              |
| 30               | $C_A + D_{12}^R \xrightarrow{k_M} D_2^R + D_{12}^R + X$                                                                                  | $a_{30} = \frac{k_M}{\Omega} n^D n_{12}^R$                                         | $\frac{k_M}{\Omega}$                  | 0.2              |
| 31               | $D + D_1^R \xrightarrow{\bar{k}_M} D_2^R + D_1^R$                                                                                        | $a_{31} = \frac{\bar{k}_M}{\Omega} n^D n_1^R$                                      | $\frac{\bar{k}_M}{\Omega}$            | 0.2              |
| 32               | $C_A + D_1^R \xrightarrow{\bar{k}_M} D_2^R + D_1^R + X$                                                                                  | $a_{32} = \frac{\bar{k}_M}{\Omega} n^D n_1^R$                                      | $\frac{\tilde{k}_M}{\Omega}$          | 0.2              |
| 33               | $D + D_{12}^R \xrightarrow{\bar{k}_M} D_2^R + D_{12}^R$                                                                                  | $a_{33} = \frac{\bar{k}_M}{\Omega} n^D n_{12}^R$                                   | $\frac{\bar{k}_M}{\Omega}$            | 0.2              |
| 34               | $C_A + D_{12}^R \xrightarrow{\bar{k}_M} D_2^R + D_{12}^R + X$                                                                            | $a_{34} = \frac{\bar{k}_M}{\Omega} n^D n_{12}^R$                                   | $\frac{\bar{k}_M}{\bar{k}_M}$         | 0.2              |
| 35               | $D_{R}^{R} + D^{A} \xrightarrow{k_{E}^{R}} D + D^{A}$                                                                                    | $a_{25} = \frac{k_E^R}{k_E^R} n_R^R n^A$                                           | $\frac{k_E^R}{R}$                     | 1                |
| 36               | $D_2^R \xrightarrow{k_{W0}^2} D_2^R$                                                                                                     | $a_{33} = \frac{k^2}{\Omega} n^R$                                                  | $h^2$                                 | 5                |
| 97               | $D_1^R = \frac{\bar{k}_E^R}{\bar{k}_E^R} D_1^R$                                                                                          | $a_{30} = h_{W0}h_1$<br>$a_{37} = \bar{h}R_{\gamma}R$                              | $\bar{L}R$                            | 10.05            |
| 38               | $D_{12} \longrightarrow D_1$<br>$D_R^R \xrightarrow{\delta} D_R^R$                                                                       | $u_{37} = \kappa_E n_{12}$<br>$a_{29} = \delta n^R$                                | $κ_E$<br>δ                            | 10, 0.5          |
| 39               | $D_{12}^{R} + D_{R}^{R} \xrightarrow{k_{M}} D_{12}^{R} + D_{R}^{R}$                                                                      | $a_{38} = on_{12}$<br>$a_{20} = \frac{k_M}{n_1^R} n_2^R n_2^R$                     | <u>k</u> M                            | 0.2              |
| 40               | $D_1^R + D_2^R \xrightarrow{k_M} D_{12}^R + D_2^R$                                                                                       | $a_{40} = \frac{k_M}{\Omega} n_1^R n_2^R$                                          | $\Omega \frac{k_M}{M}$                | 0.2              |
| 41               | $D_1^R + D_1^R \xrightarrow{\bar{k}_M} D_1^R + D_1^R$                                                                                    | $a_{41} = \frac{\bar{k}_M}{\bar{k}_M} \frac{n_1^R (n_1^R - 1)}{n_1^R (n_1^R - 1)}$ | $\frac{\Omega}{\bar{k}_M}$            | 0.2              |
| 49               | $D_1^R + D_1^R \xrightarrow{\bar{k}_M} D_1^R + D_1^R$                                                                                    | $a_{42} = \frac{\bar{k}_M}{\bar{k}_M} n_R^R n_R^R$                                 | $\frac{\Omega}{\bar{k}_M}$            | 0.2              |
| 12               | $D_1 + D_{12} + D_{12} + D_{12}$<br>$D_1 + D_1 + D_{12} + D_{12}$                                                                        | $a_{42} = \frac{k_E^R}{\Omega} \frac{m_1 m_{12}}{m_1}$                             | $\Omega = k_E^R$                      | 1                |
| -40<br>44        | $D_{12} + D \longrightarrow D_1 + D$<br>$D_R^R k_{W_0}^1 + D$                                                                            | $a_{43} = \frac{1}{\Omega} n_{12} n$                                               | $\overline{\Omega}$                   | 1<br>E           |
| 44               | $D_2 \longrightarrow D_{12}$<br>$p_1 = k'_T = p_1$                                                                                       | $u_{44} = \kappa_{W0} n_2^{2}$                                                     | $\kappa_{W0}$                         | 0                |
| 45               | $D_{12}^{\kappa} \xrightarrow{\iota} D_2^{\kappa}$                                                                                       | $a_{45} = k_T n_{12}^R$                                                            | $k_T$                                 | 1, 0.05          |
| 46               | $D_{12}^{R} \xrightarrow{o} D_{2}^{R}$                                                                                                   | $a_{46} = \delta n_{12}^R$                                                         | δ'                                    | 1, 0.05          |
| 47               | $D_2^R + D_2^R \xrightarrow{\kappa_M} D_{12}^R + D_2^R$                                                                                  | $a_{47} = \frac{k_M}{\Omega} \frac{n_2^n (n_2^n - 1)}{2}$                          | $\frac{k_M}{\Omega}$                  | 0.2              |
| 48               | $\mathbf{D}_2^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{k_M} \mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$ | $a_{48} = \frac{k'_M}{\Omega} n_2^R n_{12}^R$                                      | $\frac{k'_M}{\Omega}$                 | 0.2              |
| 49               | $D_{12}^{R} + D^{A} \xrightarrow{k_{T}^{'*}} D_{2}^{R} + D^{A}$                                                                          | $a_{49} = \frac{k_T'^*}{\Omega} n_{12}^R n^A$                                      | $\frac{k_T^{\prime *}}{\Omega}$       | 0.2              |
| 50               | $D^{A} \xrightarrow{\alpha_x} D^A + X^2$                                                                                                 | $a_{50} = \alpha_x n^A$                                                            | $\alpha_x$                            | 1                |
| 51               | $X \xrightarrow{\gamma_x} \emptyset$                                                                                                     | $a_{51} = \gamma_x n^X$                                                            | $\gamma_x$                            | 1                |
| 52               | $C_A \xrightarrow{\delta} D + X$                                                                                                         | $a_{52} = \delta n^A$                                                              | δ                                     | 10, 0.5          |

Table D: Reactions and parameter values used to generate the plots in Fig 5F.

