Supporting Information

Palladium and Nickel Catalyzed Suzuki Cross-Coupling with Alkyl Fluorides

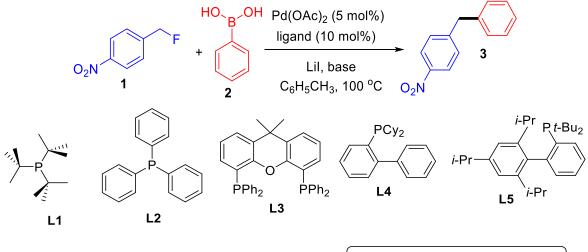
Kaluvu Balaraman and Christian Wolf*

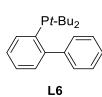
Georgetown University, Chemistry Department, Washington, DC 20057, USA

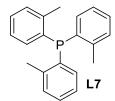
Table of Contents

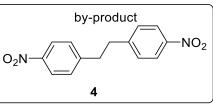
1.	General information					
2.	Optimization of the Pd-catalyzed Suzuki cross-coupling					
3.	Optimization of the Ni-catalyzed Suzuki cross-coupling					
4.	General procedure for the Pd-catalyzed Suzuki cross-coupling	S6				
	4.1. Product purification and characterization	S 6				
5.	General procedure for the Ni-catalyzed Suzuki cross-coupling	S13				
	5.1. Product purification and characterization	S13				
6.	¹ H, ¹³ C and ¹⁹ F NMR spectra	S17				
7.	Crystallographic analysis					
8.	References					

1. General information

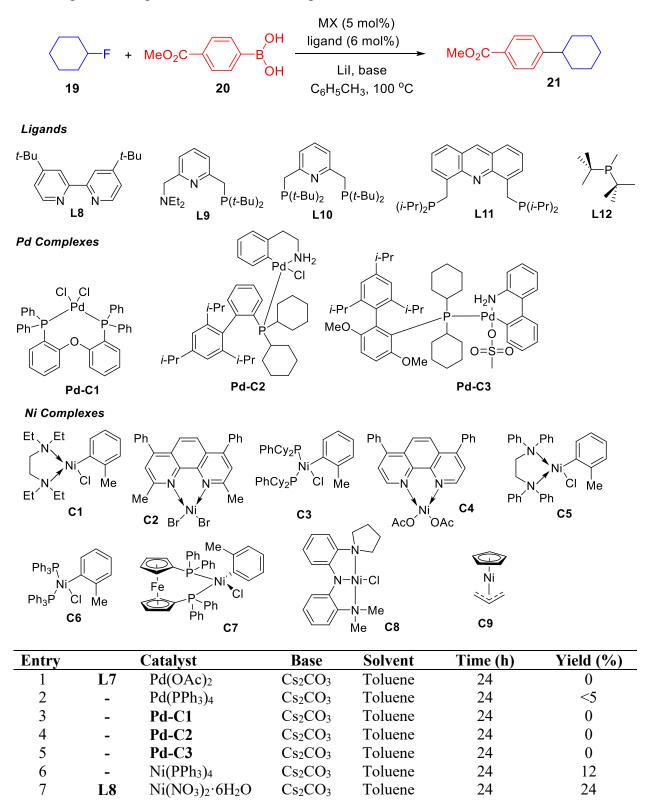

Commercially available organofluorines, ligands, catalysts, metal salts, boronic acids, reagents and solvents were used as purchased without further purification. The solvents were stored over 4Å molecular sieves prior to use.


NMR spectra were obtained at 400 MHz (¹H NMR), 376 MHz (¹⁹F NMR) and 100 MHz (¹³C NMR) in deuterated chloroform. Chemical shifts are reported in ppm relative to TMS. All reaction products were purified by column chromatography on silica gel (particle size 40-63 μ m) as described below.


Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated with the Bruker SAINT program. Structure solution and refinement were performed using the SHELXT/PC suite and ShelXle. Intensities were corrected for Lorentz and polarization effects and an empirical absorption correction was applied using Blessing's method as incorporated into the program SADABS. Non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogen atoms were included in idealized positions.


2. Optimization of the Pd-catalyzed Suzuki cross-coupling

Screening of phosphine ligands, base, temperature and reaction time



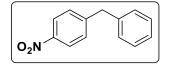
Entry	Ligand	Base	Time (h)	Temp. (°C)	Yield (%)
1	L2	Cs_2CO_3	36	100	68
2	L2	K_2CO_3	18	100	28
3	L2	K ₃ PO ₄	18	100	42
4	L1	K ₂ CO ₃	24	25	0
5	L1	K ₂ CO ₃	18	80	33
6	L1	K_2CO_3	2	90	29 ^a
7	L1	K ₃ PO ₄	18	80	33
8	L1	K ₃ PO ₄	18	100	40
9	L1	Cs_2CO_3	18	70	43
10	L1	Cs_2CO_3	18	100	60 ^b
11	L1	Cs_2CO_3	18	100	54°
12	L3	Cs_2CO_3	18	100	54
13	L4	Cs_2CO_3	18	100	57
14	L5	Cs_2CO_3	18	100	29
15	L6	Cs_2CO_3	18	100	51
16	L7	Cs_2CO_3	18	100	92
17	L7	Cs_2CO_3	18	100	95 ^d
18	L7	Cs_2CO_3	18	100	91 ^e

Conditions: **1** (0.2 mmol), **2** (0.6 mmol), LiI (0.3 mmol), Pd(OAc)₂ (5 mol%), ligand (10 mol%) in 2.0 mL solvent. ^aMicrowave reaction, ^b28% of **4** isolated, ^c*m*-xylene used as a solvent, ^d0.4 mmol of **2** used, ^c0.3 mmol of **2** used.

