Supplementary information

Commensal *Pseudomonas* strains facilitate protective response against pathogens in the host plant

In the format provided by the authors and unedited

Supplemental Material for

Shalev et al.: Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant

Supplementary Data 1. RNA-seq expression measurements.

Supplementary Table 1. Metadata and barcode sequences for the 14 isolates.

Isolate	Name in this study	ATUE [,]	Туре	Location	Barcode	Similar isolates in Karasov et al. (2018) collection*
p4.C9	P1	ATUE5	Pathogen	Evach	GTATCTGTAAGAAAAA TCGATTTCCAGGC	23
				,	GTATGCTGAAAACAAA	
p3.A5	P2	ATUE5	Pathogen	Eyach	CTATTTGCTTGGC	115
	Do		Datharas	E la	GTATAGTAAAGCACAA	0.4
p3.A9	P3	ATUE5	Patnogen	Eyach	GAAATTGTCGGGC	24
n3 B12	P4	ATUE5	Pathogen	Evach		156
P0.D12		ATOLO	ranogen	Lydon	GTATGAAGAAGATGAA	100
p4.A6	P5	ATUE5	Pathogen	Eyach	TCATTTACCTGGC	236
					GTATCCGCAAACGTAA	
p4.E1	P6	ATUE5	Pathogen	Eyach	GCACTTAGACGGC	196
- 1 00	D7		Datharan	Europh	GTATAGGTAATAAGAA	100
p4.G8	P7	ATUES	Pathogen	Eyach	AGULTTATALGGL	168
n5 H10	C1	NEW	Commensal	Evach	GTATCGCCAACACGAA	5
p0.1110	01	ATLIE-	Commensa	Lyach		3
p3 G10	C2	NEW	Commensal	Evach	GCCCTTATCGGGC	5
porcino	02		Commence	Lyaon	GTATCTTGAATTCTAA	C C
p4.C4	C3	ATUE4	Commensal	Eyach	CCGTTTACCCGGC	17
					GTATAGAAAATGAAAA	
p4.H11	C4	ATUE2	Commensal	Det-2	GATGTTCTCTGGC	23
m41110	<u>CE</u>		Commonool	Det 0	GTATCCAGAACTGCAA	10
р4.нто	05	ATUE2	Commensal	Del-2		12
p3.G11	C6	ATUE2	Commensal	Evach	CTCTTTCCCTGGC	17
P0.011	20		e eionioui	_,	GTATCACTAAGGATAA	
p5.F2	C7	ATUE2	Commensal	Eyach	TCCGTTTTATGGC	6

[†]OTU classification from Karasov et al. (2018)

*nucleotide sequence divergence < 0.0001 in core genome

Supplementary Table 2. Analysis of batch effects and synthetic community composition. A. Analysis of similarities (ANOSIM) based on Bray-Curtis distances for composition of the 14 barcoded bacteria in treated hosts. The analysis was constrained by the host genotype in each experimental batch (exp) to estimate its effect on the explained variance. B. Multilevel pairwise comparison of synthetic community composition for the different *A. thaliana* genotypes, using adonis based on Bray-Curtis distances. Data derived from one representative experiment (October 2018). Statistically significant differences (P < 0.05) in bold.

A. ANOSIM				
R [,]	Pr(>f)	Experiment		
0.0630	0.0175	August 2018		
0.1792	0.0005	October 2018		
0.0622	0.0615	August 2018		
0.1761	0.0005	October 2018		
0.0538	0.0265	August 2018		
0.0951	0.0005	October 2018		
	R 0.0630 0.1792 0.0622 0.1761 0.0538 0.0951	A. ANOSIM R· Pr(>f) 0.0630 0.0175 0.1792 0.0005 0.0622 0.0615 0.1761 0.0005 0.0538 0.0265 0.0951 0.0005		

