Science Advances

Supplementary Materials for

Next-generation T cell-activating vaccination increases influenza virus mutation prevalence

Maireid B. Bull, Haogao Gu, Fionn N. L. Ma, Liyanage P. Perera, Leo L. M. Poon, Sophie A. Valkenburg*

*Corresponding author. Email: sophie.v@unimelb.edu.au

Published 6 April 2022, *Sci. Adv.* **8**, eab15209 (2022) DOI: 10.1126/sciadv.ab15209

This PDF file includes:

Figs. S1 to S5 Table S1

Supplementary Figures:

Figure S1: Flow Cytometry gating strategy to characterise T cells isolated from BAL Representative FACS plots showing the gating strategy of identifying $IFN\gamma^+$ IL-2⁺ and $TNF\alpha^+$ producing CD4⁺ and CD8⁺ T cell populations in PBS (grey), S-QIIV (black) and Wyeth/IL-15/5Flu (red) vaccinated mice at day 7 H1N1 challenge.

Figure S2: Cytokine production of vaccine induced T cell responses during infection ICS of T cell populations isolated from BAL fluid from PBS, S-QIIV and Wyeth/IL-15/5Flu at day 7 post H1N1 challenge (n=10). Showing (A) CD4⁺ and CD8⁺ T cell counts, (B) multicytokine producing CD4⁺ T cells, and (C) multicytokine producing CD8⁺ T cells. Individual data points shown on box and whiskers plot, showing mean and upper and lower quartiles with min-max range. Statistical significance was determined by a Kruskal-Wallis test. False discovery rate (0.1) was determined by the original Benjamini and Hochberg method. * P < 0.05, ** P < 0.01, *** P < 0.005, **** P < 0.0001.

Figure S3: Spiking of NA specific primers improves RT-PCR NA product quantity Comparison between gene segment estimated quantity determined using BioRad Image Lab between **(A)** Uni12/13 primer set and **(B)** Uni12/13 + NA primer set. NA band is at band position 4.

Figure S4: Read depth and coverage for 8 IAV genes for RT-PCR products Round 2 NGS read depth across the H1N1 genome from RT-PCR products by NGS from day 3, day 5 and day 7 p.i. mice. Low quality reads removed using Trimmomatic and aligned to H1N1 (Ca04/09) reference genome using BWA-MEM. Data represents individual mice and samples annotated by

'*' indicates a sample removed from further analysis due to either <100 read coverage or <0.8 Q33 Phred Score. Data was visualised using R.

Figure S5: Read depth and coverage for 8 IAV genes for RT-PCR products Round 1 NGS read depth across the H1N1 genome from RT-PCR products by NGS from day 3, day 5 and day 7 p.i. mice. Low quality reads removed using Trimmomatic and aligned to H1N1 (Ca04/09) reference genome using BWA-MEM. Data represents individual mice and samples annotated by

'*' indicates a sample removed from further analysis due to either <100 read coverage or <0.8 Q33 Phred Score. Data was visualised using R.

Reverse Genetics						
Rou	Epitope and nd mutation	Location	T cell restriction	Mutational Frequency in NGS (%)	Vaccination group	HA titre
1	WT-Ca04					1:4
	HA ₅₁₈ V5I	In Epitope	$CD8^+$	1.3	PBS	Not rescued
	NP ₃₉ Y2*	In Epitope	$CD8^+$	0.9	Wyeth/IL-15/5Flu	Not rescued
	NP55 R1Q	In Epitope	$CD4^+$	1.1	Wyeth/IL-15/5Flu	Not rescued
	NP147 R4K	In Epitope	$CD8^+$	1	Wyeth/IL-15/5Flu	Not rescued
	NP147 R6C	In Epitope	$CD8^+$	3.9	Wyeth/IL-15/5Flu	Not rescued
2	WT-Ca04					1:8
	HA177 K4T	In Epitope	$CD4^+$	1	PBS	Not rescued
	NP55 E81K	11aa outside	$cD4^+$	6.6	Wyeth/IL-15/5Flu	Not rescued
	NP ₁₄₇ D157N	2aa outside	$CD8^+$	1	Wyeth/IL-15/5Flu	Not rescued
	NP ₂₁₈ V217I	1aa outside	$CD8^+$	1.1	Wyeth/IL-15/5Flu	Not rescued
	PA T97I	Non-epitope	e n/a	18.4	PBS, Wyeth/IL-15/5Flu	Not rescued
	PB2 E158G	Non-epitope	e n/a	90.8	PBS, Wyeth/IL-15/5Flu	Not rescued

 Table S1: Reverse Genetics attempts of previously defined beneficial mammalian adaptations and mutations within BALB/c T cell epitope regions

Note: Mutants selected for virus rescue by reverse genetics were based on 3 criteria, either: 1) high allele frequency (>0.9%) mutants from Table 2. 2) Mutations outside of epitope regions, but within 15aa of the epitope and above 1% AF were also selected for rescue. Or 3) high frequency polymerase mutants in non-epitope regions were observed in our study and previous studies (37–41). * indicates 'amber' stop mutation.