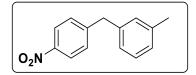
3. Optimization of the Ni-catalyzed Suzuki cross-coupling

Screening of Ni complexes, base, solvent, temperature and reaction time

8	L8	NiCl ₂	Cs ₂ CO ₃	Toluene	24	12		
9	-	NiCl ₂ (PCy ₃) ₂	Cs_2CO_3	Toluene	24	<5		
10	-	$NiCl_2(PPh_3)_2$	Cs_2CO_3	Toluene	24	<5		
11	-	Ni(dppe)Cl ₂	Cs_2CO_3	Toluene	24	<5		
12	-	Ni(dppf)Cl ₂	Cs_2CO_3	Toluene	24	<5		
13	L8	NiBr ₂	Cs ₂ CO ₃	Toluene	24	15		
14	L8	NiBr ₂ ·DME	Cs ₂ CO ₃	Toluene	24	12		
15	L8	NiBr ₂ ·Diglyme	Cs_2CO_3	Toluene	24	8		
16	L8	NiI ₂	Cs_2CO_3	Toluene	24	36		
17	L8	Ni(COD) ₂	Cs_2CO_3	Toluene	24	57		
18	L8	Ni(ClO ₄) ₂	Cs_2CO_3	Toluene	24	30		
19	L8	NiO	Cs_2CO_3	Toluene	24	0		
20	L9	NiI ₂	Cs_2CO_3	Toluene	24	30		
21	L9	Ni(COD) ₂	Cs_2CO_3	Toluene	24	48		
22	L8	Ni(COD) ₂	Cs_2CO_3	Toluene	48	71		
23	L8	Ni(COD) ₂	K ₂ CO ₃	Toluene	48	56		
24	L8	Ni(COD) ₂	K ₃ PO ₄	Toluene	48	45		
25	L8	Ni(COD) ₂	KOt-Bu	Toluene	48	54		
26	L8	Ni(COD) ₂	Cs_2CO_3	IPA	48	0		
27	L8	Ni(COD) ₂	Cs_2CO_3	Dioxane	48	0		
28	L8	Ni(COD) ₂	Cs_2CO_3	DMF	48	0		
29	L8	Ni(COD) ₂	Cs_2CO_3	t-BuOH	48	0		
30	L9	Ni(COD) ₂	Cs_2CO_3	Toluene	48	15		
31	L10	Ni(COD) ₂	Cs_2CO_3	Toluene	48	0		
32	L11	Ni(COD) ₂	Cs_2CO_3	Toluene	48	13		
33	L12	$Pd(OAc)_2$	KOt-Bu	Toluene	24	0		
34	-	C1	Cs_2CO_3	Toluene	48	36		
35	-	C2	Cs_2CO_3	Toluene	48	28		
36	-	C3	Cs_2CO_3	Toluene	48	38		
37	-	C4	Cs_2CO_3	Toluene	48	0		
38	-	C5	Cs_2CO_3	Toluene	48	30		
39	-	C6	Cs_2CO_3	Toluene	48	35		
40	-	C7	Cs_2CO_3	Toluene	48	25		
41	-	C8	Cs_2CO_3	Toluene	48	12		
42	-	С9	Cs_2CO_3	Toluene	48	<5		
Conditions: 19 (0.2 mmol), 20 (0.4 mmol), LiI (0.3 mmol), MX (5 mol%) and ligand (6								

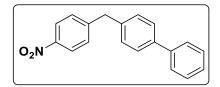

Conditions: **19** (0.2 mmol), **20** (0.4 mmol), LiI (0.3 mmol), **MX** (5 mol%) and ligand (6 mol%) or metal complex (5 mol%) in 2.0 mL solvent at 100 °C.

4. General procedure for the Pd-catalyzed Suzuki cross-coupling

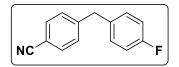

Method A: $Pd(OAc)_2$ (5 mol%), $P(o-tolyl)_3$ (10 mol%), alkyl fluoride (0.2 mmol, 1.0 eq), boronic acid (0.4 mmol, 2.0 eq), LiI (0.3 mmol, 1.5 eq) and Cs_2CO_3 (0.4 mmol, 2.0 eq) were added into 2 mL of dry toluene under nitrogen atmosphere. The reaction mixture was stirred at 100 °C in an oil bath and stirred at this temperature for 18 hours in the dark. The solvent was removed and the crude products were purified by silica flash column chromatography as described below.

Method B: $Pd(OAc)_2$ (5 mol%), $P(o-tolyl)_3$ (10 mol%), alkyl fluoride (0.4 mmol, 2.0 eq), boronic acid (0.2 mmol, 1.0 eq), LiI (0.6 mmol, 3.0 eq) and Cs_2CO_3 (0.4 mmol, 2 eq) were added into 2 mL of dry toluene under nitrogen atmosphere. The reaction mixture was stirred at 25 °C for 3 hours and then heated to 100 °C in an oil bath and stirred at this temperature for another 18 hours in the dark. The solvent was removed and the crude products were purified by silica flash column chromatography as described below.

4.1. Product purification and characterization

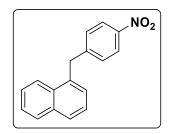


1-Benzyl-4-nitrobenzene (3). Compound **3** was obtained after column purification using hexanes/ethyl acetate (19:1) as mobile phase as a colorless oil in 95% yield (40 mg, 0.19 mmol) from 1-(fluoromethyl)-4-nitrobenzene (31 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above (Method A). R_f = 0.5 (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) δ = 8.13 (d, *J* = 8.4 Hz, 2H), 7.36 – 7.28 (m, 4H), 7.24 (m, 1H), 7.17 (d, *J* = 6.8 Hz, 2H), 4.07 (s, 2H); ¹³C NMR (100 MHz, chloroform-*d*) δ = 149.0, 146.7, 139.3, 129.8, 129.1, 128.9, 126.9, 123.9, 41.9; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₁₂NO₂ 214.0863, found 214.0866.