B. Pairwise comparison of synthetic community composition

Treatment	R	P	Genotype1	Genotype2
	0.1491	0.005	Ey15-2	HE-1
	0.2561	0.001	Ey15-2	Lu3-30
	0.1236	0.01	Ey15-2	Schl-7
	0.0804	0.044	HE-1	Kus3-1
PathoCom	0.1678	0.001	HE-1	Lu3-30
	0.1313	0.001	Kus3-1	Lu3-30
	0.0757	0.049	Kus3-1	Schl-7
	0.0865	0.002	Lu3-30	Schl-7
	0.1986	0.001	Lu3-30	Tue-Wal-2
	0.0813	0.035	Ey15-2	Lu3-30
	0.1285	0.028	Ey15-2	Tue-Wal-2
	0.1330	0.004	HE-1	Lu3-30
	0.2450	0.001	HE-1	Tue-Wal-2
CommenCom	0.2197	0.001	Kus3-1	Lu3-30
	0.1305	0.005	Kus3-1	Schl-7
	0.1709	0.007	Kus3-1	Tue-Wal-2
	0.4401	0.001	Lu3-30	Tue-Wal-2
	0.3788	0.001	Schl-7	Tue-Wal-2
	0.0825	0.012	Ey15-2	Lu3-30
	0.0818	0.01	Ey15-2	Tue-Wal-2
MixedCom	0.0673	0.027	HE-1	Tue-Wal-2
	0.1660	0.001	Kus3-1	Lu3-30

0.2283	0.001	Lu3-30	Tue-Wal-2

Supplementary Table 3. Model tests. A. Importance of plant genotype, treatment and their interaction (genotype*treatment), estimated by model comparison using leave-one-out cross-validation. Preferred model in bold. B. Two-way ANOVA test for the model [weight ~ genotype * treatment + genotype + treatment + experiment]. Statistically significant relationships (P < 0.05) in bold.

A. Model comparisons using leave-one-out cross-validation tested factor: genotype model 1 model 2 weight ~ genotype + weight ~ treatment + experiment treatment + experiment expected log predictive density -335 21.3 standard error tested factor: treatment model 1 model 2 weight ~ genotype + treatment weight ~ genotype + experiment + experiment -104.3 expected log predictive density standard error 13

	10	
	tested factor: ge	enotype*treatment
	model 1	model 2
	weight ~ genotype * treatment + genotype + treatment + experiment	weight ~ genotype + treatment + experiment
expected log predictive density	-23.2	
standard error	7.9	

B. Two-way ANOV

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
genotype	5	2.28093	0.45619	198.417	< 2.20E- 16
treatment	3	0.56645	0.18882	82.1251	< 2.20E- 16
experiment	1	0.06414	0.06414	27.8961	1.57E-07
genotype:treatment	15	0.12689	0.00846	3.6795	2.55E-06

Supplementary Table 4. Estimation of *A. thaliana* **host genotype importance in abundance changes in MixedCom.** Two models were compared: [log10(cumulative isolate load) ~ treatment + genotype + experiment + error] and [log10(cumulative isolate load) ~ treatment * genotype + treatment + genotype + experiment + error]; thus the genotype * treatment coefficients were estimated for each barcoded isolate separately. Numbers are (expected log predictive density , standard error). Preferred model in bold.

Isolate	treatment * genotype	treatment + genotype
P1	(-4.59 , 1.18)	(0 , 0)
P2	(-1.71 , 2.51)	(0,0)
P3	(-4.47 , 1.03)	(0,0)
P4	(-2.89 , 2.15)	(0,0)
P5	(-4.25 , 1.01)	(0,0)
P6	(-2.96 , 1.9)	(0,0)
P7	(-3.29 , 1.86)	(0,0)
C1	(-3.3 , 1.58)	(0,0)
C2	(-3.5 , 1.66)	(0,0)
C3	(-0.68 , 2.56)	(0,0)
C4	(-1.64 , 2.36)	(0,0)
C5	(-0.78 , 2.59)	(0,0)
C6	(-1.78 , 2.37)	(0,0)
C7	(-1.97 , 2.17)	(0,0)

Supplementary Table 5. List of Differentially expressed genes (DEGs). Related to Figure 5A. Separate .xlsx file.

