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Supplementary Methods 

Measures of verification 

The verification of the PDA-based reconstruction was based on two primary 

verification metrics, the (Pearson) correlation coefficient (r) and the coefficient of 

efficiency (CE). r is a measure of the strength and direction of the linear relationship 

between two variables. CE is a measure of the differences between the values of two 

variables. Given two time series 𝐗 and 𝐕 of the N values of two variables (e.g., 𝐗 is the 

data to be verified and V is the reference dataset), the two measures are defined as 

follows: 

𝑟 =
1

𝑁
∑ (

(𝐗𝑖 − 𝐗̅)(𝐕𝑖 − 𝐕̅)

𝜎𝑥𝜎𝑣
)

𝑛

𝑖=1

 (S1) 

CE = 1 −
∑ (𝐕𝑖 − 𝐗𝑖)

2𝑁
𝑖=1

∑ (𝐕𝑖 − 𝐕̅)2𝑁
𝑖=1

 (S2) 

Here, an overbar represents a mean value, and σ is the standard deviation. The r 

ranges from -1 to 1. The CE can range from −∞ to 1. A CE that is close to 1 indicates a 

good match between the two data, while a CE that is close to 0 indicates that the 𝐗 data 

are close to the average value of the reference data; that is, overall, the 𝐗 data are 

credible. If CE is much less than 0, the 𝐗 data are not credible. In the pseudo-proxy 

evaluation experiment, we set the CE values associated with the MPI-ESM-P 

simulation (i.e., the prior) as the basis for the pseudo-proxy evaluation. In this case, 

negative CE values associated with the PDA-based reconstruction still reflect 

improvement upon the model simulation, as long as the CE values associated with the 

PDA-based reconstruction are greater than the CE values associated with the model 

simulation at the same locations1. 

The correlation measures signal timing and is not affected by errors in signal 

amplitude or bias. CE is affected by these factors, and as such, it is a useful measure for 

these aspects of the reconstruction. The sensitivity of CE to biases depends on the 

definition of a reference time period to define anomalies, which may be nonoverlapping 

between proxies, calibration data, and prior data. A known issue with CE is that if the 

means over the verification period for the proxies and the verification data are different, 

then CE can be negative even when the reconstruction is skillful1. 

Supplementary Text 

(1) Verification against observational datasets 

The PDA reconstruction during the instrumental period (i.e., 1850-2000AD) was 

verified against observational temperature datasets in both the time domain and space 

field (Fig. S1). The observational temperature datasets used in the verification include 

HadCRUT42, Berkeley Earth Surface Temperatures (hereinafter BEST)3, NASA GISS 
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Surface Temperature Analysis (hereinafter GISTEMP)4, and NOAA/NCEI Land and 

Ocean Temperature v3.2.1 (hereinafter NCDC)5, as well as the gridded temperature 

dataset of CRU TS v4.01 (hereinafter CRU)6. Two primary metrics are considered, i.e., 

the r and CE. In addition, two other temperature datasets, i.e., a historical simulation 

experiment (1850-2005 AD) of MPI-ESM-P in the CMIP5 historical project7 and 

20CR-V2c reanalysis8 produced by online data assimilation using the weather forecast 

model and global pressure observations, were also verified against the above 

observations to further compare the quality of our PDA reconstruction with model 

simulation and assimilation results based on instrumental observations. 

The verifications show that PDA-based temperature anomalies agree well with the 

observed anomalies, with correlation values of 0.72~0.79 (all correlations are 

statistically significant at the α=0.01 level) and CE values of 0.02~0.60. All datasets 

(including observations, simulation, reanalysis and reconstruction) show obvious 

warming trends from 1850-2000 AD. This agreement reflects the close trends among 

all the anomalies. Although GISTEMP data were used to calibrate the forward model 

(i.e., the proxy system model, PSM), the PDA reconstruction shows higher correlations 

and CEs with BEST, HadCRUT4 and NCDC than with GISTEMP. In addition, all 

observational series are completely contained in the uncertainty range (95% confidence 

interval) of the PDA reconstruction, which indicates that the estimate of the uncertainty 

interval of the PDA reconstruction is reasonable. Furthermore, although the MPI-ESM-

P simulation exhibits high correlations with observations, i.e., from 0.70 to 0.79 (all the 

correlations are statistically significant at the α=0.01 level), the CE values associated 

with the MPI-ESP-P simulation (i.e., -3.64~0.07) are obviously lower than those 

associated with the PDA reconstruction and 20CR-V2c, which suggests that the model 

simulation contains a larger bias than the data assimilation results. This bias is likely 

the consequences of model “drift”. 