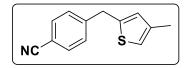


1-Methyl-3-(4-nitrobenzyl)benzene (5). Compound **5** was obtained after column purification using hexanes/ethyl acetate (49:1) as mobile phase as a colorless solid in 96% yield (43 mg, 0.192 mmol) from 1-(fluoromethyl)-4-nitrobenzene (31 mg, 0.2 mmol) and *m*-tolylboronic acid (54 mg,

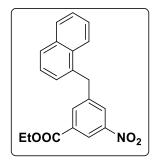
0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.6$ (hexanes/EtOAc, 19:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 8.14$ (d, J = 7.8 Hz, 2H), 7.41 – 7.30 (m, 2H), 7.21 (dd, J = 7.8, 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 7.8 Hz, 2H), 4.04 (s, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 149.1$, 146.6, 139.2, 138.6, 129.8, 129.8, 128.8, 127.6, 126.1, 123.9, 41.8, 21.5; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₄H₁₄NO₂ 228.1019, found 228.1024.

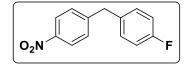


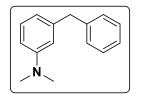
4-(4-Nitrobenzyl)-1,1'-biphenyl (6). Compound **6** was obtained after column purification using hexanes/ethyl acetate (49:1) as mobile phase as a colorless solid in 92% yield (53 mg, 0.184 mmol) from 1-(fluoromethyl)-4-nitrobenzene (31 mg, 0.2 mmol) and [1,1'-biphenyl]-4-ylboronic acid (80 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.6$ (hexanes/EtOAc, 19:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 8.14$ (d, J = 7.7 Hz, 2H), 7.57 – 7.53 (m, 4H), 7.42 (dd, J = 7.6, 7.5 Hz, 2H), 7.37 – 7.31 (m, 3H), 7.23 (d, J = 7.6 Hz, 2H), 4.10 (s, 2H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 148.9$, 146.7, 140.7, 139.9, 138.4, 129.8, 129.5, 128.9, 127.6, 127.4, 127.1, 123.9, 41.5; HRMS (ESI-TOF) m/z: [M-H]⁻ calcd for C₁₉H₁₄NO₂ 288.1030, found 288.1025.

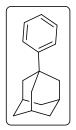


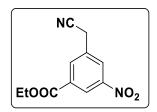
4-(4-Fluorobenzyl)benzonitrile (7). Compound 7 was obtained after column purification using hexanes/ethyl acetate (19:1) as mobile phase as a colorless solid in 86% yield (36 mg, 0.172 mmol) from 4-(fluoromethyl)benzonitrile (27 mg, 0.2 mmol) and (4-fluorophenyl)boronic acid (56 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.3$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.57$ (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 7.11 (dd, J = 8.5, 5.4 Hz, 2H), 7.03 – 6.94 (m, 2H), 4.00 (s, 2H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 161.8$ (d, $J_{C-F} = 245.0$ Hz), 146.6 (d, $J_{C-F} = 1.0$ Hz), 135.1 (d, $J_{C-F} = 3.2$ Hz), 132.5, 130.5 (d, $J_{C-F} = 7.9$ Hz), 129.7, 119.0, 115.7 (d, $J_{C-F} = 21.4$ Hz), 110.4, 41.2; ¹⁹F NMR

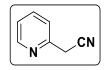

 $(376 \text{ MHz}, \text{chloroform-}d) \delta = -116.3 \text{ (m, 1F)}; \text{HRMS (ESI-TOF)} m/z: [M+H]^+ \text{ calcd for } C_{14}H_{11}\text{FN}$ 212.0870, found 212.0873.

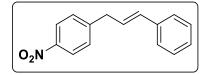

1-(4-Nitrobenzyl)naphthalene (8). Compound **8** was obtained after column purification using hexanes/ethyl acetate (32:1) as mobile phase as a colorless solid in 87% yield (46 mg, 0.174 mmol) from 1-(fluoromethyl)naphthalene (32 mg, 0.2 mmol) and (4-nitrophenyl)boronic acid (67 mg, 0.4 mmol) by following the general procedure described above (Method A). R_f = 0.6 (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) δ = 8.12 (d, *J* = 8.7 Hz, 2H), 7.90 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.84 (dd, *J* = 8.7, 8.7 Hz, 2H), 7.53 – 7.42 (m, 3H), 7.37 – 7.30 (m, 3H), 4.54 (s, 2H); ¹³C NMR (100 MHz, chloroform-*d*) δ = 148.7, 146.7, 134.8, 134.2, 131.9, 129.5, 129.0, 128.1, 127.8, 126.5, 126.0, 125.7, 124.0, 123.9, 39.1; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₇H₁₄NO₂ 264.1019, found 264.1019.


4-((4-Methylthiophen-2-yl)methyl)benzonitrile (9). Compound **9** was obtained after column purification using hexanes/ethyl acetate (19:1) as mobile phase as a colorless solid in 96% yield (41 mg, 0.192 mmol) from 4-(fluoromethyl)benzonitrile (27 mg, 0.2 mmol) and (4-methylthiophen-2-yl)boronic acid (57 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.4$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.59$ (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 6.75 (s, 1H), 6.61 (s, 1H), 4.14 (s, 2H), 2.21 (s, 3H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 146.0$, 141.6, 137.8, 132.5, 129.4, 128.4, 119.8, 119.0, 110.6, 36.3, 15.8; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₂NS 214.0685, found 214.0685.