Supplementary Table 6. Overrepresented GO categories. Related to Figure 5B. Separate .xlsx file.

1001 Genomes ID	Name	Latitude	Longitude	k-group	
9769	HE-1	48.55	8.99	2	
9782	Lu3-30	48.53	9.09	2	
9802	Kus3-1	48.51	9.11	2	
9807	Schl-7	48.6	9.22	2	
9994	Ey15-2	48.43	8.77	2	
10002	Tue-Wal2	48.53	9.04	2	

Supplementary Table 7. Arabidopsis thaliana accessions used.

Supplementary Table 8. Oligonucleotides used.

Name	Sequence	Purpose	Remarks
Bar1	GAATTCCTCGAGGTATCGCCTCCCTCGCGCCATCAGCCNNNNA ANNNNTTNNNNTTNNNNATACATGACTGCTGTCGGCACAAGGG C	Barcode preparation	
Bar2	GGTACCGAGCTCCTATGCGCCTTGCCAGCCCGCTCAGGCCCTT GTGCCGACAGCAGTCATGT	Barcode preparation	
p1	GACATTCATCCGGGGTCAGC	Barcode validation	
p2	GTACCGGGCCCAAGCTTCTC	Barcode validation	
р3	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGCAGGGCT TCCCAACCTTA	Barcode-PCR first step	
p4	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCTCCCTC	Barcode-PCR first step	No frameshift
p5	ACACTCTTTCCCTACACGACGCTCTTCCGATCTACCTCCCTC	Barcode-PCR first step	1 bp frameshift
p6	ACACTCTTTCCCTACACGACGCTCTTCCGATCTGACCTCCCTC	Barcode-PCR first step	2 bp frameshift
p7	ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGACCTCCCT CGCGCCATCAG	Barcode-PCR first step	3 bp frameshift
p8	ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGACCTCCC TCGCGCCATCAG	Barcode-PCR first step	4 bp frameshift
p9	ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGAGCCTCC CTCGCGCCATCAG	Barcode-PCR first step	5 bp frameshift
p10	AAGGGAATCAGGGGATCTTG	Barcode-qPCR	
p11	CCTCCCTCGCGCCATCAG	Barcode-qPCR	
p12	ACATGCTTTGATACAGCGGTGA	Plant-qPCR	GIGANTEA
p13	TGGATTCATTTCAGTCCTTGAGG	Plant-qPCR	GIGANTEA
515F- hamPCR	TCCCTACACGACGCTCTTCCGATCTCTGAGTGYCAGCMGCCGC GGTAA	hamPCR	V4, 16S rDNA
799R- hamPCR	GGAGTTCAGACGTGTGCTCTTCCGATCTTGCMGGGTATCTAAT CCKGTT	hamPCR	V4, 16S rDNA
At.GI_F- hamPCR	TCCCTACACGACGCTCTTCCGATCTGTAAAGATAAATGGGTCA TCTAA	hamPCR	GIGANTEA
At.GI_R- hamPCR	GGAGTTCAGACGTGTGCTCTTCCGATCTTCCTTCTGAACCGGT GTATTC	hamPCR	GIGANTEA

Supplementary Figures

Supplementary Figure 1. Validation of barcode integration and barcode-PCR specificity by agarose gel electrophoresis of PCR amplified products. A. Validation of barcode integration to chosen isolates. Lanes 1–10 used DNA from examined barcoded isolates, lane 11 is water (negative control), lane 12 is the pUC18R6KT-mini-Tn7T plasmid into which a barcode was cloned (positive control), and lanes 13-14 are replicates of the 14 pooled parental (wild-type, WT) isolates. **B.** Validation of barcode-PCR specificity. Lanes 1-2 used DNA from plants infected with the 14 barcoded bacteria, lane 3 from an uninfected plant, lane 4 pUC18R6KT-mini-Tn7T plasmid (positive control), and lane 5 is water (negative control). Both infected and uninfected plants were grown in non-sterile conditions; barcode-specific primers yielded expected products of 522 bp. Lane M, DNA size marker. 500 bp marker indicated. For the unprocessed images see **Supplementary Figure10**.