For the grid-to-grid verifications, more than 99% of the correlation values between 

20CR-V2c and CRU TS v4.01 are positive and with a mean of 0.62; the performance 

of the PDA reconstruction is less than to that of 20CR-V2c, but nevertheless more than 

95% of the correlation values are positive and have a mean of 0.35, which indicates that 

the PDA reconstruction agrees well with the observations in terms of the timing of the 

temperature variations. For the model simulation, the percentage of positive correlation 

values is 82%, and the mean is 0.16, which indicates that the model simulation quality 

is obviously lower than those of the former two datasets. For the spatial distributions of 

CE values, we can see that the PDA reconstruction has the highest CE value, followed 

by the 20CR-V2c reanalysis and lastly the MPI-ESM-P simulation. Grid-to-grid 

verifications suggest that the data assimilation results, whether assimilating 

instrumental data (i.e., 20CR-V2c) or assimilating natural proxies (i.e., PDA 

reconstruction), are always superior to model simulations in terms of correlation and 

bias. 

Admittedly, the quality of the 20CR-V2c reanalysis is higher than that of the PDA 

reconstruction in terms of the correlation with the observations, which is not surprising 
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given the amount, spatial distribution and quality of the assimilated surface pressure 

observations in the 20CR-V2c compared with the proxy data in the PDA. However, 

notably, for the NH averaged anomalies, the difference between the 20CR-V2c 

reanalysis and PDA reconstruction is small in terms of the correlations. For the NH 

temperature field, although there is a relatively large difference between the two 

datasets in the metric correlation means (0.62 for 20CR-V2c and 0.35 for PDA), there 

is a small difference in the proportion of positive correlation values (99% for 20CR-

V2c and 95% for PDA). Additionally, the CE mean associated with the PDA 

reconstruction (-0.13) is larger than that of the 20CR-V2c reanalysis (-0.27). Overall, 

this finding indicates that the reconstructed temperature field based on the PDA 

approach has relatively high reliability that is close to that of the 20CR-V2c reanalysis; 

hence, the PDA reconstruction can be used to analyze the NH temperature field patterns 

and other field-related issues. 

 (2)  Verification against proxy-based reconstruction 

In order to place the PDA-based reconstruction in the context of previous well-

known reconstructions, we show the NH-averaged temperature anomalies during the 

last millennium reconstructed based on multi-types proxies and the PDA approach. 

From Fig. S2 we can see that the PDA-based temperature anomalies are in reasonable 

agreement with several well-known reconstructions. The correlations between the 

PDA-based reconstruction and several proxy-based reconstructions range from 0.47 to 

0.74 with a mean of 0.61, and more than half of the proxy-based reconstructions 

correlate at 0.6 or higher with the PDA-based temperature anomalies. The 

abovementioned correlations are statistically significant at the α = 0.01 level. In 

addition, as in the proxy-based reconstructions, the NH-averaged temperature of the 

PDA-based reconstruction shows a cooling trend over the preindustrial era and a sharp 

warming trend during the industrial era. Superimposed upon those two trends are 

multidecadal oscillations, including climatic features consistent with the Medieval 

Climate Anomaly and the Little Ice Age. Those consistencies reflect the close trends 

among all the reconstructions mentioned in Fig. S2, that is to say, the PDA-based 

reconstruction agrees well with previous proxy-based reconstructions. In addition, 

compared to the proxy-based reconstructions, the PDA-based reconstruction has the 

strong advantage of providing spatiotemporally continuous temperature fields, with 

consistent physics constrained by climate models. 

(3) Pseudo-proxy experiment verifications 

We conducted a pseudo-proxy experiment to assess the performance of the PDA-

based reconstruction during the past millennium. In the pseudo-proxy experiment, 75% 

of the observational proxies were randomly sampled and assimilated (Fig. S3a), and the 

remaining 25% observational proxies were used to verify the PDA-based reconstruction 

(Fig. S3b). 
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We compared the 25% observational-based records with the estimates of the proxy 

values from the PDA-based reconstruction and MPI-ESM-P millennium simulation 

using a proxy system model (Equation (5)) over the past millennium. This type of 

comparison can directly indicate how close the simulated proxy is to the corresponding 

observational proxy and demonstrate the performances of the PDA-based 

reconstruction and MPI-ESM-P simulation. The pseudo-proxy experiment shows that 

the PDA-based reconstruction clearly improves the temperature estimates compared to 

the prior MPI-ESM-P simulation. Indeed, overall, the PDA-based reconstruction is 

more reliable in terms of the r (Fig. S3c, d) and CE than the MPI-ESM-P simulation 

(Fig. S3e, f).
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Fig. S1. NH averaged annual temperature anomalies (relative to the mean of 1961-1990 AD) during 

1850-2000 AD and grid-to-grid verification of the PDA reconstruction, 20CR-V2c reanalysis and MPI-

ESM-P climate simulation against observations in terms of correlation coefficient and coefficient of 

efficiency. (a) Observational datasets (thin lines), PDA reconstruction (thick red line), 20CR-V2c reanalysis 