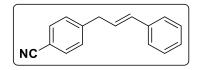

Ethyl 3-(naphthalen-1-ylmethyl)-5-nitrobenzoate (10). Compound **10** was obtained after column purification using hexanes/ethyl acetate (9:1) as mobile phase as a colorless oil in 89% yield (59 mg, 0.178 mmol) from 1-(fluoromethyl)naphthalene (32 mg, 0.2 mmol) and (3-(ethoxycarbonyl)-5-nitrophenyl)boronic acid (96 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.3$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 8.68$ (dd, J = 1.7, 1.7 Hz, 1H), 8.27 (dd, J = 1.7, 1.7 Hz, 1H), 8.19 (dd, J = 1.7, 1.7 Hz, 1H), 7.93 – 7.79 (m, 3H), 7.53 – 7.43 (m, 3H), 7.33 (dd, J = 7.0, 1.4 Hz, 1H), 4.58 (s, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 164.7$, 148.7, 143.6, 135.6, 134.4, 134.3, 132.4, 131.7, 129.2, 128.3, 127.9, 127.4, 126.6, 126.1, 125.8, 123.7, 122.6, 62.1, 38.8, 14.4; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₂₀H₁₈NO₄ 336.1230, found 336.1225.


1-Fluoro-4-(4-nitrobenzyl)benzene (11). Compound 11 was obtained after column purification using hexanes/ethyl acetate (19:1) as mobile phase as a colorless solid in 97% yield (45 mg, 0.194 mmol) from 1-(fluoromethyl)-4-nitrobenzene (31 mg, 0.2 mmol) and (4-fluorophenyl)boronic acid (56 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.7$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 8.15$ (d, J = 8.7 Hz, 2H), 7.32 (d, J = 8.7 Hz, 2H), 7.17 – 7.10 (m, 2H), 7.06 – 6.95 (m, 2H), 4.05 (s, 2H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 161.9$ (d, $J_{C-F} = 245.4$ Hz), 148.7 (d, $J_{C-F} = 1.0$ Hz), 146.7, 135.0 (d, $J_{C-F} = 3.3$ Hz), 130.5 (d, $J_{C-F} = 8.0$ Hz), 129.7, 123.9, 115.8 (d, $J_{C-F} = 21.4$ Hz), 41.0; ¹⁹F NMR (376 MHz, chloroform-*d*) $\delta = -116.1$ (m, 1F); HRMS (ESI-TOF) m/z: [M-H]⁻ calcd for C₁₃H₉FNO₂ 230.0623, found 230.0625.


3-Benzyl-*N***,***N***-dimethylaniline (12).** Compound **12** was obtained after column purification using hexanes/ethyl acetate (9:1) as mobile phase as a colorless oil in 89% yield (38 mg, 0.178 mmol) from 3-(fluoromethyl)-*N*,*N*-dimethylaniline (31 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.6$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.25 - 7.19$ (m, 3H), 7.18 - 7.11 (m, 3H), 7.01 (dd, J = 7.8, 1.2 Hz, 1H), 6.55 - 6.45 (d, J = 8.1 Hz, 2H), 4.07 (s, 2H), 2.86 (s, 6H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 149.9$, 142.4, 141.0, 133.5, 129.3, 129.2, 128.3, 125.9, 114.8, 111.8, 40.7, 40.2. The spectroscopic data of 3-benzyl-*N*,*N*-dimethylaniline (**12**) are in accordance with the literature.¹


1-Phenyladamantane (13). Compound 13 was obtained after preparative TLC purification using hexanes as mobile phase as a colorless solid in 41% yield (17 mg, 0.082 mmol) from 1-fluoroadamantane (31 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.9$ (hexanes); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.41 - 7.37$ (m, 2H), 7.36 - 7.29 (m, 2H), 7.19 (dd, J = 7.6, 7.6 Hz, 1H), 2.11 (bs, 3H), 1.93 (bs, 6H), 1.85 - 1.71 (m, 6H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 151.5, 128.2, 125.6, 125.0, 43.3, 37.0, 36.3, 29.1$. The spectroscopic data of 1-phenyladamantane (13) are in accordance with the literature.²

Ethyl 3-(cyanomethyl)-5-nitrobenzoate (14). Compound 14 was obtained after column purification using hexanes/ethyl acetate (3:1) as mobile phase as a colorless solid in 91% yield (42 mg, 0.182 mmol) from 2-fluoroacetonitrile (24 mg, 0.4 mmol) and (3-(ethoxycarbonyl)-5-nitrophenyl)boronic acid (48 mg, 0.2 mmol) by following the general procedure described above (Method B). $R_f = 0.3$ (hexanes/EtOAc, 1:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 8.81$ (dd, J = 1.7, 1.7 Hz, 1H), 8.41 (dd, J = 1.7, 1.7 Hz, 1H), 8.35 (dd, J = 1.7, 1.7 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 3.95 (s, 2H), 1.43 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 163.9, 148.9, 134.7, 133.5, 132.7, 126.8, 124.5, 116.2, 62.5, 23.6, 14.4; HRMS (ESI-TOF)$ *m/z*: [M-H]⁻ calcd for C₁₁H₉N₂O₄ 233.0568, found 233.0566.



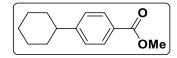
2-(Pyridin-2-yl)acetonitrile (15). Compound **15** was obtained after column purification using hexanes/ethyl acetate (4:1) as mobile phase as a colorless oil in 83% yield (20 mg, 0.166 mmol) from 2-fluoroacetonitrile (24 mg, 0.4 mmol) and pyridin-2-ylboronic acid (25 mg, 0.2 mmol) by following the general procedure described above (Method B). R_f = 0.4 (hexanes/EtOAc, 1:1); ¹H NMR (400 MHz, chloroform-*d*) δ = 8.59 (d, *J* = 7.7 Hz, 1H), 7.74 (dd, *J* = 7.8, 7.7 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.27 (m, 1H), 3.95 (s, 2H); ¹³C NMR (100 MHz, chloroform-*d*) δ = 150.6, 150.0, 137.5, 123.1, 122.3, 117.1, 26.7; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₇H₇N₂ 119.0604, found 119.0601.