Supplementary Figure 2. Comparison of growth characteristics between non-barcoded parental isolates and their barcoded derivatives. A. Growth curves of the 14 parental isolates (WT) and their barcoded derivatives in Lysogeny broth (LB) over 10 hours, with OD_{600} recorded hourly. Mean \pm SD, n=3. Change of barcoded isolates in comparison to their corresponding parents in **B**. growth rate, **C**. carrying capacity, and **D**. area under the curve. All three growth parameters were derived from the original growth curves. Dotted line indicates the n parental baseline for a given quantity. Median estimates \pm 95% Bayesian credible intervals, n=3.

	Control	PathoCom
Murashige and Skoog (MS)-agar		(total O.D. 0.01)
Soil	×	(total O.D. 0.1)

Supplementary Figure 3. Illustrative photos of control- and PathoCom-treated plants, grown in either MS-agar (sterile) or soil (unsterile). In both systems, the genotype Ey15-2 was used. For the MS-agar system, photos were taken 3-dpi, for the soil system 14-dpi. Sizes of plants are comparable within each system, but not between. Because images in the soil system were taken and parsed by pot automatically by a high-throughput imaging pipeline, some plant images were cropped.

Supplementary Figure 4. Protection by commensal *Pseudomonas* strains is host dependent. Replicate experiment, related to Fig. 2 in main text. Each of the six *A. thaliana* genotypes used in this study was treated with Control, PathoCom, CommenCom and MixedCom. Fresh rosette weight was measured 12 dpi. The top panel presents the raw data, the breaks in the black vertical lines denote the mean value of each group, and the vertical lines themselves indicate standard deviation. The lower panel presents the mean difference to control, inferred from bootstrap sampling [32,33], indicating the distribution of effect sizes that are compatible with the data. 95% confidence intervals are indicated by the black vertical bars. n=21-23.

Supplementary Figure 6. Protection by commensal *Pseudomonas* strains is host dependent in an axenic environment. Each of the six *A. thaliana* genotypes used in this study was treated with Control, PathoCom, CommenCom and MixedCom. Fresh rosette weight was measured 7 dpi. The top panel presents the raw data, the breaks in the black vertical lines denote the mean value of each group, and the vertical lines themselves indicate standard deviation. The lower panel presents the mean difference to control, inferred from bootstrap sampling [32,33], indicating the distribution of effect sizes that are compatible with the data. 95% confidence intervals are indicated by the black vertical bars. Shown here are the results of one experiment. This experiment was performed in an axenic MS-agar system, while the other experiments in this study were done with non-sterile soil-grown plants. n=6-11.

Supplementary Figure 7. Correlations between the absolute abundance of each isolate and the cumulative bacterial abundance in MixedCom. Each panel represents an individual isolate. Pearson correlation (R) and p-value (p) are given on top, and the matching linear equation at the bottom of each panel. Shaded areas indicate 95% confidence intervals of the correlation curve.

Supplementary Figure 8. Fresh rosette weight of Ey15-2 plants treated with Control, PathoCom or PathoCom without P6 (PathoCom Δ P6). Fresh rosette weight was measured 12 dpi. The top panel presents the raw data, the breaks in the vertical black lines denote the mean value of each group, and the vertical lines themselves indicate standard deviation. The lower panel presents the mean differences to control, plotted as bootstrap sampling [32,33], indicating the distribution of effect sizes that are compatible with the data. 95% confidence intervals are indicated by the black vertical bars. n=25.

Supplementary Figure 9. Illustration of barcode design. Two single-stranded oligos were synthesized: 'Bar1' and 'Bar2'. N indicates random nucleotides.

Supplementary Figure 10. Unprocessed images of the gels used in Supplementary Figure 1. Panels A and B corresponds to the same panels in **Supplementary Figure 1**.