(thick blue line) and MPI-ESM-P simulation (thick green line). The grey band denotes the uncertainty range 

of PDA reconstruction (95% confidence interval). All anomalies are relative to the mean value from 1961-

1990 AD. (b) Correlations and (c) coefficients of efficiency between the PDA reconstruction, MPI-ESM-P 

simulation and 20CR-V2c reanalysis and observations from 1850-2000 AD. All of the correlation 

coefficients are statistically significant at the α=0.01 level. (d), (e) and (f) The spatial patterns of the 

correlations between gridded CRU temperature and PDA reconstruction, 20CR-V2c reanalysis and MPI-

ESM-P simulation from 1901-2000 AD. (g) The histograms of correlation values corresponding to the left 

three correlation coefficient fields (red line for PDA reconstruction, blue line for 20CR-V2c reanalysis, green 

line for the MPI-ESM-P simulation). All the correlations are statistically significant at the α=0.01 level. (h), 

(i) and (j) The spatial patterns of coefficients of efficiency between gridded CRU temperature and PDA 

reconstruction, 20CR-V2c reanalysis and MPI-ESM-P simulation from 1901-2000 AD, respectively. (k) The 

histograms of coefficient of efficiency values corresponding to the left three coefficient of efficiency fields 

(red line for PDA reconstruction, blue line for 20CR-V2c reanalysis, green line for MPI-ESM-P simulation). 

The correlation coefficient and coefficient of efficiency values were computed based on the annual 

temperature anomaly without any smoothing.
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Fig. S2. The PDA reconstruction and previous proxy-based reconstructions. (a) Reconstructed annual 

temperature anomalies based on the PDA approach and proxy-based approach. Proxy-based reconstructions 

include Jones19989, Crowley200010, Esper200211, Moberg200512, DArrigo200613, Mann200814 and 

Shi201315. All the time series are anomalous relative to their individual millennial means. The PDA 

reconstruction was filtered by the loess method (span = 0.01), while other proxy-based reconstructions 

retained their original series without post-smoothing. (b) Verification of NH averaged annual temperature 

anomalies over the past millennium (1000-1979 AD) in terms of the correlation (because the reconstruction 

of Moberg2005 ends in 1979 AD, the correlations were accordingly computed based on temperature 

anomalies from 1000-1979 AD). All the time series are anomalous relative to their individual millennial 

means, and their original series are retrained without post-smoothing. All the correlation coefficients are 

statistically significant at the α=0.01 level.
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Fig. S3. The spatial distributions of observational proxies in pseudo-proxy verifications and the spatial 

distributions of correlation coefficient and coefficient of efficiency values in the pseudo-proxy 

experiment. (a) 75% of the observational proxies that were assimilated in the PDA process; (b) the 

remaining 25% of the observational proxies that were used to verify the PDA-based reconstruction. (c) 

Correlation coefficient values between the remaining 25% observational-based records and the estimates of 

the proxy values from the MPI-ESM-P millennium simulation; (d) correlation coefficient values between 

the remaining 25% observational-based records and the estimates of the proxy values from the PDA-based 

reconstruction. (e) Coefficient of efficiency values between the remaining 25% observational-based records 

and the estimates of the proxy values from the MPI-ESM-P millennium simulation; (f) coefficient of 

efficiency values between the remaining 25% observational-based records and the estimates of the proxy 

values from the PDA-based reconstruction. 
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Fig. S4. Sensitive analysis of the reconstructed AA indices to the moving window size for the 

regression.  The size of the time window was set to (a) 11 years, (b) 21 years, (c) 31 years, (d) 41 years, 

(e) 51 years, and (f) 61 years.



 

 

10 

 

 
Fig. S5. The reconstructed AA indices and estimated AA trends during the past millennia derived 

from the CMIP5 multi-model simulations. The multi-model ensemble mean AA index was 

calculated by computing the AA index from each member first and then averaging over the AA 

indices from the ensemble members. The blue dotted line is the long-term trend of the multi-

model ensemble mean AA index time series, which was computed via Mann-Kendall trend 

detection (see Methods).
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Fig. S6. The reconstructed Arctic sea ice extent (SIE) time series16 and the AA index in this study. 
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Fig. S7. Co-variation between the reconstructed millennial AA index and PDO modes. The 

reconstructed millennial AA index (black line) derived from the PDA-based reconstruction and the 

reconstructed PDO index (shading) based on multi-type proxies17.
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Table S1. Overview of paleoclimate temperature reconstructions used in this study. 

 Goosse2012 Steiger2018 This study 

Climate model LOVECLIM18 CESM19 MPI-ESM-P20 

Data assimilation algorithm Particle filter21 EnSRF22 EnSRF22 

Proxy dataset Mann200917 
PAGES2k Consortium23 and 

additional tree ring proxy24 
PAGES2k Consortium23  

Ensemble size 96 998 500 

Spatial coverage Global Global Northern Hemisphere 
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