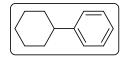
(*E*)-3-(4-Nitrophenyl)-1-phenylpropene (16). Compound 16 was obtained after column purification using hexanes/ethyl acetate (19:1) as mobile phase as a colorless solid in 81% yield (39 mg, 0.162 mmol) from 1-(fluoromethyl)-4-nitrobenzene (31 mg, 0.2 mmol) and (*E*)-phenylethenylboronic acid (59 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.5$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 8.17$ (d, J = 8.7 Hz, 2H), 7.42 – 7.34 (m, 4H), 7.31 (dd, J = 8.0, 7.3 Hz, 2H), 7.24 (d, J = 7.3 Hz, 1H), 6.49 (d, J = 15.9 Hz, 1H), 6.31 (dt, J = 15.9, 6.8 Hz, 1H), 3.65 (d, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz,

chloroform-*d*) δ = 148.1, 146.8, 137.0, 132.7, 129.6, 128.8, 127.7, 127.1, 126.3, 123.9, 39.2; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₄NO₂ 240.1019, found 240.1021.

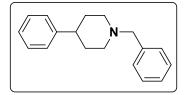
(*E*)-3-(4-Cyanophenyl)-1-phenylpropene (17). Compound 17 was obtained after column purification using hexanes/ethyl acetate (19:1) as mobile phase as a colorless solid in 89% yield (39 mg, 0.178 mmol) from 4-(fluoromethyl)benzonitrile (27 mg, 0.2 mmol) and (*E*)-phenylethenylboronic acid (59 mg, 0.4 mmol) by following the general procedure described above (Method A). $R_f = 0.4$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.57$ (d, J = 7.8 Hz, 2H), 7.40 – 7.24 (m, 6H), 7.22 (m, 1H), 6.45 (d, J = 15.7 Hz, 1H), 6.26 (dt, J = 15.7, 6.9 Hz, 1H), 3.57 (d, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 145.9$, 137.0, 132.6, 132.4, 129.6, 128.7, 127.7, 127.3, 126.3, 119.1, 110.3, 39.4; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₆H₁₄N 220.1121, found 220.1123.

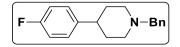


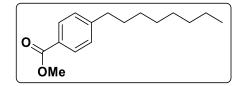
4-(2-Phenylallyl)benzonitrile (18). Compound **18** was obtained after column purification using hexanes/ethyl acetate (19:1) as mobile phase as a colorless oil in 88% yield (38 mg, 0.176 mmol) from 4-(fluoromethyl)benzonitrile (27 mg, 0.2 mmol) and (1-phenylvinyl)boronic acid (59 mg, 0.4 mmol) by following the general procedure described above (Method A). R_f = 0.4 (hexanes/EtOAc, 8:2); ¹H NMR (400 MHz, chloroform-*d*) δ = 7.56 – 7.49 (m, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.20 (m, 5H), 5.53 (d, *J* = 1.2 Hz, 1H), 5.05 (d, *J* = 1.2 Hz, 1H), 3.88 (s, 2H); ¹³C NMR (100 MHz, chloroform-*d*) δ = 145.8, 145.4, 140.1, 132.3, 129.7, 128.5, 127.9, 126.2, 119.1, 115.6, 110.2, 41.9; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₆H₁₄N 220.1126, found 220.1125.


5. General procedure for the Ni-catalyzed Suzuki cross-coupling

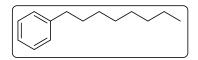
Ni(cod)₂ (5 mol%), **L8** (6 mol%), alkyl fluoride (0.2 mmol, 1.0 eq), boronic acid (0.4 mmol, 2.0 eq), LiI (0.3 mmol, 1.5 eq) and Cs_2CO_3 (0.4 mmol, 2.0 eq) were added into 2 mL of dry toluene under nitrogen atmosphere. The reaction mixture was stirred at 25 °C for 3 hours and then heated to 100 °C in an oil bath and stirred at this temperature for 48 hours in the dark. The solvent was removed and the crude products were purified by silica flash column chromatography as described below.


5.1. Product purification and characterization

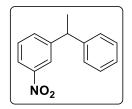

Methyl 4-cyclohexylbenzoate (21). Compound 21 was obtained after preparative TLC purification using hexanes/ethyl acetate (49:1) as mobile phase as a colorless oil in 71% yield (31 0.142 mmol) from fluorocyclohexane (17 mg, 0.2 mmol) and mg, (4-(methoxycarbonyl)phenyl)boronic acid (72 mg, 0.4 mmol) by following the general procedure described above. $R_f = 0.7$ (hexanes/EtOAc, 19:1); ¹H NMR (400 MHz, chloroform-d) $\delta = 7.98 - 1000$ 7.92 (m, 2H), 7.30 – 7.23 (m, 2H), 3.89 (s, 3H), 2.56 (m, 1H), 1.93 – 1.80 (m, 4H), 1.76 (m, 1H), 1.52 - 1.33 (m, 4H), 1.27 (m, 1H); ¹³C NMR (100 MHz, chloroform-d) $\delta = 167.3$, 153.6, 129.8, 127.9, 127.0, 52.1, 44.9, 34.3, 26.9, 26.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₄H₁₉O₂ 219.1380, found 219.1379.


Cyclohexylbenzene (22). Compound **22** was obtained after preparative TLC purification using hexanes as mobile phase as a colorless oil in 63% yield (20 mg, 0.126 mmol) from fluorocyclohexane (17 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above. $R_f = 0.8$ (hexanes); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.31 - 7.25$ (m, 2H), 7.23 - 7.13 (m, 3H), 2.49 (m, 1H), 1.92 - 1.82 (m, 4H), 1.74 (m, 1H), 1.51 - 1.34 (m, 4H), 1.25 (m, 1H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 148.2$, 128.4, 127.0, 125.9, 44.8, 34.6, 27.1, 26.3. The spectroscopic data of cyclohexylbenzene (**22**) are in accordance with the literature.³

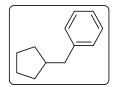
1-Benzyl-4-phenylpiperidine (23). Compound **23** was obtained after column purification using hexanes/ethyl acetate (9:1) as mobile phase as a colorless solid in 69% yield (35 mg, 0.138 mmol) from 1-benzyl-4-fluoropiperidine (38 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above. R_f = 0.3 (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) δ = 7.38 – 7.26 (m, 6H), 7.26 – 7.11 (m, 4H), 3.55 (s, 2H), 3.03 – 2.98 (m, 2H), 2.49 (m, 1H), 2.15 – 2.01 (m, 2H), 1.86 – 1.74 (m, 4H); ¹³C NMR (100 MHz, chloroform-*d*) δ = 146.7, 138.6, 129.4, 128.5, 128.3, 127.1, 127.0, 126.2, 63.7, 54.4, 42.9, 33.7; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₂N 252.1747, found 252.1751.