| $\mathbf{R}_k$ | Reaction                                                                                                                                                                                            | <b>Prop.Func.</b> $(a_k)$                                       | Param.                          | <b>Value (h</b> <sup>-1</sup> )<br>Fig 6C | Value (h <sup>-1</sup> )<br>Fig I |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|
| $1_i$          | $\mathrm{D^{i}+i} \xrightarrow{a} \mathrm{C^{i}_{A}}$                                                                                                                                               | $a_{1_i} = \frac{a}{\Omega} n^{D,i} n^i$                        | $\frac{a}{\Omega}$              | 10                                        | 10                                |
| $2_i$          | $C^i_A \xrightarrow{d} D^i + i$                                                                                                                                                                     | $a_{2i} = dn_A^{C,i}$                                           | d                               | 10                                        | 10                                |
| $3_i$          | $D^i + j \xrightarrow{a} C^i_R$                                                                                                                                                                     | $a_{3_i} = \frac{a}{\Omega} n^{D,i} n^j$                        | $\frac{a}{\Omega}$              | 10                                        | 10                                |
| $4_i$          | $C_{R}^{i} \xrightarrow{a} D^{i} + j$                                                                                                                                                               | $a_{4_i} = dn_R^{C,i}$                                          | d                               | 10                                        | 10                                |
| $5_i$          | $D^{i} \xrightarrow{\kappa_{W0}} D^{A,i}$                                                                                                                                                           | $a_{5_i} = k^A_{W0} n^{D,i}$                                    | $k_{W0}^A$                      | 3.5                                       | 3.5                               |
| $6_i$          | $C_{A}^{i} \xrightarrow{k_{W_{0}}^{i}} D^{A,i} + i$                                                                                                                                                 | $a_{6_i} = k_{W0}^A n_A^{C,i}$                                  | $k^A_{W0}$                      | 3.5                                       | 3.5                               |
| $7_i$          | $C_{R}^{i} \xrightarrow{\kappa_{W0}} D^{A,i} + j$                                                                                                                                                   | $a_{7_i} = k_{W0}^A n_R^{C,i}$                                  | $k^A_{W0}$                      | 3.5                                       | 3.5                               |
| $8_i$          | $C_{A}^{i} \xrightarrow{\kappa_{W}^{i}} D^{A,i} + i$                                                                                                                                                | $a_{8_i} = k_W^A n_A^{C,i}$                                     | $k^A_W$                         | 300                                       | 300                               |
| $9_i$          | $D^{A,i} \xrightarrow{k_E^A} D^i$                                                                                                                                                                   | $a_{9_i} = \bar{k}_E^A n^{A,i}$                                 | $\bar{k}^A_E$                   | 12, 5                                     | 12                                |
| $10_i$         | $D^{A,i} \xrightarrow{\delta} D^{i}$                                                                                                                                                                | $a_{10_i} = \delta n^{A,i}$                                     | δ                               | 12, 5                                     | 12                                |
| $11_i$         | $\mathbf{D}^{i} + \mathbf{D}^{\mathbf{A},i} \xrightarrow{k_{M}^{A}} \mathbf{D}^{\mathbf{A},i} + \mathbf{D}^{\mathbf{A},i}$                                                                          | $a_{11_i} = \frac{k_M^A}{\Omega} n^{D,i} n^{A,i}$               | $\frac{k_M^A}{\Omega}$          | 1                                         | 1                                 |
| $12_i$         | $C_A^i + D^{A,i} \xrightarrow{k_M^A} D^{A,i} + D^{A,i} + i$                                                                                                                                         | $a_{12_i} = \frac{k_M^A}{\Omega} n_A^{C,i} n^{A,i}$             | $\frac{k_M^A}{\Omega}$          | 1                                         | 1                                 |
| $13_i$         | $C_{R}^{i} + D^{A,i} \xrightarrow{k_{M}^{A}} D^{A,i} + D^{A,i} + j$                                                                                                                                 | $a_{13_i} = rac{k_M^A}{\Omega} n_R^{C,i} n^{A,i}$              | $\frac{k_M^A}{\Omega}$          | 1                                         | 1                                 |
| $14_i$         | $\mathbf{D}^{\mathbf{A},\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{E}^{A}} \mathbf{D}^{\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$                              | $a_{14_i} = \tfrac{k_E^A}{\Omega} n^{A,i} n_1^{R,i}$            | $\frac{k_E^A}{\Omega}$          | 1                                         | 1                                 |
| $15_i$         | $\mathbf{D}^{\mathbf{A},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_E^A} \mathbf{D}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$                                | $a_{15_i} = \frac{k^A_E}{\Omega} n^{A,i} n^{R,i}_{12}$          | $\frac{k_E^A}{\Omega}$          | 1                                         | 1                                 |
| $16_i$         | $\mathbf{D}^{\mathbf{A},\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}} \xrightarrow{k_E^A} \mathbf{D}^{\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}}$                                      | $a_{16_i} = \frac{k_E^A}{\Omega} n^{A,i} n_2^{R,i}$             | $\frac{k_E^A}{\Omega}$          | 1                                         | 1                                 |
| $17_i$         | $\mathbf{D}^{\mathrm{A,i}} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{k_E^A} \mathbf{D}^{\mathrm{i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                                           | $a_{17_i} = \tfrac{k_E^A}{\Omega} n^{A,i} n_{12}^{R,i}$         | $\frac{k_E^A}{\Omega}$          | 1                                         | 1                                 |
| $18_i$         | $\mathbf{D}^{\mathbf{i}} \xrightarrow{k_{W0}^1} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$                                                                                                             | $a_{18_i} = k_{W0}^1 n^{D,i}$                                   | $k_{W0}^1$                      | 3.5                                       | 3.5                               |
| $19_i$         | $C_A^i \xrightarrow{k_{W0}^1} D_1^{R,i} + i$                                                                                                                                                        | $a_{19_i} = k_{W0}^1 n_A^{C,i}$                                 | $k_{W0}^1$                      | 3.5                                       | 3.5                               |
| $20_i$         | $C_{R}^{i} \xrightarrow{k_{W0}^{1}} D_{1}^{R,i} + j$                                                                                                                                                | $a_{20_i} = k_{W0}^1 n_B^{C,i}$                                 | $k_{W0}^1$                      | 3.5                                       | 3.5                               |
| $21_i$         | $C_R^i \xrightarrow{k_W^1} D_1^{R,i} + j$                                                                                                                                                           | $a_{21_i} = k_W^1 n_R^{C,i}$                                    | $k_W^1$                         | 300                                       | 300                               |
| $22_i$         | $D_1^{R,i} \xrightarrow{k'_T} D^i$                                                                                                                                                                  | $a_{22_i} = k'_T n_1^{R,i}$                                     | $k_T^{\prime}$                  | 7.2, 3                                    | 7.2                               |
| $23_i$         | $D_1^{R,i} \xrightarrow{\delta'} D^i$                                                                                                                                                               | $a_{23_i} = \delta' n_1^{R,i}$                                  | $\delta'$                       | 7.2, 3                                    | 7.2                               |
| $24_i$         | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                             | $a_{24_i} = \frac{k'_M}{\Omega} n^{D,i} n_2^{R,i}$              | $\frac{k'_M}{\Omega}$           | 0.2                                       | 0.2                               |
| $25_i$         | $\mathbf{C}_{\mathbf{R}}^{\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{j}$   | $a_{25_i} = \frac{k'_M}{\Omega} n_R^{C,i} n_2^{R,i}$            | $\frac{k'_M}{\Omega}$           | 0.2                                       | 0.2                               |
| $26_i$         | $\mathbf{C}_{\mathbf{A}}^{\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{i}$   | $a_{26_{i}} = \frac{k_{M}^{'}}{\Omega} n_{A}^{C,i} n_{2}^{R,i}$ | $\frac{k'_M}{\Omega}$           | 0.2                                       | 0.2                               |
| $27_i$         | $\mathbf{D^i} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{k'_M} \mathbf{D}_1^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                     | $a_{27_i} = rac{k_M^{'}}{\Omega} n^{D,i} n_{12}^{R,i}$         | $\frac{k'_M}{\Omega}$           | 0.2                                       | 0.2                               |
| $28_i$         | $\mathbf{C}_{\mathbf{R}}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{j}$ | $a_{28_{i}}=\frac{k_{M}^{'}}{\Omega}n_{R}^{C,i}n_{12}^{R,i}$    | $\frac{k'_M}{\Omega}$           | 0.2                                       | 0.2                               |
| $29_i$         | $\mathbf{C}_{\mathbf{A}}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{i}$ | $a_{29_i} = rac{k_M^{'}}{\Omega} n_A^{C,i} n_{12}^{R,i}$       | $\frac{k'_M}{\Omega}$           | 0.2                                       | 0.2                               |
| $30_i$         | $\mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_{T}^{'*}} \mathbf{D}^{\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                                 | $a_{30_i} = \frac{k_T^{'*}}{\Omega} n_1^{R,i} n^{A,i}$          | $\frac{k_T^{\prime *}}{\Omega}$ | 0.6                                       | 0.6                               |
| $31_i$         | $D^i \xrightarrow{k_{W0}^2} D_2^{R,i}$                                                                                                                                                              | $a_{31_i} = k_{W0}^2 n^{D,i}$                                   | $k_{W0}^2$                      | 3.5                                       | 3.5                               |
| $32_i$         | $C_A^i \xrightarrow{k_{W0}^2} D_2^{R,i} + i$                                                                                                                                                        | $a_{32_i} = k_{W0}^2 n_A^{C,i}$                                 | $k_{W0}^{2}$                    | 3.5                                       | 3.5                               |
| $33_i$         | $C_R^i \xrightarrow{k_{W0}^2} D_2^{R,i} + j$                                                                                                                                                        | $a_{33_i} = k_{W0}^2 n_R^{C,i}$                                 | $k_{W0}^2$                      | 3.5                                       | 3.5                               |
| $34_i$         | $C_R^i \xrightarrow{k_W^2} D_2^{R,i} + j$                                                                                                                                                           | $a_{34_i} = k_W^2 n_R^{C,i}$                                    | $k_W^2$                         | 300                                       | 300                               |
| $35_i$         | $\mathbf{D}_2^{\mathrm{R,i}} \xrightarrow{\bar{k}_E^R} \mathbf{D}^{\mathrm{i}}$                                                                                                                     | $a_{35_i} = \bar{k}_E^R n_2^{R,i}$                              | $\bar{k}_E^R$                   | 12, 5                                     | 12                                |
| $36_i$         | $D_2^{R,i} \xrightarrow{\delta} D^i$                                                                                                                                                                | $a_{36_i} = \delta n_2^{R,i}$                                   | δ                               | 12, 5                                     | 12                                |
| $37_i$         | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{M}} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                              | $a_{37_i} = \frac{k_M}{\Omega} n^{D,i} n_2^{R,i}$               | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |
| $38_i$         | $C_{R}^{i} + D_{2}^{R,i} \xrightarrow{k_{M}} D_{2}^{R,i} + D_{2}^{R,i} + j$                                                                                                                         | $a_{38_i} = \frac{k_M}{\Omega} n_R^{C,i} n_2^{R,i}$             | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |
| $39_i$         | $C_A^i + D_2^{R,i} \xrightarrow{k_M} D_2^{R,i} + D_2^{R,i} + i$                                                                                                                                     | $a_{39_i} = \frac{k_M}{\Omega} n_A^{C,i} n_2^{R,i}$             | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |
| $40_i$         | $\mathbf{D}^{i} + \mathbf{D}_{12}^{\mathbf{R},i} \xrightarrow{k_{M}} \mathbf{D}_{2}^{\mathbf{R},i} + \mathbf{D}_{12}^{\mathbf{R},i}$                                                                | $a_{40_i} = \frac{k_M}{\Omega} n^{D,i} n_{12}^{R,i}$            | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |
| $41_i$         | $C_{R}^{i} + D_{12}^{R,i} \xrightarrow{k_{M}} D_{2}^{R,i} + D_{12}^{R,i} + j$                                                                                                                       | $a_{41_i} = \frac{k_M}{\Omega} n_R^{C,i} n_{12}^{R,i}$          | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |
| $42_i$         | $C_A^i + D_{12}^{K,i} \xrightarrow{\kappa_M} D_2^{K,i} + D_{12}^{K,i} + i$                                                                                                                          | $a_{42_i} = \frac{k_M}{\Omega} n_A^{C,i} n_{12}^{R,i}$          | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |
| $43_i$         | $D^{i} + D_{1}^{R,i} \xrightarrow{\kappa_{M}} D_{2}^{R,i} + D_{1}^{R,i}$                                                                                                                            | $a_{43_i} = \frac{k_M}{\Omega} n^{D,i} n_1^{R,i}$               | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |
| $44_i$         | $C_{R}^{i} + D_{1}^{R,i} \xrightarrow{\kappa_{M}} D_{2}^{R,i} + D_{1}^{R,i} + j$                                                                                                                    | $a_{44_i} = \frac{k_M}{\Omega} n_R^{C,i} n_1^{R,i}$             | $\frac{k_M}{\Omega}$            | 0.2                                       | 0.2                               |

Table E: Reactions and parameter values used to generate the plots in Fig 6C and Fig I, with i, j = X, Z and  $i \neq j$ .

| $\mathbf{R}_k$ | Reaction                                                                                                                                                                                               | <b>Prop.Func.</b> $(a_k)$                                              | Param.                          | Value $(h^{-1})$<br>Fig 6C | Value (h <sup>-1</sup> )<br>Fig I |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------------------------|
| $45_i$         | $\mathbf{C}_{\mathbf{A}}^{\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{i}$ | $a_{45_i} = \frac{\bar{k}_M}{\Omega} n_A^{C,i} n_1^{R,i}$              | $\frac{\bar{k}_M}{\Omega}$      | 0.2                        | 0.2                               |
| $46_i$         | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\bar{k}_M} \mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$                             | $a_{46_i} = \frac{\bar{k}_M}{\Omega} n^{D,i} n_{12}^{R,i}$             | $\frac{\bar{k}_M}{\Omega}$      | 0.2                        | 0.2                               |
| $47_i$         | $C_{R}^{i} + D_{12}^{R,i} \xrightarrow{\bar{k}_{M}} D_{2}^{R,i} + D_{12}^{R,i} + j$                                                                                                                    | $a_{47_i} = \frac{\bar{k}_M}{\Omega} n_R^{C,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2                        | 0.2                               |
| $48_i$         | $C_A^i + D_{12}^{R,i} \xrightarrow{\bar{k}_M} D_2^{R,i} + D_{12}^{R,i} + i$                                                                                                                            | $a_{48_i} = \frac{\bar{k}_M}{\Omega} n_A^{C,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2                        | 0.2                               |
| $49_i$         | $\mathbf{D}_{2}^{\mathrm{R,i}} + \mathbf{D}^{\mathrm{A,i}} \xrightarrow{k_{E}^{R}} \mathbf{D}^{\mathrm{i}} + \mathbf{D}^{\mathrm{A,i}}$                                                                | $a_{49_i} = \frac{k_E^R}{\Omega} n_2^{R,i} n^{A,i}$                    | $\frac{k_E^R}{\Omega}$          | 1                          | 1                                 |
| $50_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} \xrightarrow{k_{W0}^{2}} \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                                                                | $a_{50_i} = k_{W0}^2 n_1^{R,i}$                                        | $k_{W0}^2$                      | 3.5                        | 3.5                               |
| $51_i$         | $D_{12}^{R,i} \xrightarrow{\bar{k}_E^R} D_1^{R,i}$                                                                                                                                                     | $a_{51_i} = \bar{k}_E^R n_{12}^{R,i}$                                  | $\bar{k}_E^R$                   | 12, 5                      | 12                                |
| $52_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\delta} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$                                                                                                  | $a_{52_i} = \delta n_{12}^{R,i}$                                       | δ                               | 12, 5                      | 12                                |
| $53_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{2}^{\mathrm{R,i}} \xrightarrow{k_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{2}^{\mathrm{R,i}}$                                                     | $a_{53_i} = \frac{k_M}{\Omega} n_1^{R,i} n_2^{R,i}$                    | $\frac{k_M}{\Omega}$            | 0.2                        | 0.2                               |
| $54_i$         | $\mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{M}} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$               | $a_{54_i} = \frac{k_M}{\Omega} n_1^{R,i} n_{12}^{R,i}$                 | $\frac{k_M}{\Omega}$            | 0.2                        | 0.2                               |
| $55_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{1}^{\mathrm{R,i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{1}^{\mathrm{R,i}}$                                               | $a_{55_i} = \frac{\bar{k}_M}{\Omega} \frac{n_1^{R,i}(n_1^{R,i}-1)}{2}$ | $\frac{\overline{k}_M}{\Omega}$ | 0.2                        | 0.2                               |
| $56_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                             | $a_{56_i} = \frac{\bar{k}_M}{\Omega} n_1^{R,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2                        | 0.2                               |
| $57_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_E^R} \mathbf{D}_1^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                           | $a_{57_i} = \frac{k_E^R}{\Omega} n_{12}^{R,i} n^{A,i}$                 | $\frac{k_E^R}{\Omega}$          | 1                          | 1                                 |
| $58_i$         | $\mathbf{D}_{2}^{\mathrm{R,i}} \xrightarrow{k_{W0}^{1}} \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                                                                | $a_{58_i} = k_{W0}^1 n_2^{R,i}$                                        | $k_{W0}^1$                      | 3.5                        | 3.5                               |
| $59_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{T}'} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                                                                                                  | $a_{59_i} = k_T^{'} n_{12}^{R,i}$                                      | $k_{T}^{'}$                     | 7.2, 3                     | 7.2                               |
| $60_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\delta'} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                                                                                                 | $a_{60_i}=\delta' n_{12}^{R,i}$                                        | $\delta'$                       | 7.2, 3                     | 7.2                               |
| $61_i$         | $\mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_M} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}}$                        | $a_{61_i} = \frac{k'_M}{\Omega} \frac{n_2^{R,i}(n_2^{R,i}-1)}{2}$      | $\frac{k'_M}{\Omega}$           | 0.2                        | 0.2                               |
| $62_i$         | $\mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_M} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$                  | $a_{62_i} = rac{k_M^{'}}{\Omega} n_2^{R,i} n_{12}^{R,i}$              | $\frac{k'_M}{\Omega}$           | 0.2                        | 0.2                               |
| $63_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_T^{\prime*}} \mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                   | $a_{63_i} = \frac{k_T^{'*}}{\Omega} n_{12}^R n^{A,i}$                  | $\frac{k_T^{\prime *}}{\Omega}$ | 0.6                        | 0.6                               |
| $64_i$         | $D^{A,i} \xrightarrow{\alpha_i} D^{A,i} + i$                                                                                                                                                           | $a_{64_i} = \alpha_i n^{A,i}$                                          | $\alpha_i$                      | 0,  0.1,  10               | 0, 10                             |
| $65_i$         | $i \xrightarrow{\gamma_i} \emptyset$                                                                                                                                                                   | $a_{65_i} = \gamma_i n^i$                                              | $\gamma_i$                      | 1                          | 1                                 |
| $66_i$         | $C^i_A \xrightarrow{o} D^i + i$                                                                                                                                                                        | $a_{66_i} = \delta n_A^{C,i}$                                          | δ                               | 12, 5                      | 12                                |
| $67_i$         | $C^i_R \xrightarrow{\ \delta \ } D^i + j$                                                                                                                                                              | $a_{67_i} = \delta n_R^{C,i}$                                          | δ                               | 12, 5                      | 12                                |

