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Supplementary

Training details and models evaluation

For all the experiments, we divided the dataset into 3 parts and reserved 140 images for
training, 40 for validation and 20 for testing. To compare performances between
different models, we evaluated several common metrics for image reconstruction
including Mean Square Error (MSE), Structural Similarity Index Measure (SSIM), Peak
Signal-to-Noise Ratio (PSNR), Angular Error (AE), DeltaE and Frechet Inception
Distance (FID). FID is a metric that determines how distant real and generated images
are in terms of feature vectors calculated using the Inception v3 classification model [1].
Lower FID scores usually indicate higher image quality.

We aimed at selecting the metric that reflects human perception the best for our
task. For this, we calculated all the above-mentioned scores and visually inspected the
results. All models in our experiments were trained for 100000 iterations with a learning
rate starting at 1× 10−4 and cosine learning decay using randomly cropped patches of
the size 256 × 256 and normalization to [−1, 1]. Given the fully convolutional nature of
the proposed architectures, the entire images of size 2048× 2048 were fed for prediction
at inference time. As a loss function for neural networks, i.e. U-Net and U-Net-GAN
generator, we used mean absolute error (MAE).

In the next sections we will describe the experimental settings and provide the
graphs with metrics, which helped us to identify the best image evaluation metric and
best model.

Model selection

To reconstruct RGB images from individual or combinations of near-infrared
illumination we tried the following four modifications of UNet-like models: U-Net
inspired CNN, U-Net inspired CNN with ImageNet pretrained weights, U-Net
augmented with adversarial loss (model similar to Pix2Pix [2]), U-Net augmented with
adversarial loss with ImageNet pretrained weights.
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The following graphs were obtained using validation dataset.

Fig 1. MSE scores for four reconstruction pipelines.

Fig 2. SSIM scores for four reconstruction pipelines.
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Fig 3. PSNR scores for four reconstruction pipelines.

Fig 4. AE scores for four reconstruction pipelines.
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Fig 5. Delta E scores for four reconstruction pipelines.

Fig 6. FID scores for four reconstruction pipelines.

ImegeNet weights did not significantly alter the models without pretraining. A
possible explanation could be the difference in the domain of the ImageNet dataset,
which does not contain a lot of human images, while human portraits predmonated the
current study’s dataset. Therefore, we elected to use the simpler training settings
without including ImageNet pretrained weights. However, it is not clear which model,
UNet or UNet-GAN performs better as the metrics gave very controversial results.
Therefore, we visually inspected the patches of UNet and UNet-GAN and compared
them with the ground truth (Fig. 7).

Fig. 7 demonstrates that UNet produced a blurry result, and the patch from
UNet-GAN almost perfectly reconstructed the ground truth. The metric that was most
correlated with our conclusions was FID, therefore, we used it as the major metric and
reported it in the main paper. Combining everything together, we picked UNet-GAN
without ImageNet weights and used FID as the guiding metric for quality of image
reconstruction. Moreover, the minimum is reached when the model was trained up to
80K iteration.
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Fig 7. (left) Patch generated by the UNet architecture. (middle) Patch generated by
the UNet architecture with adverserial loss. (right) Ground truth RGB patch.

Wavelength selection

For our experiments we had three infrared images with illumination wavelengths of 718,
777, 807 nm. To determine optimal visible wavelength image reconstruction using
infrared inputs, we evaluated image reconstruction for all single wavelengths, their
pairwise combinations and a combination of all three infrared wavelengths. The
evaluation was performed using the validation dataset. We also wanted to verify that
the best performing model was at 80K iterations.

Fig 8. MSE scores for different wavelength combinations.
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Fig 9. SSIM scores for different wavelength combinations.

Fig 10. PSNR scores for different wavelength combinations.
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Fig 11. AE scores for different wavelength combinations.

Fig 12. Delta E scores for different wavelength combinations.
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Fig 13. FID scores for different wavelength combinations.

FID identified that three wavelengths gave the best result when training occurred for
80K iterations. We used these parameters for our final evaluations on the test dataset
and comparison to the baseline linear regression model.

Evaluation on the test dataset and comparison with the baseline

Our final step was evaluation on the test dataset and compare it with the baseline linear
regression model. We picked our best model at 80K iteration, its counterpart without
adversarial loss, i.e. UNet, again at 80K, and linear regression. The following Figures
report the scores on all the metrics but we were focused only on FID.

Fig 14. MSE scores for the baseline, UNet and UNet-GAN.
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Fig 15. SSIM scores for the baseline, UNet and UNet-GAN.

Fig 16. PSNR scores for the baseline, UNet and UNet-GAN.

Fig 17. AE scores for the baseline, UNet and UNet-GAN.

Fig 18. Delta E scores for the baseline, UNet and UNet-GAN.
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Fig 19. FID scores for the baseline, UNet and UNet-GAN.

To demonstrate model performance in relation to the quantitative results, Fig. 20
provides a representative example of trained model output when using three infrared
wavelength inputs to predict the ground truth visible spectrum image. It is evident that
the simple linear regression model produces images with color features not similar to the
ground truth. In contrast, the deep architectures better captured the colors of the
target RGB ground truth image. While the UNet and UNet-GAN reconstructions
appear similar to each other when viewed as a gross image, the patch analysis shown in
Fig. 7 demonstrates the superiority of the adversarial network which is also reflected by
the lower FID score (Fig. 19).

Fig 20. (left) Visible spectrum ground truth image composed of red, green and blue
input channels. (right) Predicted reconstructions for UNet-GAN, UNet and linear
regression using 3 infrared input images.

Fig. 21 shows arithmetic differences between ground truth and predicted images,
which further solidifies the quality of our predictions. The Arithmetic difference was
computed using imageJ’s image calculator function to subtract an array of predicted
images from an array of ground truth images to produce an array of images where
difference between the two image sets is visualized.
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Fig 21. Arithmetic differences between ground truth and predicted images. The
prevalence of dark colors, i.e. values close to zero, means that the predictions are very
close to the ground truth.

Inference time

To decrease inference time, we tried varying the backbone of the generator and also
explored different generator architectures. Table 1 shows the MSE scores and inference
times for several combinations of architectures and backbones. It is evident than
substituting VGG16 encoder with MobileNet did not significantly worsen the result,
however, the inference time did not improve either. Although, FPN, PSPNet, and
LinkNet improved (i.e decreased) the inference time, the quality of reconstructions (as
measured by the MSE) also dropped.

Table 1. Comparison of different generator architectures.

Generator architecture Backbone Number of parameters (M) MSE Inference time (ms)

U-Net VGG16 23.749 0.0078 ± 0.0010 356 ± 31
U-Net MobileNet 6.629 0.0089 ± 0.0003 346 ± 16
FPN MobileNet 4.216 0.0203 ± 0.0031 131 ± 10
PSPNet MobileNet 2.273 0.0208 ± 0.0008 107 ± 1
LinkNet MobileNet 4.320 0.0177 ± 0.0028 193 ± 22

Substituting VGG16 network for MobileNet did not significantly change MSE score nor inference time. However, the number
of parameters decreased by almost a factor of 4. Although FPN, PSPNet, and LinkNet improved (i.e decreased) the inference
time, the quality of reconstructions (as measured by the MSE) also dropped. Training and testing was performed on the
Natural Images dataset and MSE scores and inference times evaluated for three held-out samples.
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