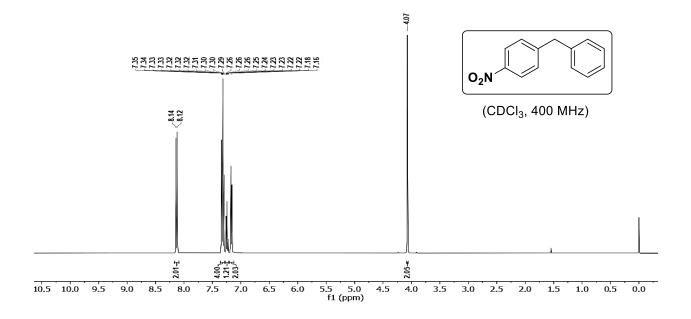
1-Benzyl-4-(4-fluorophenyl)piperidine (24). Compound **24** was obtained after column purification using hexanes/ethyl acetate (9:1) as mobile phase as a colorless solid in 65% yield (35 mg, 0.13 mmol) from 1-benzyl-4-fluoropiperidine (38 mg, 0.2 mmol) and (4-fluorophenyl)boronic acid (56 mg, 0.4 mmol) by following the general procedure described above. $R_f = 0.3$ (hexanes/EtOAc, 4:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.37 - 7.29$ (m, 4H), 7.25 (m, 1H), 7.20 - 7.13 (m, 2H), 6.99 - 6.93 (m, 2H), 3.54 (s, 2H), 3.05 - 2.94 (m, 2H), 2.47 (tt, J = 10.5, 5.5 Hz, 1H), 2.07 (td, J = 11.1, 3.9 Hz, 2H), 1.83 - 1.67 (m, 4H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 161.4$ (d, $J_{C-F} = 243.5$ Hz), 142.3 (d, $J_{C-F} = 3.1$ Hz), 138.5, 129.4, 128.3, 128.2, 127.1, 115.2 (d, $J_{C-F} = 21.0$ Hz), 63.6, 54.3, 42.1, 33.8; ¹⁹F NMR (376 MHz, chloroform-*d*) $\delta = -117.5$ (m, 1F); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₈H₂₁FN 270.1653, found 270.1653.

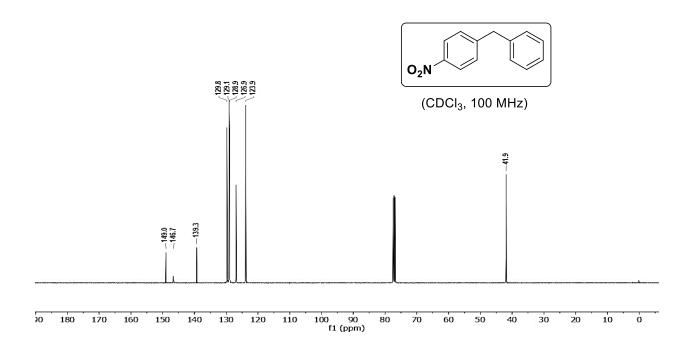


Methyl 4-octylbenzoate (25). Compound **25** was obtained after column purification using hexanes/ethyl acetate (49:1) as mobile phase as a colorless oil in 72% yield (36 mg, 0.144 mmol) from 1-fluorooctane (26 mg, 0.2 mmol) and (4-(methoxycarbonyl)phenyl)boronic acid (72 mg, 0.4

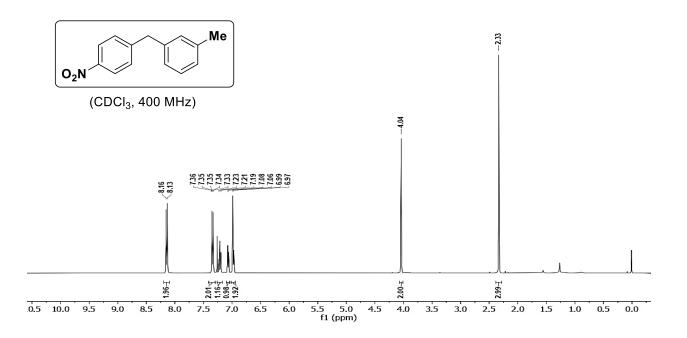

mmol) by following the general procedure described above. $R_f = 0.8$ (hexanes/EtOAc, 19:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.94$ (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 3.90 (s, 3H), 2.65 (t, J = 7.2 Hz, 2H), 1.69 – 1.56 (m, 2H), 1.38 – 1.20 (m, 10H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 167.3$, 148.6, 129.7, 128.5, 127.8, 52.0, 36.1, 32.0, 31.2, 29.5, 29.4, 29.3, 22.8, 14.2; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₆H₂₅O₂ 249.1849, found 249.1852.