Table F: Reactions and parameter values used to generate the plots in Fig 6C and in Fig I, with i, j = X, Z and  $i \neq j$ .

| $\mathbf{R}_k$  | Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Prop.Func.</b> $(a_k)$                                                                          | Param.                                     | Value $(h^{-1})$         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|
| 1 <sub>i</sub>  | $D^i + i \xrightarrow{a} C^i_A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $a_{1_i} = \frac{a}{\Omega} n^{D,i} n^i$                                                           | $\frac{a}{\Omega}$                         | 10                       |
| $2_i$           | $C^i_A \xrightarrow{d} D^i + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $a_{2i} = dn_A^{C,i}$                                                                              | d                                          | 10                       |
| $3_i$           | $D^i + j \xrightarrow{a} C^i_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $a_{3_i} = \frac{a}{\Omega} n^{D,i} n^j$                                                           | $\frac{a}{\Omega}$                         | 10                       |
| $4_i$           | $C_{R}^{i} \xrightarrow{a}_{k^{A}} D^{i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_{4_i} = dn_R^{\cup,i}$                                                                          | d                                          | 10                       |
| $5_i$           | $D^{i} \xrightarrow{n_{W0}} D^{A,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $a_{5_i} = k_{W0}^A n^{D,i}$                                                                       | $k_{W0}^A$                                 | 3.5                      |
| $6_i$           | $C_{A}^{i} \xrightarrow{\kappa_{W0}} D^{A,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a_{6_i} = k^A_{W0} n^{C,i}_A$                                                                     | $k^A_{W0}$                                 | 3.5                      |
| $7_i$           | $C_{R}^{i} \xrightarrow{\kappa_{W0}} D^{A,i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a_{7_i} = k_{W0}^A n_R^{C,i}$                                                                     | $k_{W0}^A$                                 | 3.5                      |
| $8_i$           | $C_A^i \xrightarrow{k_W^a} D^{A,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $a_{8_i} = k_W^A n_A^{C,i}$                                                                        | $k_W^A$                                    | 300                      |
| $9_i$           | $\mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{\mathbf{A}_{E}^{\mathbf{A}}} \mathbf{D}^{\mathbf{i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a_{9_i} = \bar{k}^A_E n^{A,i}$                                                                    | $\bar{k}^A_E$                              | 17.5,  1.75              |
| $10_i$          | $D^{A,i} \xrightarrow{\delta} D^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $a_{10_i} = \delta n^{A,i}$                                                                        | δ                                          | 17.5, 1.75               |
| $11_i$          | $\mathbf{D}^{i} + \mathbf{D}^{\mathbf{A},i} \xrightarrow{k_{M}^{\mathbf{A}}} \mathbf{D}^{\mathbf{A},i} + \mathbf{D}^{\mathbf{A},i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{11_i} = \frac{k_M^A}{\Omega} n^{D,i} n^{A,i}$                                                  | $\frac{k_M^A}{\Omega}$                     | 1                        |
| $12_i$          | $C_A^i + D^{A,i} \xrightarrow{k_M^A} D^{A,i} + D^{A,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $a_{12_i} = rac{k_M^A}{\Omega} n_A^{C,i} n^{A,i}$                                                 | $\frac{k_M^A}{\Omega}$                     | 1                        |
| $13_i$          | $C_{R}^{i} + D^{A,i} \xrightarrow{k_{M}^{A}} D^{A,i} + D^{A,i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{13_i} = \frac{k_M^A}{\Omega} n_R^{C,i} n^{A,i}$                                                | $\frac{k_M^A}{\Omega}$                     | 1                        |
| $14_i$          | $\mathbf{D}^{\mathbf{A},\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{E}^{A}} \mathbf{D}^{\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a_{14_i} = \frac{k_E^A}{\Omega} n^{A,i} n_1^{R,i}$                                                | $\frac{k_E^A}{\Omega}$                     | 1                        |
| $15_i$          | $\mathbf{D}^{\mathrm{A,i}} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{k_E^A} \mathbf{D}^{\mathrm{i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $a_{15_i} = \frac{k_E^A}{\Omega} n^{A,i} n_{12}^{R,i}$                                             | $\frac{k_E^A}{\Omega}$                     | 1                        |
| $16_i$          | $\mathbf{D}^{\mathrm{A,i}} + \mathbf{D}_{2}^{\mathrm{R,i}} \xrightarrow{k_{E}^{A}} \mathbf{D}^{\mathrm{i}} + \mathbf{D}_{2}^{\mathrm{R,i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $a_{16_i} = \frac{k_E^A}{\Omega} n^{A,i} n_2^{R,i}$                                                | $\frac{k_E^A}{\Omega}$                     | 1                        |
| $17_i$          | $D^{A,i} + D_{12}^{R,i} \xrightarrow{k_E^A} D^i + D_{12}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $a_{17_i} = \frac{k_E^A}{\Omega} n^{A,i} n_{12}^{R,i}$                                             | $\frac{k_E^A}{\Omega}$                     | 1                        |
| $18_{i}$        | $D^i \xrightarrow{k_{W0}^1} D_1^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a_{18_i} = k_{W0}^1 n^{D,i}$                                                                      | $k_{W0}^1$                                 | 3.5                      |
| $19_{i}$        | $C_{A}^{i} \xrightarrow{k_{W0}^{1}} D_{1}^{R,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $a_{19} = k_{W0}^1 n_A^{C,i}$                                                                      | $k_{W0}^1$                                 | 3.5                      |
| $20_i$          | $C_{\rm B}^{\rm i} \xrightarrow{k_{W0}^1} D_1^{\rm R,i} + {\rm i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $a_{20} = k_{W0}^1 n_{B}^{C,i}$                                                                    | $k_{W0}^1$                                 | 3.5                      |
| 21.             | $C_{R}^{i} \xrightarrow{k_{W}^{1}} D_{I}^{R,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{21} = k_{W}^{1} n_{C,i}^{C,i}$                                                                 | $k_{W}^{1}$                                | 300                      |
| i<br>99.        | $\mathcal{D}_{R}^{R,i} \xrightarrow{k'_{T}} \mathcal{D}^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_{21_i} = h'_W n_R^{R_i}$                                                                        | ν.<br>ν                                    | 10.5 1.05                |
| 22 <sub>1</sub> | $D_1 \xrightarrow{\delta'} D$<br>$D^{R,i} \xrightarrow{\delta'} D^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $a_{22i} = \kappa_T n_1$ $a_{22i} = \delta' n^{R,i}$                                               | $\kappa_T \delta'$                         | 10.5, 1.05<br>10.5, 1.05 |
| 201             | $\mathbf{D}_{1}^{i}$ , $\mathbf{D}_{M}^{i}$ , $\mathbf{D}_{N,i}^{R,i}$ , $\mathbf{D}_{N,i}^{R,i}$ , $\mathbf{D}_{N,i}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_{23_i} = 0 \ m_1$ $a_{23_i} = k'_M p D_i p^{R_i}$                                               | $k'_M$                                     | 0.9                      |
| 24i             | $D + D_2^* \longrightarrow D_1^* + D_2^*$<br>$C_1^i \to D_1^{R,i} \stackrel{k'_M}{\longrightarrow} D_1^{R,i} \to D_1^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $u_{24_i} = \frac{1}{\Omega} n + n_2$ $k'_{i\ell}  C_i  B_i$                                       | $\frac{\overline{\Omega}}{k'_{M}}$         | 0.2                      |
| $25_{i}$        | $C_{R}^{i} + D_{2}^{i,i} \xrightarrow{k'} D_{1}^{i,i} + D_{2}^{i,j} + J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $a_{25_i} = \frac{M}{\Omega} n_R^{\circ, \circ, n_2^{\circ, \circ}}$                               | $\frac{M}{\Omega}$                         | 0.2                      |
| $26_i$          | $C_A^i + D_2^{R,i} \xrightarrow{\ell'} D_1^{R,i} + D_2^{R,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a_{26_i} = \frac{n_M}{\Omega} n_A^{\mathcal{O},i} n_2^{\mathcal{N},i}$                            | $\frac{n_M}{\Omega}$                       | 0.2                      |
| $27_i$          | $D^{i} + D_{12}^{R,i} \xrightarrow{\kappa_{M}} D_{1}^{R,i} + D_{12}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $a_{27_i} = \frac{k_M}{\Omega} n^{D,i} n_{12}^{R,i}$                                               | $\frac{k_M}{\Omega}$                       | 0.2                      |
| $28_i$          | $C_{R}^{i} + D_{12}^{R,i} \xrightarrow{k_{M}} D_{1}^{R,i} + D_{12}^{R,i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_{28_i} = \frac{k_M}{\Omega} n_R^{C,i} n_{12}^{R,i}$                                             | $\frac{k_M}{\Omega}$                       | 0.2                      |
| $29_i$          | $\mathbf{C}_{\mathbf{A}}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_M} \mathbf{D}_1^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $a_{29_i} = \frac{k'_M}{\Omega} n_A^{C,i} n_{12}^{R,i}$                                            | $\frac{k'_M}{\Omega}$                      | 0.2                      |
| $30_i$          | $\mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_{T}^{'*}} \mathbf{D}^{\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{30_i} = \frac{k_T^{'*}}{\Omega} n_1^{R,i} n^{A,i}$                                             | $\frac{k_T^{\prime *}}{\Omega}$            | 0.6                      |
| $31_i$          | $D^i \xrightarrow{k_{W0}^2} D_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a_{31_i} = k_{W0}^2 n^{D,i}$                                                                      | $k_{W0}^2$                                 | 3.5                      |
| $32_i$          | $C_A^i \xrightarrow{k_{W0}^2} D_2^{R,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_{32_i} = k_{W0}^2 n_A^{C,i}$                                                                    | $k_{W0}^{2}$                               | 3.5                      |
| $33_i$          | $C_{R}^{i} \xrightarrow{k_{W0}^{2}} D_{2}^{R,i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $a_{33_i} = k_{W0}^2 n_R^{C,i}$                                                                    | $k_{W0}^{2}$                               | 3.5                      |
| $34_i$          | $C_{R}^{i} \xrightarrow{k_{W}^{2}} D_{2}^{R,i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{34_i} = k_W^2 n_R^{C,i}$                                                                       | $k_W^2$                                    | 300                      |
| $35_i$          | $D_2^{R,i} \xrightarrow{\bar{k}_E^R} D^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $a_{35_i} = \bar{k}_E^R n_2^{R,i}$                                                                 | $\bar{k}_{F}^{R}$                          | 17.5, 1.75               |
| $36_i$          | $D_2^{\mathbf{R},i} \xrightarrow{\delta} D^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_{36_i} = \delta n_2^{R,i}$                                                                      | δ                                          | 17.5, 1.75               |
| $37_i$          | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{M}} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a_{37_i} = \frac{k_M}{\Omega} n^{D,i} n_2^{R,i}$                                                  | $\frac{k_M}{\Omega}$                       | 0.2                      |
| $38_i$          | $C_{R}^{i} + D_{2}^{R,i} \xrightarrow{k_{M}} D_{2}^{R,i} + D_{2}^{R,i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $a_{38_i} = \frac{k_M}{\Omega} n_R^{C,i} n_2^{R,i}$                                                | $\frac{k_M}{\Omega}$                       | 0.2                      |
| $39_i$          | $C_A^i + D_2^{R,i} \xrightarrow{\kappa_M} D_2^{R,i} + D_2^{R,i} + i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $a_{39_i} = \frac{k_M}{\Omega} n_A^{C,i} n_2^{R,i}$                                                | $\frac{k_M}{\Omega}$                       | 0.2                      |
| $40_i$          | $D^{i} + D_{12}^{\mathbf{r},i} \xrightarrow{\sim_{M}} D_{2}^{\mathbf{R},i} + D_{12}^{\mathbf{R},i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $a_{40_i} = \frac{k_M}{\Omega} n^{D,i} n_{12}^{R,i}$                                               | $\frac{\kappa_M}{\Omega}$                  | 0.2                      |
| 41 <sub>i</sub> | $C_{R}^{i} + D_{12}^{r,i} \xrightarrow{k_{M}} D_{2}^{r,i} + D_{12}^{r,i} + j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $a_{41_i} = \frac{\kappa_M}{\Omega} n_R^{\heartsuit,i} n_{12}^{\heartsuit,i} n_{12}^{\clubsuit,i}$ | $\frac{\kappa_M}{\Omega}$<br>$k_M$         | 0.2                      |
| 42 <sub>i</sub> | $ \bigcup_{A} + \bigcup_{12} \xrightarrow{\bar{k}_{M}} \bigcup_{2} \xrightarrow{\bar{k}_{M}} \bigcup_{12} + \bigcup_{12} + 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $a_{42_i} = \frac{M}{\Omega} n_A^{-} n_{12}^{-}$ $a_{42_i} = \bar{k}_M - D_{i-} R_{i}$             | $\frac{\overline{\Omega}}{\overline{k}_M}$ | 0.2                      |
| 43 <sub>i</sub> | $D^{-} + D_{1}^{-} \longrightarrow D_{2}^{-} + D_{1}^{-}$ $C_{1}^{i} + D_{R,i}^{R,i} + \overline{k}_{M} + D_{R,i}^{R,i} + D_{R,i}^{R,i} + C_{R,i}^{R,i} + C_{R,i}^{$ | $a_{43_i} = \frac{1}{\Omega} n^{D_{i,i}} n_1^{C_{i,i}}$                                            | $\frac{\overline{\Omega}}{\overline{k}_M}$ | 0.2                      |
| 44 <sub>i</sub> | $U_{R} + D_{1} \longrightarrow D_{2}^{-1} + D_{1}^{-1} + J$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $a_{44_i} = \frac{\alpha_{ii}}{\Omega} n_R^{\alpha_i, \alpha_i} n_1^{\alpha_i, \alpha_i}$          | $\frac{\Omega}{\Omega}$                    | 0.2                      |

Table G: Reactions and parameter values used to generate the plots in Fig 6D, with i, j = X, Z and  $i \neq j$ . These reactions and parameter values (with  $\bar{k}_E^A = \bar{k}_E^R = \delta = 1.75, 7.5h^{-1}$  and  $k'_T = \delta' = 1.05, 4.5h^{-1}$ ) are used also for simulations in Fig J.

| $\mathbf{R}_k$ | Reaction                                                                                                                                                                              | <b>Prop.Func.</b> $(a_k)$                                              | Param.                          | Value $(h^{-1})$ |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|------------------|
| $45_i$         | $C_A^i + D_1^{R,i} \xrightarrow{\bar{k}_M} D_2^{R,i} + D_1^{R,i} + i$                                                                                                                 | $a_{45_i} = \frac{\bar{k}_M}{\Omega} n_A^{C,i} n_1^{R,i}$              | $\frac{\bar{k}_M}{\Omega}$      | 0.2              |
| $46_i$         | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\bar{k}_M} \mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$            | $a_{46_i} = \frac{\bar{k}_M}{\Omega} n^{D,i} n_{12}^{R,i}$             | $\frac{\bar{k}_M}{\Omega}$      | 0.2              |
| $47_i$         | $C_{R}^{i} + D_{12}^{R,i} \xrightarrow{\bar{k}_{M}} D_{2}^{R,i} + D_{12}^{R,i} + j$                                                                                                   | $a_{47_i} = \frac{\bar{k}_M}{\Omega} n_R^{C,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2              |
| $48_i$         | $C_A^i + D_{12}^{R,i} \xrightarrow{\bar{k}_M} D_2^{R,i} + D_{12}^{R,i} + i$                                                                                                           | $a_{48_i} = \frac{\bar{k}_M}{\Omega} n_A^{C,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2              |
| $49_i$         | $\mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_{E}^{R}} \mathbf{D}^{\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                    | $a_{49_i} = \frac{k_E^R}{\Omega} n_2^{R,i} n^{A,i}$                    | $\frac{k_E^R}{\Omega}$          | 1                |
| $50_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} \xrightarrow{k_{W0}^{2}} \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                                               | $a_{50_i} = k_{W0}^2 n_1^{R,i}$                                        | $k_{W0}^2$                      | 3.5              |
| $51_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\bar{k}_E^R} \mathbf{D}_1^{\mathbf{R},\mathbf{i}}$                                                                              | $a_{51_i} = \bar{k}_E^R n_{12}^{R,i}$                                  | $\bar{k}_E^R$                   | 17.5, 1.75       |
| $52_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\delta} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$                                                                                 | $a_{52_i} = \delta n_{12}^{R,i}$                                       | δ                               | 17.5, 1.75       |
| $53_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{2}^{\mathrm{R,i}} \xrightarrow{k_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{2}^{\mathrm{R,i}}$                                    | $a_{53_i} = \frac{k_M}{\Omega} n_1^{R,i} n_2^{R,i}$                    | $\frac{k_M}{\Omega}$            | 0.2              |
| $54_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{k_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                  | $a_{54_i} = \frac{k_M}{\Omega} n_1^{R,i} n_{12}^{R,i}$                 | $\frac{k_M}{\Omega}$            | 0.2              |
| $55_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{1}^{\mathrm{R,i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{1}^{\mathrm{R,i}}$                              | $a_{55_i} = \frac{\bar{k}_M}{\Omega} \frac{n_1^{R,i}(n_1^{R,i}-1)}{2}$ | $\frac{\bar{k}_M}{\Omega}$      | 0.2              |
| $56_i$         | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                            | $a_{56_i} = \frac{\bar{k}_M}{\Omega} n_1^{R,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2              |
| $57_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_E^R} \mathbf{D}_1^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$          | $a_{57_i} = \frac{k_E^R}{\Omega} n_{12}^{R,i} n^{A,i}$                 | $\frac{k_E^R}{\Omega}$          | 1                |
| $58_i$         | $\mathbf{D}_{2}^{\mathrm{R,i}} \xrightarrow{k_{W0}^{1}} \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                                               | $a_{58_i} = k_{W0}^1 n_2^{R,i}$                                        | $k_{W0}^1$                      | 3.5              |
| $59_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{T}'} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                                                                                 | $a_{59_{i}}=k_{T}^{'}n_{12}^{R,i}$                                     | $k_T^{'}$                       | 10.5,1.05        |
| $60_i$         | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\delta'} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                                                                                | $a_{60_{i}}=\delta^{'}n_{12}^{R,i}$                                    | $\delta^{\prime}$               | 10.5,1.05        |
| $61_i$         | $\mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_M} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}}$       | $a_{61_i} = \frac{k'_M}{\Omega} \frac{n_2^{R,i}(n_2^{R,i}-1)}{2}$      | $\frac{k'_M}{\Omega}$           | 0.2              |
| $62_i$         | $\mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_M} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$ | $a_{62_i} = \frac{k'_M}{\Omega} n_2^{R,i} n_{12}^{R,i}$                | $\frac{k'_M}{\Omega}$           | 0.2              |
| $63_i$         | $\mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}^{\mathrm{A,i}} \xrightarrow{k_T^{'*}} \mathbf{D}_2^{\mathrm{R,i}} + \mathbf{D}^{\mathrm{A,i}}$                                           | $a_{63_i} = \frac{k_T^{'*}}{\Omega} n_{12}^R n^{A,i}$                  | $\frac{k_T^{\prime *}}{\Omega}$ | 0.6              |
| $64_i$         | $\mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{\alpha_i} \mathbf{D}^{\mathbf{A},\mathbf{i}} + \mathbf{i}$                                                                           | $a_{64_i} = \alpha_i n^{A,i}$                                          | $\alpha_i$                      | 0.15             |
| $65_i$         | $i \xrightarrow{\gamma_i} \emptyset$                                                                                                                                                  | $a_{65_i} = \gamma_i n^i$                                              | $\gamma_i$                      | 1                |
| $66_i$         | $C^i_A \xrightarrow{\delta} D^i + i$                                                                                                                                                  | $a_{66_i} = \delta n_A^{C,i}$                                          | δ                               | 17.5,  1.75      |
| $67_i$         | $C_R^i \xrightarrow{\delta} D^i + j$                                                                                                                                                  | $a_{67_i} = \delta n_R^{C,i}$                                          | δ                               | 17.5,  1.75      |

Table H: Reactions and parameter values used to generate the plots in Fig 6D, with i, j = X, Z and  $i \neq j$ . These reactions and parameter values (with  $\bar{k}_E^A = \bar{k}_E^R = \delta = 1.75, 7.5h^{-1}$  and  $k'_T = \delta' = 1.05, 4.5h^{-1}$ ) are used also for simulations in Fig J.