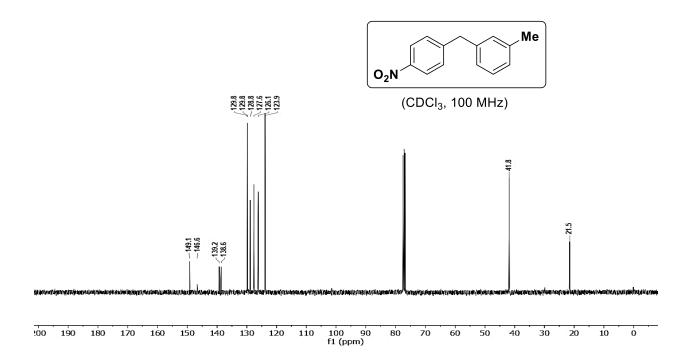
Octylbenzene (26). Compound **26** was obtained after preparative TLC purification using hexanes as mobile phase as a colorless oil in 74% yield (28 mg, 0.148 mmol) from 1-fluorooctane (26 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above. $R_f = 0.8$ (hexanes); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 7.30 - 7.23$ (m, 2H), 7.18 - 7.14 (m, 3H), 2.59 (t, J = 7.2 Hz, 2H), 1.60 (p, J = 7.2 Hz, 2H), 1.39 - 1.18 (m, 10H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 143.1$, 128.5, 128.4, 125.7, 36.2, 32.0, 31.7, 29.6, 29.5, 29.4, 22.8, 14.3. The spectroscopic data of octylbenzene (**26**) are in accordance with the literature.³

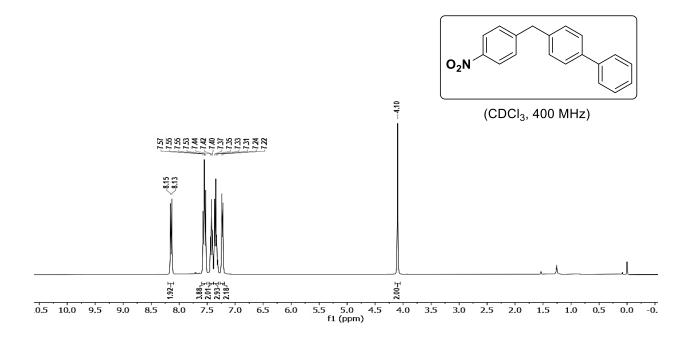

1-Nitro-3-(1-phenylethyl)benzene (27). Compound 27 was obtained after column purification using hexanes/ethyl acetate (9:1) as mobile phase as a colorless solid in 24% yield (11 mg, 0.048 mmol) from 1-(1-fluoroethyl)-3-nitrobenzene (34 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 9:1); ¹H NMR (400 MHz, chloroform-*d*) $\delta = 8.10$ (dd, J = 1.8, 1.6 Hz, 1H), 8.04 (dd, J = 7.8, 1.6 Hz, 1H), 7.53 (ddd, J = 7.8, 1.6, 0.8 Hz, 1H), 7.42 (dd, J = 7.8, 7.8 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.25 – 7.16 (m, 3H), 4.25 (q, J = 7.2 Hz, 1H), 1.68 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, chloroform-*d*) $\delta = 148.6$, 148.6, 144.9, 134.1, 129.4, 128.9, 127.7, 126.8, 122.5, 121.4, 44.7, 21.7. The spectroscopic data of 1-nitro-3-(1-phenylethyl)benzene (27) are in accordance with the literature.⁴

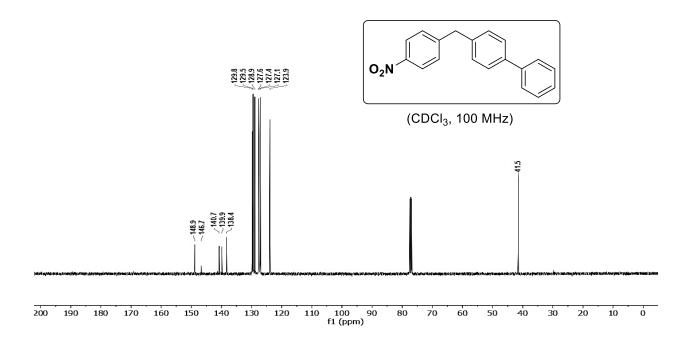

(Cyclopentylmethyl)benzene (29). Compound 29 was obtained after column purification using hexanes as mobile phase as a colorless oil in 68% yield (22 mg, 0.136 mmol) from 6-fluorohex-1ene (20 mg, 0.2 mmol) and phenylboronic acid (49 mg, 0.4 mmol) by following the general procedure described above. R_f = 0.9 (hexanes); ¹H NMR (400 MHz, chloroform-*d*) δ = 7.32 – 7.21 (m, 2H), 7.19 – 7.11 (m, 3H), 2.59 (d, *J* = 7.4 Hz, 2H), 2.07 (m, 1H), 1.75 – 1.46 (m, 6H), 1.19 (m, 1H), 0.87 (m, 1H); ¹³C NMR (100 MHz, chloroform-*d*) δ = 142.5, 128.9, 128.3, 125.7, 42.3, 42.2, 32.6, 25.1. The spectroscopic data of (cyclopentylmethyl)benzene (29) are in accordance with the literature.³

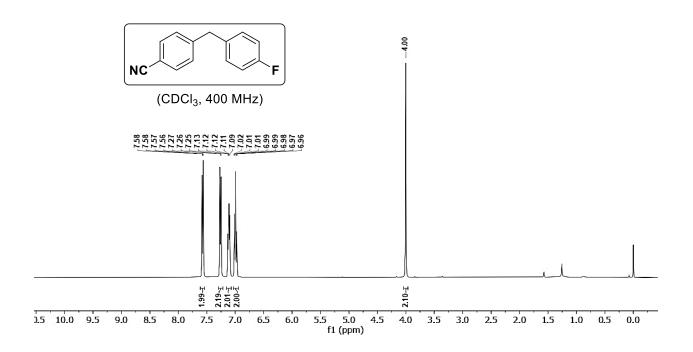
6. ¹H, ¹³C and ¹⁹F NMR spectra

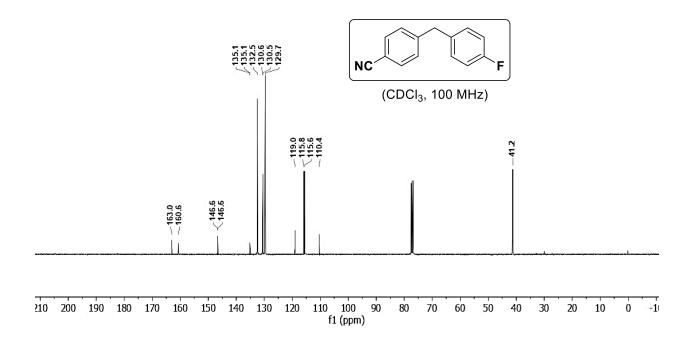

¹H NMR spectrum of 1-benzyl-4-nitrobenzene (3).