| $\mathbf{R}_{j}$ | Reaction                                                                                                                                         | <b>Prop.Func.</b> $(a_j)$                                                                         | Param.                              | Value (h <sup>-1</sup> )<br>left plots | Value (h <sup>-1</sup> )<br>right plots |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------|-----------------------------------------|
| 1                | $\mathbf{D} + \mathbf{X} \xrightarrow{a} \mathbf{C}_{\mathbf{A}}$                                                                                | $a_1 = \frac{a}{\Omega}n^D n^X$                                                                   | $\frac{a}{\Omega}$                  | 10                                     | 10                                      |
| 2                | $C_A \xrightarrow{d} D + X$                                                                                                                      | $a_2 = dn_A^C$                                                                                    | d                                   | 10                                     | 10                                      |
| 3                | $D \xrightarrow{k_{W0}^A} D^A$                                                                                                                   | $a_3 = k_{W0}^A n^D$                                                                              | $k_{W0}^A$                          | 3.5                                    | 3.5                                     |
| 4                | $C_A \xrightarrow{k_{W0}^A} D^A + X$                                                                                                             | $a_4 = k_{W0}^A n^D$                                                                              | $k_{W0}^A$                          | 3.5                                    | 3.5                                     |
| 5                | $C_A \xrightarrow{k_W^A} D^A + X$                                                                                                                | $a_5 = k_W^A n_A^C$                                                                               | $k_W^A$                             | 300                                    | 300                                     |
| 6                | $D^A \xrightarrow{\bar{k}_E^A} D$                                                                                                                | $a_6 = \bar{k}_{P}^A n^A$                                                                         | $\bar{k}^A_{\Gamma}$                | 3                                      | 3                                       |
| 7                | $D^A \xrightarrow{\delta} D$                                                                                                                     | $a_7 = \delta n^A$                                                                                | $\delta$                            | 3                                      | 3                                       |
| 8                | $D + D^A \xrightarrow{k_M^A} D^A + D^A$                                                                                                          | $a_8 = \frac{k_M^A}{\Omega} n^D n^A$                                                              | $\frac{k_M^A}{\Omega}$              | 1                                      | 1                                       |
| 9                | $C_A + D^A \xrightarrow{k_M^A} D^A + D^A + X$                                                                                                    | $a_9 = \frac{k_M^A}{C} n_A^C n^A$                                                                 | $\frac{k_M^A}{\Omega}$              | 1                                      | 1                                       |
| 10               | $D^A + D^R_1 \xrightarrow{k^A_E} D + D^R_1$                                                                                                      | $a_{10} = \frac{k_E^A}{k_E^A} n^A n_1^R$                                                          | $\frac{M}{k_E^A}$                   | 1                                      | 1                                       |
| 11               | $D^A + D^R_1 \xrightarrow{k^A_E} D + D^R_1$                                                                                                      | $a_{10} = \frac{k_E^A}{n} n^A n_1^R$                                                              | $\frac{\Omega}{k_E^A}$              | 1                                      | 1                                       |
| 10               | $D^{A} + D_{12}^{R} \xrightarrow{k_{E}^{A}} D + D_{12}^{R}$                                                                                      | $a_{11} = {}_{\Omega} n n_{12}$ $a_{11} = {}_{k_E^A} n_{m_R^A}$                                   | $\Omega \\ k_E^A$                   | 1                                      | 1                                       |
| 12               | $D^{+} + D_{2}^{-} \longrightarrow D^{+} + D_{2}^{-}$<br>$D^{A} + D^{B} = \frac{k_{E}^{A}}{k_{E}} D^{+} + D^{B}$                                 | $a_{12} = \frac{1}{\Omega} n n_2$                                                                 | $\overline{\Omega}_{k_{E}^{A}}$     | 1                                      | 1                                       |
| 13               | $D^{**} + D^{**}_{12} \longrightarrow D + D^{**}_{12}$<br>$p^{k_{W0}^1} p^p$                                                                     | $a_{13} = \frac{1}{\Omega} n^{-1} n_{12}^{+1}$                                                    | Ω<br>Ω                              | 1                                      | 1                                       |
| 14               | $D \xrightarrow{k_{W0}} D_1^R$                                                                                                                   | $a_{14} = k_{W0}^1 n^D$                                                                           | $k_{W0}^{1}$                        | 3.5                                    | 3.5                                     |
| 15               | $C_A \xrightarrow{w_0}_{k'} D_1^R + X$                                                                                                           | $a_{15} = k_{W0}^1 n^D$                                                                           | $k_{W0}^1$                          | 3.5                                    | 3.5                                     |
| 16               | $D_1^R \xrightarrow{\kappa_T} D$                                                                                                                 | $a_{16} = k_T' n_1^R$                                                                             | $k_T'$                              | 3, 1.5                                 | 3                                       |
| 17               | $D_1^R \xrightarrow{\delta} D$                                                                                                                   | $a_{17} = \delta' n_1^R$                                                                          | δ'                                  | 3, 1.5                                 | 3                                       |
| 18               | $D + D_2^R \xrightarrow{k_M} D_1^R + D_2^R$                                                                                                      | $a_{18} = \frac{k_M}{\Omega} n^D n_2^R$                                                           | $\frac{k'_M}{\Omega}$               | 0.2                                    | 0.2                                     |
| 19               | $C_A + D_2^R \xrightarrow{k'_M} D_1^R + D_2^R + X$                                                                                               | $a_{19} = \frac{k'_{M}}{\Omega} n^{D} n_{2}^{R}$                                                  | $\frac{k'_M}{\Omega}$               | 0.2                                    | 0.2                                     |
| 20               | $D + D_{12}^R \xrightarrow{k'_M} D_1^R + D_{12}^R$                                                                                               | $a_{20} = \frac{k'_M}{\Omega} n^D n^R_{12}$                                                       | $\frac{k'_M}{M}$                    | 0.2                                    | 0.2                                     |
| 21               | $C_A + D_{ia}^R \xrightarrow{k'_M} D_i^R + D_{ia}^R + X$                                                                                         | $a_{21} = \frac{k'_M}{M} n^D n^R_{12}$                                                            | $\frac{k'_M}{k'_M}$                 | 0.2                                    | 0.2                                     |
|                  | $D_{A}^{R} + D_{12}^{R} + D_{12}^{k_{T}^{\prime*}} + D_{12}^{r} + D_{12}^{R}$                                                                    | $a_{21} \qquad \Omega \qquad n_{12}$<br>$a_{21} \qquad k_T' \approx R_m A$                        | $\hat{k}_{T}^{\prime *}$            | 1.05                                   | 1                                       |
| 22               | $D_1 + D \longrightarrow D + D$<br>$p \stackrel{k_{W0}^2}{\longrightarrow} pR$                                                                   | $u_{22} = \frac{1}{\Omega} n_1 n$                                                                 | Ω<br>1.2                            | 1, 0.5                                 | 1                                       |
| 23               | $D \longrightarrow D_2^{*}$<br>$C \xrightarrow{k_{W_2}^2} D_B^R + V$                                                                             | $a_{23} = k_{W0} n^{-1}$                                                                          | $\kappa_{W0}$                       | 3.5                                    | 3.5                                     |
| 24               | $C_A \xrightarrow{\bar{k}_E} D_2^R + X$                                                                                                          | $a_{24} = k_{W0}^2 n^D$                                                                           | $k_{W0}^2$                          | 3.5                                    | 3.5                                     |
| 25<br>96         | $D_2^R \xrightarrow{\delta} D$<br>$D_2^R \xrightarrow{\delta} D$                                                                                 | $a_{25} = k_E^n n_2^n$                                                                            | $k_E^n$                             | 3                                      | 3, 1.5                                  |
| 20               | $D_2^* \longrightarrow D$<br>$D + D^R^{-k_M} \setminus D^R + D^R$                                                                                | $a_{26} = on_2^{*}$<br>$a_{27} = \frac{k_M}{m} n^D n^R$                                           | $o \frac{k_M}{k_M}$                 | 3<br>0.2                               | 3<br>0.2                                |
| 21               | $D + D_2 \longrightarrow D_2 + D_2$<br>$C_A + D_R^R \xrightarrow{k_M} D_R^R + D_R^R + X$                                                         | $a_{27} = \frac{1}{\Omega} n n_2$ $a_{28} = \frac{k_M}{2} n^D n_2^R$                              | $\frac{\Omega}{k_M}$                | 0.2                                    | 0.2                                     |
| 29               | $D + D_1^R \xrightarrow{k_M} D_2^R + D_{12}^R$                                                                                                   | $a_{28} = \frac{k_M}{\Omega} n^D n_{12}^R$                                                        | $\frac{\Omega}{\frac{k_M}{\Omega}}$ | 0.2                                    | 0.2                                     |
| 30               | $C_A + D_{12}^R \xrightarrow{k_M} D_2^R + D_{12}^R + X$                                                                                          | $a_{30} = \frac{k_M}{\Omega} n^D n_{12}^R$                                                        | $\frac{k_M}{\Omega}$                | 0.2                                    | 0.2                                     |
| 31               | $D + D_1^R \xrightarrow{\bar{k}_M} D_2^R + D_1^R$                                                                                                | $a_{31} = \frac{\bar{k}_M}{\Omega} n^D n_1^R$                                                     | $\frac{\bar{k}_M}{\Omega}$          | 0.2                                    | 0.2                                     |
| 32               | $C_A + D_1^R \xrightarrow{\bar{k}_M} D_2^R + D_1^R + X$                                                                                          | $a_{32} = \frac{\bar{k}_M}{\Omega} n^D n_1^R$                                                     | $\frac{\bar{k}_M}{\Omega}$          | 0.2                                    | 0.2                                     |
| 33               | $D + D_{12}^R \xrightarrow{\bar{k}_M} D_2^R + D_{12}^R$                                                                                          | $a_{33} = \frac{\bar{k}_M}{\Omega} n^D n_{12}^R$                                                  | $\frac{\bar{k}_M}{\Omega}$          | 0.2                                    | 0.2                                     |
| 34               | $C_A + D_{12}^R \xrightarrow{\bar{k}_M} D_2^R + D_{12}^R + X$                                                                                    | $a_{34} = \frac{\bar{k}_M}{\Omega} n^D n_{12}^R$                                                  | $\frac{\bar{k}_M}{\Omega}$          | 0.2                                    | 0.2                                     |
| 35               | $D_2^R + D^A \xrightarrow{k_E^R} D + D^A$                                                                                                        | $a_{35} = \frac{k_E^R}{\Omega} n_2^R n^A$                                                         | $\frac{k_E^R}{\Omega}$              | 1                                      | 1, 0.5                                  |
| 36               | $D_1^R \xrightarrow{k_{W0}^2} D_{12}^R$                                                                                                          | $a_{36} = k_{W0}^2 n_1^R$                                                                         | $k_{W0}^2$                          | 3.5                                    | 3.5                                     |
| 37               | $D_{12}^R \xrightarrow{\bar{k}_E^R} D_1^R$                                                                                                       | $a_{37} = \bar{k}_{E}^{R} n_{12}^{R}$                                                             | $\bar{k}_{E}^{R}$                   | 3                                      | 3. 1.5                                  |
| 38               | $D_{12}^{R} \xrightarrow{\delta} D_{1}^{R}$                                                                                                      | $a_{38} = \delta n_{12}^R$                                                                        | δ                                   | 3                                      | 3                                       |
| 39               | $\mathbf{D}_{1}^{\mathbf{R}} + \mathbf{D}_{2}^{\mathbf{R}} \xrightarrow{\bar{k_{M}}} \mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}_{2}^{\mathbf{R}}$ | $a_{39} = \frac{k_M}{\Omega} n_1^R n_2^R$                                                         | $\frac{k_M}{\Omega}$                | 0.2                                    | 0.2                                     |
| 40               | $\mathbf{D}_{1}^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{k_{M}} \mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$     | $a_{40} = \frac{k_M}{\Omega} n_1^R n_{12}^R$                                                      | $\frac{k_M}{\Omega}$                | 0.2                                    | 0.2                                     |
| 41               | $\mathbf{D}_{1}^{\mathbf{R}} + \mathbf{D}_{1}^{\mathbf{R}} \xrightarrow{k_{M}} \mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}_{1}^{\mathbf{R}}$       | $a_{41} = rac{\bar{k}_M}{\Omega} rac{n_1^R (n_1^R - 1)}{2}$                                     | $\frac{\bar{k}_M}{\Omega}$          | 0.2                                    | 0.2                                     |
| 42               | $D_1^R + D_{12}^R \xrightarrow{k_M} D_{12}^R + D_{12}^R$                                                                                         | $a_{42} = \frac{\bar{k}_M}{\Omega} n_1^R n_{12}^R$                                                | $\frac{\bar{k}_M}{\Omega}$          | 0.2                                    | 0.2                                     |
| 43               | $\mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}^{\mathbf{A}} \xrightarrow{k_E^{\mathbf{R}}} \mathbf{D}_1^{\mathbf{R}} + \mathbf{D}^{\mathbf{A}}$      | $a_{43} = \frac{k_E^R}{\Omega} n_{12}^R n^A$                                                      | $\frac{k_E^R}{\Omega}$              | 1                                      | 1,  0.5                                 |
| 44               | $D_2^R \xrightarrow{k_{W0}^1} D_{12}^R$                                                                                                          | $a_{44} = k_{W0}^1 n_2^R$                                                                         | $k_{W0}^1$                          | 3.5                                    | 3.5                                     |
| 45               | $D_{12}^{R} \xrightarrow{k_{T}'} D_{2}^{R}$                                                                                                      | $a_{45} = k_T^{'} n_{12}^R$                                                                       | $k_T^{\prime}$                      | 3, 1.5                                 | 3                                       |
| 46               | $D_{12}^R \xrightarrow{\delta'} D_2^R$                                                                                                           | $a_{46} = \delta' n_{12}^R$                                                                       | δ                                   | 3, 1.5                                 | 3                                       |
| 47               | $D_{R}^{R} + D_{R}^{R} \xrightarrow{k'_{M}} D_{R}^{R} + D_{R}^{R}$                                                                               | $a_{47} = \frac{k'_M}{M} \frac{n_2^R(n_2^R - 1)}{n_2^R(n_2^R - 1)}$                               | $\frac{k'_M}{M}$                    | 0.2                                    | 0.2                                     |
| 10               | $\mathbf{D}^{\mathrm{R}} + \mathbf{D}^{\mathrm{R}} = k_{M}^{\prime} + \mathbf{D}^{\mathrm{R}} + \mathbf{D}^{\mathrm{R}}$                         | $a_{10} = \frac{k'_M}{k'_M} R_m R_m R_m$                                                          | $k'_M$                              | 0.2                                    | 0.2                                     |
| 40               | $D_2 + D_{12}  D_{12} + D_{12}$<br>$D_1^R + D_1^A \xrightarrow{k_T'*} D_1^R + D_1^A$                                                             | $u_{48} = \frac{\Omega}{\Omega} n_2 n_{12} n_{12} k_T^{'*} R A$                                   | $\frac{\Omega}{k_T^{\prime *}}$     | 1.05                                   | 1                                       |
| 49<br>50         | $D_{12}^{-} + D^{-} \longrightarrow D_2^{+} + D^{-}$<br>$D^A \xrightarrow{\alpha_x} D^A + X$                                                     | $a_{49} = \frac{1}{\Omega} n_{12}^{\prime\prime} n^{\prime\prime}$ $a_{50} = \alpha_{\alpha} n^A$ | $\frac{1}{\Omega}$                  | 1, 0.5<br>0, 0.1, 10                   | 1<br>0. 0.1. 10                         |
| 51               | $X \xrightarrow{\gamma_x} \emptyset$                                                                                                             | $a_{51} = \gamma_x n^X$                                                                           | $\gamma_x$                          | 1                                      | 1                                       |
| 52               | $C_A \xrightarrow{\delta} D + X$                                                                                                                 | $a_{52} = \delta n^A$                                                                             | δ                                   | 3                                      | 3                                       |

Table I: Reactions and parameter values used to generate the plots in Fig C.

| $\mathbf{R}_{j}$ | Reaction                                                                                                                                           | <b>Prop.Func.</b> $(a_j)$                                                                             | Param.                                            | Value (h <sup>-1</sup> )<br>lower plots | Value (h <sup>-1</sup> )<br>upper plots<br>left plots | Value (h <sup>-1</sup> )<br>upper plots<br>right plots |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| 1                | $\mathbf{D} + \mathbf{Y} \xrightarrow{a} \mathbf{C}$                                                                                               | $a_1 = \frac{a_n D_n X}{a_1 - a_2 - a_2}$                                                             | <u>a</u>                                          | 10                                      | 10                                                    | 10                                                     |
| 2                | $C_A \xrightarrow{d} D + X$                                                                                                                        | $a_1 = {}_{\Omega}n n$<br>$a_2 = dn_4^C$                                                              | $\Omega$<br>d                                     | 10                                      | 10                                                    | 10                                                     |
| 3                | $D \xrightarrow{k_{W0}^A} D^A$                                                                                                                     | $a_3 = k^A_{\mu\nu\rho} n^D$                                                                          | $k_{Wo}^A$                                        | 86                                      | 86                                                    | 86                                                     |
| 4                | $C_A \xrightarrow{k_{W0}^A} D^A + X$                                                                                                               | $a_A = k_{W0}^A n^D$                                                                                  | k <sub>W0</sub>                                   | 86                                      | 86                                                    | 86                                                     |
| 5                | $C_A \xrightarrow{k_W^A} D^A + X$                                                                                                                  | $a_{\tilde{4}} = k_W^A n_C^C$                                                                         | $k_{W0}^A$                                        | 300                                     | 300                                                   | 300                                                    |
| 6                | $D^{A} \xrightarrow{\bar{k}_{E}^{A}} D$                                                                                                            | $a_5 = \kappa_W n_A$<br>$a_5 = \bar{k}^A n^A$                                                         | $\bar{k}_W$<br>$\bar{k}A$                         | 4                                       | 4                                                     | 4                                                      |
| 7                | $D \xrightarrow{\delta} D$<br>$D^{A} \xrightarrow{\delta} D$                                                                                       | $a_6 = \kappa_E n$<br>$a_7 = \delta n^A$                                                              | $\delta^{\kappa_E}$                               | 4                                       | 4                                                     | 4                                                      |
| 8                | $D + D^A \xrightarrow{k_M^A} D^A + D^A$                                                                                                            | $a_0 = \frac{k_M^A}{n} n^D n^A$                                                                       | $\frac{k_M^A}{M}$                                 | 1                                       | 1                                                     | 1                                                      |
| 9                | $C_{+} + D^{A} \xrightarrow{k_{M}^{A}} D^{A} + D^{A} + X$                                                                                          | $a_8 = \frac{\alpha}{\Omega} n^2 n^2 n^2$<br>$a_8 = \frac{k_M^A}{2} n^C n^A$                          | $\Omega = \frac{k_M^A}{M}$                        | 1                                       | 1                                                     | 1                                                      |
| 10               | $D_A + D^R \xrightarrow{k_E^A} D + D^R$                                                                                                            | $ag = \frac{1}{\Omega} n_A n$                                                                         | $\frac{\Omega}{k_E^A}$                            | 1                                       | 1 0.2                                                 | 5                                                      |
| 10               | $D^{+} + D_{1}^{+} \xrightarrow{k_{E}^{A}} D + D_{1}^{+}$                                                                                          | $u_{10} = \frac{1}{\Omega} n n_1^{-1}$ $k_E^A A B$                                                    | $\overline{\Omega}_{k_{F}^{A}}$                   | 1                                       | 0.3                                                   | 5                                                      |
| 11               | $D^{A} + D^{A}_{12} \longrightarrow D + D^{A}_{12}$<br>$D^{A} + D^{B}_{E} \xrightarrow{k^{A}_{E}} D + D^{B}_{12}$                                  | $a_{11} = \frac{1}{\Omega} n^{A} n_{12}^{A}$ $k_{C}^{A} = A B$                                        | $\frac{\overline{\Omega}}{\Omega}$<br>$k_{E}^{A}$ | 1                                       | 0.3                                                   | 5                                                      |
| 12               | $D^{A} + D_{2}^{R} \xrightarrow{k} D + D_{2}^{R}$                                                                                                  | $a_{12} = \frac{n_E}{\Omega} n^A n_2^A$                                                               | $\frac{\Omega_E}{\Omega}$                         | 1                                       | 0.3                                                   | 5                                                      |
| 13               | $D^{A} + D^{R}_{12} \xrightarrow{r_{L}} D + D^{R}_{12}$                                                                                            | $a_{13} = \frac{\kappa_E}{\Omega} n^A n_{12}^R$                                                       | $\frac{n_E}{\Omega}$                              | 1                                       | 0.3                                                   | 5                                                      |
| 14               | $D \xrightarrow{w_0}_{k^1} D_1^R$                                                                                                                  | $a_{14} = k_{W0}^1 n^D$                                                                               | $k_{W0}^1$                                        | 5                                       | 5                                                     | 5                                                      |
| 15               | $C_A \xrightarrow{\kappa_{W0}} D_1^R + X$                                                                                                          | $a_{15} = k_{W0}^1 n^D$                                                                               | $k_{W0}^{1}$                                      | 5                                       | 5                                                     | 5                                                      |
| 16               | $D_1^R \xrightarrow{k_T} D$                                                                                                                        | $a_{16} = k_T^{\prime} n_1^R$                                                                         | $k_{T}^{'}$                                       | 1.6,  0.8                               | 1.6,  0.8                                             | 1.6, 0.8                                               |
| 17               | $D_1^R \xrightarrow{\delta'} D$                                                                                                                    | $a_{17}=\delta' n_1^R$                                                                                | $\delta'$                                         | 1.6,  0.8                               | 1.6,  0.8                                             | 1.6, 0.8                                               |
| 18               | $\mathbf{D} + \mathbf{D}_2^{\mathbf{R}} \xrightarrow{k'_M} \mathbf{D}_1^{\mathbf{R}} + \mathbf{D}_2^{\mathbf{R}}$                                  | $a_{18} = \frac{k'_{M}}{\Omega} n^{D} n_{2}^{R}$                                                      | $\frac{k'_M}{\Omega}$                             | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 19               | $C_A + D_2^R \xrightarrow{k'_M} D_1^R + D_2^R + X$                                                                                                 | $a_{19} = \frac{k'_M}{M} n^D n_2^R$                                                                   | $\frac{k'_M}{M}$                                  | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 20               | $D + D^R \xrightarrow{k'_M} D^R + D^R$                                                                                                             | $a_{00} = \frac{k'_M n^D n^R}{k_M n^D n^R}$                                                           | $\frac{k'_M}{k'_M}$                               | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 20               | $D + D_{12}$ $D_1 + D_{12}$<br>$C + D^R \stackrel{k'_M}{\longrightarrow} D^R + D^R + V$                                                            | $a_{20} = \frac{k'_{M}}{\Omega} n n_{12}^{-R}$                                                        | $\Omega k'_M$                                     | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 21               | $C_A + D_{12} \longrightarrow D_1 + D_{12} + A$<br>$P_A^B + P_A^A \xrightarrow{k_T'*} P_A = P_A^A$                                                 | $a_{21} = \frac{\alpha}{\Omega} n n_{12}$<br>$k_{\pi}^{'*} R A$                                       | $\frac{\overline{\Omega}}{k_{m}^{\prime *}}$      | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 22               | $D_1^{\prime\prime} + D^{\prime\prime} \xrightarrow{-} D + D^{\prime\prime}$                                                                       | $a_{22} = \frac{1}{\Omega} n_1^n n^n$                                                                 | $\frac{1}{\Omega}$                                | 0.4, 0.2                                | 0.12, 0.06                                            | 2, 1                                                   |
| 23               | $D \xrightarrow{w \to} D_2^R$                                                                                                                      | $a_{23} = k_{W0}^2 n^D$                                                                               | $k_{W0}^2$                                        | 5                                       | 5                                                     | 5                                                      |
| 24               | $C_A \xrightarrow{w_0} D_2^R + X$                                                                                                                  | $a_{24} = k_{W0}^2 n^D$                                                                               | $k_{W0}^2$                                        | 5                                       | 5                                                     | 5                                                      |
| 25               | $D_2^R \xrightarrow{\kappa_E} D$<br>= $P \xrightarrow{\delta}$                                                                                     | $a_{25} = \bar{k}_E^R n_2^R$                                                                          | $\bar{k}_E^R$                                     | 4                                       | 4                                                     | 4                                                      |
| 26               | $D_2^n \xrightarrow{a} D$<br>$D + D^R \xrightarrow{k_M} D^R + D^R$                                                                                 | $a_{26} = \delta n_2^n$<br>$k_M D B$                                                                  | ð<br>ku                                           | 4                                       | 4                                                     | 4                                                      |
| 27               | $D + D_2^R \xrightarrow{k_M} D_2^R + D_2^R$                                                                                                        | $a_{27} = \frac{k_M}{\Omega} n^D n_2^R$                                                               | $\frac{MM}{\Omega}$<br>$k_M$                      | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 20<br>20         | $D_A + D_2^R \xrightarrow{k_M} D_2^R + D_2^R$                                                                                                      | $u_{28} = \frac{1}{\Omega} n n_2^{-1}$ $u_{28} = \frac{k_M}{\Omega} n^D n_2^R$                        | $\frac{\overline{\Omega}}{\underline{k_M}}$       | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 30               | $D + D_{12}$ $\rightarrow D_2 + D_{12}$<br>$C_A + D_{12}^R \xrightarrow{k_M} D_2^R + D_{12}^R + X$                                                 | $a_{29} = \frac{1}{\Omega} n^{-1} n_{12}^{-1}$<br>$a_{20} = \frac{k_M}{2} n^D n_{12}^R$               | $\Omega \frac{k_M}{k_M}$                          | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 31               | $D + D_1^R \xrightarrow{\bar{k}_M} D_0^R + D_1^R$                                                                                                  | $a_{30} \qquad \underline{\Omega} \qquad n^{-n} n_{12}^{12}$ $a_{21} = \frac{\bar{k}_M}{2} n^D n_1^R$ | $\frac{\Omega}{\bar{k}_M}$                        | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 32               | $C_A + D_1^R \xrightarrow{\bar{k}_M} D_2^R + D_1^R + X$                                                                                            | $a_{32} = \frac{\bar{k}_M}{\bar{k}_M} n^D n_1^R$                                                      | $\frac{\Omega}{\bar{k}_M}$                        | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 33               | $\mathbf{D} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{\bar{k}_M} \mathbf{D}_2^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$                       | $a_{33} = \frac{\bar{k}_M}{\bar{k}_M} n^D n_{12}^R$                                                   | $\frac{\bar{k}_M}{\bar{k}_M}$                     | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 34               | $C_A + D_{12}^R \xrightarrow{\bar{k}_M} D_2^R + D_{12}^R + X$                                                                                      | $a_{34} = \frac{\bar{k}_M}{\bar{k}_M} n^D n_{12}^R$                                                   | $\frac{\bar{k}_M}{\bar{k}_M}$                     | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 35               | $D_{2}^{R} + D^{A} \xrightarrow{k_{E}^{R}} D + D^{A}$                                                                                              | $a_{35} = \frac{k_E^R}{k_E^R} n_0^R n_0^A$                                                            | $\frac{k_E^R}{E}$                                 | 1                                       | 0.3                                                   | 10                                                     |
| 36               | $D_{k}^{R} \xrightarrow{k_{W0}^{2}} D_{k}^{R}$                                                                                                     | $a_{2e} = k_{2}^2 n_R^R$                                                                              | $k^2$                                             | 5                                       | 5                                                     | 5                                                      |
| 37               | $D_{1}^{R} \xrightarrow{\bar{k}_{E}^{R}} D_{12}^{R}$                                                                                               | $a_{35} = \bar{k}^R n^R$                                                                              | $\bar{k}R$                                        | 4                                       | 4                                                     | 4                                                      |
| 38               | $D_{12}^{R} \xrightarrow{\delta} D_{1}^{R}$                                                                                                        | $a_{37} = \kappa_E n_{12}$<br>$a_{28} = \delta n_{12}^R$                                              | $\delta^{\kappa_E}$                               | 4                                       | 4                                                     | 4                                                      |
| 39               | $D_{12}^{R} + D_{2}^{R} \xrightarrow{k_{M}} D_{12}^{R} + D_{2}^{R}$                                                                                | $a_{39} = \frac{k_M}{2} n_1^R n_2^R$                                                                  | $\frac{k_M}{Q}$                                   | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 40               | $D_1^R + D_{12}^R \xrightarrow{k_M} D_{12}^R + D_{12}^R$                                                                                           | $a_{40} = \frac{k_M}{\Omega} n_1^R n_{12}^R$                                                          | $\frac{k_M}{\Omega}$                              | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 41               | $D_1^R + D_1^R \xrightarrow{\bar{k}_M} D_{12}^R + D_1^R$                                                                                           | $a_{41} = \frac{\bar{k}_M}{\Omega} \frac{n_1^R (n_1^R - 1)}{2}$                                       | $\frac{\bar{k}_M}{\Omega}$                        | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 42               | $\mathbf{D}_{1}^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{12}^{\mathbf{R}} + \mathbf{D}_{12}^{\mathbf{R}}$ | $a_{42} = \frac{\bar{k}_M}{\Omega} n_1^R n_{12}^R$                                                    | $\frac{\bar{k}_M}{\Omega}$                        | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 43               | $D_{12}^{R} + D^{A} \xrightarrow{k_{E}^{R}} D_{1}^{R} + D^{A}$                                                                                     | $a_{43} = \frac{k_E^R}{R} n_{12}^R n^A$                                                               | $\frac{k_E^R}{\Omega}$                            | 1                                       | 0.3                                                   | 10                                                     |
| 44               | $D_2^R \xrightarrow{k_{W0}^1} D_{12}^R$                                                                                                            | $a_{44} = k_{W0}^1 n_2^R$                                                                             | $k_{W0}^1$                                        | 5                                       | 5                                                     | 5                                                      |
| 45               | $D_{10}^{R} \xrightarrow{k'_{T}} D_{2}^{R}$                                                                                                        | $a_{45} = k'_{T} n^{R}_{10}$                                                                          | k'm                                               | 1.6. 0.8                                | 1.6. 0.8                                              | 1.6. 0.8                                               |
| 46               | $D_{R}^{R} \xrightarrow{\delta'} D_{R}^{R}$                                                                                                        | $a_{46} = \delta' p_{R}^{R}$                                                                          | $\delta'$                                         | 16.08                                   | 16.08                                                 | 16.08                                                  |
| 47               | $D_{12}^{R}$ $D_{2}^{R}$ $D_{2}^{R}$ $D_{2}^{R}$ $D_{2}^{R}$ $D_{2}^{R}$                                                                           | $a_{40} = c_{M12}$<br>$k'_M n_2^R (n_2^R - 1)$                                                        | $k'_M$                                            | 1.0, 0.0                                | , 0.0                                                 | 0.0                                                    |
| 41               | $D_2 + D_2 \longrightarrow D_{12}^* + D_2^*$<br>$D_1 + D_2 \longrightarrow D_{12}^*$                                                               | $u_{47} = \frac{m}{\Omega} \frac{2 \cdot 2}{2}$                                                       |                                                   | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 48               | $D_2^{r_r} + D_{12}^{r_t} \xrightarrow{m} D_{12}^{r_t} + D_{12}^{r_t}$                                                                             | $a_{48} = \frac{n_M}{\Omega} n_2^R n_{12}^R$                                                          | $\frac{\Omega}{\Omega}$                           | 0.2                                     | 0.2                                                   | 0.2                                                    |
| 49               | $D_{12}^{R} + D^{A} \xrightarrow{\alpha_{T}} D_{2}^{R} + D^{A}$<br>$D_{2}^{A} \xrightarrow{\alpha_{x}} D^{A} \xrightarrow{\gamma} V$               | $a_{49} = \frac{\kappa_T}{\Omega} n_{12}^R n^A$                                                       | $\frac{h_T}{\Omega}$                              | 0.4, 0.2                                | 0.12, 0.06                                            | 2, 1                                                   |
| э0<br>51         | $D \longrightarrow D^{-} + \Lambda$<br>$X \xrightarrow{\gamma_x} \emptyset$                                                                        | $u_{50} = \alpha_x n^{X}$ $a_{51} = \gamma_x n^X$                                                     | $\alpha_x$<br>$\gamma_x$                          | 0, 10                                   | 0, 10                                                 | 0, 10                                                  |
| 52               | $C_A \xrightarrow{\delta} D + X$                                                                                                                   | $a_{52} = \delta n^A$                                                                                 | δ                                                 | 4                                       | 4                                                     | 4                                                      |

Table J: Reactions and parameter values used to generate the plots in Fig E.

| $\mathbf{R}_k$                   | Reaction                                                                                                                                                                                            | <b>Prop.Func.</b> $(a_k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Param.                          | Value $(h^{-1})$    | Value $(h^{-1})$       | Value $(h^{-1})$     | Value $(h^{-1})$    | Value $(h^{-1})$     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------|------------------------|----------------------|---------------------|----------------------|
|                                  |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | Fig G<br>left plots | Fig G<br>central plots | Fig G<br>right plots | Fig H<br>left plots | Fig H<br>right plots |
| 1.                               | $D^{i} + i \xrightarrow{a} C^{i}$                                                                                                                                                                   | $a_1 = \frac{a_n D_i i_n i_n}{a_1 + a_2 + a_2$ | <u>a</u>                        | 10                  | 10                     | 10                   | 10                  | 10                   |
| 1 <sub>1</sub><br>2 <sub>i</sub> | $C^{i}_{A} \xrightarrow{d} D^{i} + i$                                                                                                                                                               | $a_{1_i} = {}_{\Omega} n  n$ $a_{2_i} = dn_{\star}^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\Omega d$                      | 10                  | 10                     | 10                   | 10                  | 10                   |
| $3_i$                            | $D^{i} + j \xrightarrow{a} C^{i}_{R}$                                                                                                                                                               | $a_{3_i} = \frac{a}{\Omega} n^{D,i} n^j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{a}{\Omega}$              | 10                  | 10                     | 10                   | 10                  | 10                   |
| $4_i$                            | $C_R^i \xrightarrow{d} D^i + j$                                                                                                                                                                     | $a_{4_i} = dn_R^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d                               | 10                  | 10                     | 10                   | 10                  | 10                   |
| $5_i$                            | $D^{i} \xrightarrow{k_{W0}^{A}} D^{A,i}$                                                                                                                                                            | $a_{5_i} = k^A_{W0} n^{D,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k^A_{W0}$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $6_i$                            | $C_A^i \xrightarrow{k_{W0}^A} D^{A,i} + i$                                                                                                                                                          | $a_{6_i} = k^A_{W0} n^{C,i}_A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $k^A_{W0}$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $7_i$                            | $C_{R}^{i} \xrightarrow{k_{W0}^{A}} D^{A,i} + j$                                                                                                                                                    | $a_{7_i} = k^A_{W0} n^{C,i}_R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $k^A_{W0}$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $8_i$                            | $C_A^i \xrightarrow{k_W^A} D^{A,i} + i$                                                                                                                                                             | $a_{8_i} = k_W^A n_A^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $k_W^A$                         | 300                 | 300                    | 300                  | 300                 | 300                  |
| $9_i$                            | $\mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_E^{\mathbf{A}}} \mathbf{D}^{\mathbf{i}}$                                                                                                         | $a_{9_i} = \bar{k}^A_E n^{A,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\bar{k}_E^A$                   | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |
| $10_i$                           | $D^{A,i} \xrightarrow{\delta} D^{i}$                                                                                                                                                                | $a_{10_i}=\delta n^{A,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\delta$                        | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |
| $11_i$                           | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_{M}^{A}} \mathbf{D}^{\mathbf{A},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                                      | $a_{11_i} = \frac{k_M^A}{\Omega} n^{D,i} n^{A,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{k_M^A}{\Omega}$          | 1                   | 1                      | 1                    | 1                   | 1                    |
| $12_i$                           | $C_A^i + D^{A,i} \xrightarrow{k_M^A} D^{A,i} + D^{A,i} + i$                                                                                                                                         | $a_{12_i} = \frac{k_M^A}{\Omega} n_A^{C,i} n^{A,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k_M^A}{\Omega}$          | 1                   | 1                      | 1                    | 1                   | 1                    |
| $13_i$                           | $C_{R}^{i} + D^{A,i} \xrightarrow{k_{M}^{A}} D^{A,i} + D^{A,i} + j$                                                                                                                                 | $a_{13_i} = \frac{k_M^A}{\Omega} n_R^{C,i} n^{A,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k_M^A}{\Omega}$          | 1                   | 1                      | 1                    | 1                   | 1                    |
| $14_i$                           | $\mathbf{D}^{\mathrm{A},\mathrm{i}} + \mathbf{D}_{1}^{\mathrm{R},\mathrm{i}} \xrightarrow{k_{E}^{\mathrm{A}}} \mathbf{D}^{\mathrm{i}} + \mathbf{D}_{1}^{\mathrm{R},\mathrm{i}}$                     | $a_{14_i} = \frac{k_E^A}{\Omega} n^{A,i} n_1^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k_E^A}{\Omega}$          | 0.2                 | 1                      | 10                   | 1                   | 1                    |
| $15_i$                           | $\mathbf{D}^{\mathrm{A},\mathrm{i}} + \mathbf{D}_{12}^{\mathrm{R},\mathrm{i}} \xrightarrow{k_E^{\mathrm{A}}} \mathbf{D}^{\mathrm{i}} + \mathbf{D}_{12}^{\mathrm{R},\mathrm{i}}$                     | $a_{15_i} = \frac{k_E^A}{\Omega} n^{A,i} n_{12}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{k_E^A}{\Omega}$          | 0.2                 | 1                      | 10                   | 1                   | 1                    |
| $16_i$                           | $\mathbf{D}^{\mathrm{A},\mathrm{i}} + \mathbf{D}_{2}^{\mathrm{R},\mathrm{i}} \xrightarrow{k_{E}^{\mathrm{A}}} \mathbf{D}^{\mathrm{i}} + \mathbf{D}_{2}^{\mathrm{R},\mathrm{i}}$                     | $a_{16_i} = \frac{k_E^A}{\Omega} n^{A,i} n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k_E^A}{\Omega}$          | 0.2                 | 1                      | 10                   | 1                   | 1                    |
| $17_i$                           | $\mathbf{D}^{\mathrm{A},\mathrm{i}} + \mathbf{D}_{12}^{\mathrm{R},\mathrm{i}} \xrightarrow{k_E^{\mathrm{A}}} \mathbf{D}^{\mathrm{i}} + \mathbf{D}_{12}^{\mathrm{R},\mathrm{i}}$                     | $a_{17_i}=\frac{k_E^A}{\Omega}n^{A,i}n_{12}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{k_E^A}{\Omega}$          | 0.2                 | 1                      | 10                   | 1                   | 1                    |
| $18_i$                           | $D^i \xrightarrow{k_{W0}^1} D_1^{R,i}$                                                                                                                                                              | $a_{18_{i}} = k_{W0}^{1} n^{D,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $k_{W0}^1$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $19_i$                           | $C_A^i \xrightarrow{k_{W0}^1} D_1^{R,i} + i$                                                                                                                                                        | $a_{19_i} = k_{W0}^1 n_A^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k_{W0}^1$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $20_i$                           | $C_R^i \xrightarrow{k_{W0}^1} D_1^{R,i} + j$                                                                                                                                                        | $a_{20_i} = k_{W0}^1 n_R^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k_{W0}^1$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $21_i$                           | $C_R^i \xrightarrow{k_W^1} D_1^{R,i} + j$                                                                                                                                                           | $a_{21_i} = k_W^1 n_R^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k_W^1$                         | 300                 | 300                    | 300                  | 300                 | 300                  |
| $22_i$                           | $\mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{T}^{'}} \mathbf{D}^{\mathbf{i}}$                                                                                                            | $a_{22_{i}}=k_{T}^{'}n_{1}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $k_{T}^{'}$                     | 7.2, 3              | 7.2, 3                 | 7.2, 3               | 3.6, 1.5            | 1.2,  0.5            |
| $23_i$                           | $D_1^{R,i} \xrightarrow{\delta'} D^i$                                                                                                                                                               | $a_{23_i}=\delta^{'}n_1^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\delta'$                       | 7.2, 3              | 7.2, 3                 | 7.2, 3               | 3.6, 1.5            | 1.2,  0.5            |
| $24_i$                           | $\mathbf{D^i} + \mathbf{D_2^{R,i}} \xrightarrow{k'_M} \mathbf{D_1^{R,i}} + \mathbf{D_2^{R,i}}$                                                                                                      | $a_{24_i}=\frac{k_M^{'}}{\Omega}n^{D,i}n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $25_i$                           | $\mathbf{C}_{\mathbf{R}}^{\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{j}$   | $a_{25_i}=\frac{k_M^{'}}{\Omega}n_R^{C,i}n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $26_i$                           | $\mathbf{C}_{\mathbf{A}}^{\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{i}$   | $a_{26_i} = \frac{k'_M}{\Omega} n_A^{C,i} n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $27_i$                           | $\mathbf{D^i} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{k'_M} \mathbf{D}_1^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                     | $a_{27_i} = \frac{k'_M}{\Omega} n^{D,i} n_{12}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $28_i$                           | $\mathbf{C}_{\mathbf{R}}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{j}$ | $a_{28_i} = \frac{k'_M}{\Omega} n_R^{C,i} n_{12}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $29_i$                           | $\mathbf{C}_{\mathbf{A}}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_{M}} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{i}$ | $a_{29_i} = \frac{k'_M}{\Omega} n_A^{C,i} n_{12}^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $30_i$                           | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}^{\mathrm{A,i}} \xrightarrow{k_{T}^{'*}} \mathbf{D}^{\mathrm{i}} + \mathbf{D}^{\mathrm{A,i}}$                                                            | $a_{30_i} = \frac{k_T'^*}{\Omega} n_1^{R,i} n^{A,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{k_T^{\prime *}}{\Omega}$ | 0.12                | 0.6                    | 6                    | 0.3                 | 0.1                  |
| $31_i$                           | $\mathbf{D}^{\mathbf{i}} \xrightarrow{k_{W0}^2} \mathbf{D}_2^{\mathbf{R},\mathbf{i}}$                                                                                                               | $a_{31_i} = k_{W0}^2 n^{D,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $k_{W0}^{2}$                    | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $32_i$                           | $C_A^i \xrightarrow{k_{W0}^2} D_2^{R,i} + i$                                                                                                                                                        | $a_{32_i} = k_{W0}^2 n_A^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k_{W0}^{2}$                    | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $33_i$                           | $C_R^i \xrightarrow{k_{W0}^2} D_2^{R,i} + j$                                                                                                                                                        | $a_{33_i} = k_{W0}^2 n_R^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $k_{W0}^{2}$                    | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $34_i$                           | $C_R^i \xrightarrow{k_W^2} D_2^{R,i} + j$                                                                                                                                                           | $a_{34_i} = k_W^2 n_R^{C,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $k_W^2$                         | 300                 | 300                    | 300                  | 300                 | 300                  |
| $35_i$                           | $D_2^{R,i} \xrightarrow{\bar{k}_E^R} D^i$                                                                                                                                                           | $a_{35_i}=\bar{k}^R_E n^{R,i}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\bar{k}_E^R$                   | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |
| $36_i$                           | $D_2^{R,i} \xrightarrow{\delta} D^i$                                                                                                                                                                | $a_{36_i} = \delta n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | δ                               | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |
| $37_i$                           | $\mathbf{D}^{i} + \mathbf{D}_{2}^{\mathrm{R,i}} \xrightarrow{k_{M}} \mathbf{D}_{2}^{\mathrm{R,i}} + \mathbf{D}_{2}^{\mathrm{R,i}}$                                                                  | $a_{37_i}=\frac{k_M}{\Omega}n^{D,i}n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $38_i$                           | $C_{R}^{i} + D_{2}^{R,i} \xrightarrow{k_{M}} D_{2}^{R,i} + D_{2}^{R,i} + j$                                                                                                                         | $a_{38_i} = \frac{k_M}{\Omega} n_R^{C,i} n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $39_i$                           | $C_A^i + D_2^{R,i} \xrightarrow{\kappa_M} D_2^{R,i} + D_2^{R,i} + i$                                                                                                                                | $a_{39_i} = \frac{k_M}{\Omega} n_A^{C,i} n_2^{R,i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |

Table K: Reactions and parameter values used to generate the plots in Figs G, H, with i, j = X, Z and  $i \neq j$ .

| $\mathbf{R}_k$  | Reaction                                                                                                                                                                                     | <b>Prop.Func.</b> $(a_k)$                                              | Param.                          | Value $(h^{-1})$    | Value $(h^{-1})$       | Value $(h^{-1})$     | Value $(h^{-1})$    | Value $(h^{-1})$     |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------|---------------------|------------------------|----------------------|---------------------|----------------------|
|                 |                                                                                                                                                                                              |                                                                        |                                 | Fig G<br>left plots | Fig G<br>central plots | Fig G<br>right plots | Fig H<br>left plots | Fig H<br>right plots |
| 40 <sub>i</sub> | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_M} \mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$                         | $a_{40_i} = \frac{k_M}{\Omega} n^{D,i} n_{12}^{R,i}$                   | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $41_i$          | $C_{R}^{i} + D_{12}^{R,i} \xrightarrow{k_{M}} D_{2}^{R,i} + D_{12}^{R,i} + j$                                                                                                                | $a_{41_i} = \frac{k_M}{\Omega} n_R^{C,i} n_{12}^{R,i}$                 | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $42_i$          | $C_A^i + D_{12}^{R,i} \xrightarrow{k_M} D_2^{R,i} + D_{12}^{R,i} + i$                                                                                                                        | $a_{42_i} = \frac{k_M}{\Omega} n_A^{C,i} n_{12}^{R,i}$                 | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $43_i$          | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$                 | $a_{43_i} = \frac{\bar{k}_M}{\Omega} n^{D,i} n_1^{R,i}$                | $\frac{\overline{k}_M}{\Omega}$ | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $44_i$          | $C_{R}^{i} + D_{1}^{R,i} \xrightarrow{\bar{k}_{M}} D_{2}^{R,i} + D_{1}^{R,i} + j$                                                                                                            | $a_{44_i} = \frac{\bar{k}_M}{\Omega} n_R^{C,i} n_1^{R,i}$              | $\frac{\overline{k}_M}{\Omega}$ | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $45_i$          | $C_A^i + D_1^{R,i} \xrightarrow{\bar{k}_M} D_2^{R,i} + D_1^{R,i} + i$                                                                                                                        | $a_{45_i} = \frac{\bar{k}_M}{\Omega} n_A^{C,i} n_1^{R,i}$              | $\frac{\bar{k}_M}{\Omega}$      | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $46_i$          | $\mathbf{D}^{\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\bar{k}_M} \mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}}$                   | $a_{46_i} = rac{\bar{k}_M}{\Omega} n^{D,i} n_{12}^{R,i}$              | $\frac{\bar{k}_M}{\Omega}$      | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $47_i$          | $C_{R}^{i} + D_{12}^{R,i} \xrightarrow{\bar{k}_{M}} D_{2}^{R,i} + D_{12}^{R,i} + j$                                                                                                          | $a_{47_i} = \frac{\bar{k}_M}{\Omega} n_R^{C,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $48_i$          | $C_A^i + D_{12}^{R,i} \xrightarrow{\bar{k}_M} D_2^{R,i} + D_{12}^{R,i} + i$                                                                                                                  | $a_{48_i} = \frac{\bar{k}_M}{\Omega} n_A^{C,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $49_i$          | $\mathbf{D}_2^{\mathrm{R,i}} + \mathbf{D}^{\mathrm{A,i}} \xrightarrow{k_E^R} \mathbf{D}^{\mathrm{i}} + \mathbf{D}^{\mathrm{A,i}}$                                                            | $a_{49_i} = \frac{k_E^R}{\Omega} n_2^{R,i} n^{A,i}$                    | $\frac{k_E^R}{\Omega}$          | 0.2                 | 1                      | 10                   | 1                   | 1                    |
| $50_i$          | $\mathbf{D}_{1}^{\mathrm{R,i}} \xrightarrow{k_{W0}^{2}} \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                                                      | $a_{50_i} = k_{W0}^2 n_1^{R,i}$                                        | $k_{W0}^2$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $51_i$          | $D_{12}^{R,i} \xrightarrow{\bar{k}_E^R} D_1^{R,i}$                                                                                                                                           | $a_{51_i} = \bar{k}_E^R n_{12}^{R,i}$                                  | $\bar{k}_E^R$                   | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |
| $52_i$          | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\delta} \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$                                                                                        | $a_{52_i} = \delta n_{12}^{R,i}$                                       | δ                               | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |
| $53_i$          | $\mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_{M}} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$       | $a_{53_i} = \frac{k_M}{\Omega} n_1^{R,i} n_2^{R,i}$                    | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $54_i$          | $D_1^{R,i} + D_{12}^{R,i} \xrightarrow{k_M} D_{12}^{R,i} + D_{12}^{R,i}$                                                                                                                     | $a_{54_i} = \frac{k_M}{\Omega} n_1^{R,i} n_{12}^{R,i}$                 | $\frac{k_M}{\Omega}$            | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $55_i$          | $\mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_{1}^{\mathbf{R},\mathbf{i}}$ | $a_{55_i} = \frac{\bar{k}_M}{\Omega} \frac{n_1^{R,i}(n_1^{R,i}-1)}{2}$ | $\frac{\overline{k}_M}{\Omega}$ | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $56_i$          | $\mathbf{D}_{1}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{\bar{k}_{M}} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                   | $a_{56_i} = \frac{\bar{k}_M}{\Omega} n_1^{R,i} n_{12}^{R,i}$           | $\frac{\bar{k}_M}{\Omega}$      | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $57_i$          | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_E^R} \mathbf{D}_1^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                 | $a_{57_i} = \frac{k_E^R}{\Omega} n_{12}^{R,i} n^{A,i}$                 | $\frac{k_E^R}{\Omega}$          | 0.2                 | 1                      | 10                   | 1                   | 1                    |
| $58_i$          | $\mathbf{D}_{2}^{\mathrm{R,i}} \xrightarrow{k_{W0}^{\mathrm{l}}} \mathbf{D}_{12}^{\mathrm{R,i}}$                                                                                             | $a_{58_i} = k_{W0}^1 n_2^{R,i}$                                        | $k_{W0}^1$                      | 3.5                 | 3.5                    | 3.5                  | 3.5                 | 3.5                  |
| $59_i$          | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{k_T'} \mathbf{D}_2^{\mathbf{R},\mathbf{i}}$                                                                                            | $a_{59_i} = k_T^{'} n_{12}^{R,i}$                                      | $k_T^{'}$                       | 7.2, 3              | 7.2, 3                 | 7.2, 3               | 3.6, 1.5            | 1.2,  0.5            |
| $60_i$          | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} \xrightarrow{\delta'} \mathbf{D}_{2}^{\mathbf{R},\mathbf{i}}$                                                                                       | $a_{60_i}=\delta' n_{12}^{R,i}$                                        | $\delta'$                       | 7.2, 3              | 7.2, 3                 | 7.2, 3               | 3.6, 1.5            | 1.2,  0.5            |
| $61_i$          | $\mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}} \xrightarrow{k'_M} \mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}_2^{\mathbf{R},\mathbf{i}}$              | $a_{61_i} = \frac{k'_M}{\Omega} \frac{n_2^{R,i}(n_2^{R,i}-1)}{2}$      | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $62_i$          | $\mathbf{D}_2^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}} \xrightarrow{k'_M} \mathbf{D}_{12}^{\mathrm{R,i}} + \mathbf{D}_{12}^{\mathrm{R,i}}$                                            | $a_{62_i} = \frac{k'_M}{\Omega} n_2^{R,i} n_{12}^{R,i}$                | $\frac{k'_M}{\Omega}$           | 0.2                 | 0.2                    | 0.2                  | 0.2                 | 0.2                  |
| $63_i$          | $\mathbf{D}_{12}^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}} \xrightarrow{k_T'^*} \mathbf{D}_2^{\mathbf{R},\mathbf{i}} + \mathbf{D}^{\mathbf{A},\mathbf{i}}$                | $a_{63_i} = \frac{k_T^{\prime *}}{\Omega} n_{12}^R n^{A,i}$            | $\frac{k_T^{\prime *}}{\Omega}$ | 0.12                | 0.6                    | 6                    | 0.3                 | 0.1                  |
| $64_i$          | $D^{A,i} \xrightarrow{\alpha_i} D^{A,i} + i$                                                                                                                                                 | $a_{64_i} = \alpha_i n^{A,i}$                                          | $\alpha_i$                      | 0, 10               | 0, 10                  | 0, 10                | 0,0.1,10            | 0,  0.1,  10         |
| $65_i$          | $i \xrightarrow{\gamma_i} \emptyset$                                                                                                                                                         | $a_{65_i} = \gamma_i n^i$                                              | $\gamma_i$                      | 1                   | 1                      | 1                    | 1                   | 1                    |
| $66_i$          | $C^{i}_{A} \xrightarrow{o} D^{i} + i$                                                                                                                                                        | $a_{66_i} = \delta n_A^{C,i}$                                          | δ                               | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |
| $67_i$          | $C^i_R \xrightarrow{ \   o \   } D^i + j$                                                                                                                                                    | $a_{67_i} = \delta n_R^{C,i}$                                          | δ                               | 12, 5               | 12, 5                  | 12, 5                | 12, 5               | 12, 5                |

Table L: Reactions and parameter values used to generate the plots in Figs G, H, with i, j = X, Z and  $i \neq j$ .

### References

- [1] J. R. Norris. *Markov Chains*. Cambridge University Press, 1997.
- [2] G. Felsenfeld and M. Groudine. "Controlling the double helix". In: Nature 421 (2003).
- [3] Cooper GM. The Cell: A Molecular Approach. Sunderland (MA): Sinauer Associates, 2000.