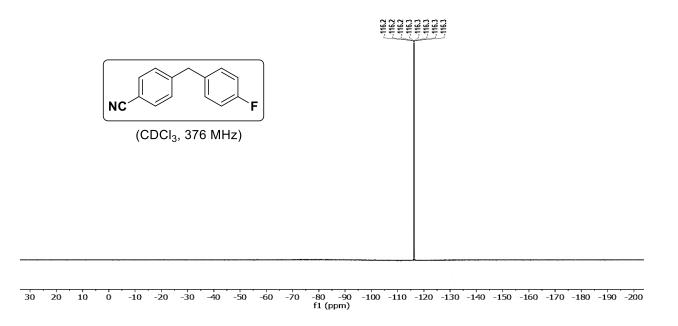

¹³C NMR spectrum of 1-benzyl-4-nitrobenzene (3).

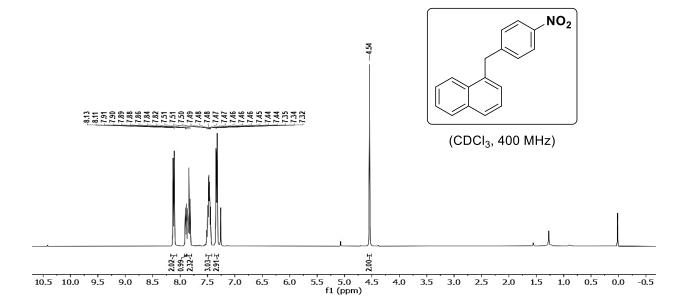

¹H NMR spectrum of 1-methyl-3-(4-nitrobenzyl)benzene (5).

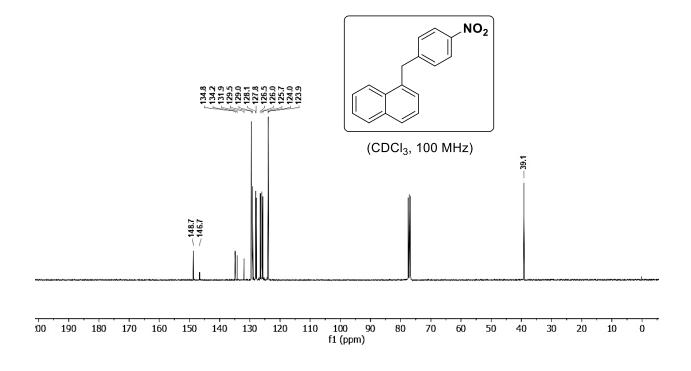

¹³C NMR spectrum of 1-methyl-3-(4-nitrobenzyl)benzene (5).

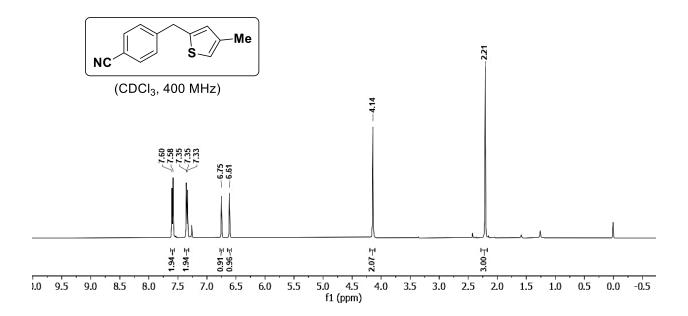

¹H NMR spectrum of 4-(4-nitrobenzyl)-1,1'-biphenyl (6).

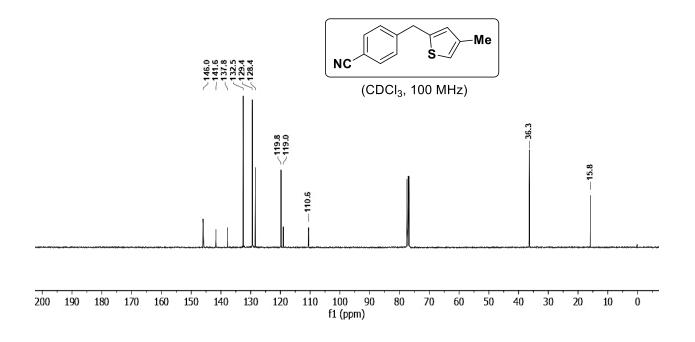

¹³C NMR spectrum of 4-(4-nitrobenzyl)-1,1'-biphenyl (6).

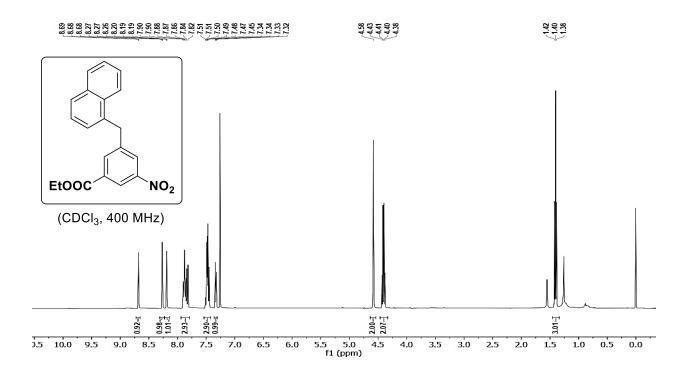

¹H NMR spectrum of 4-(4-fluorobenzyl)benzonitrile (7).

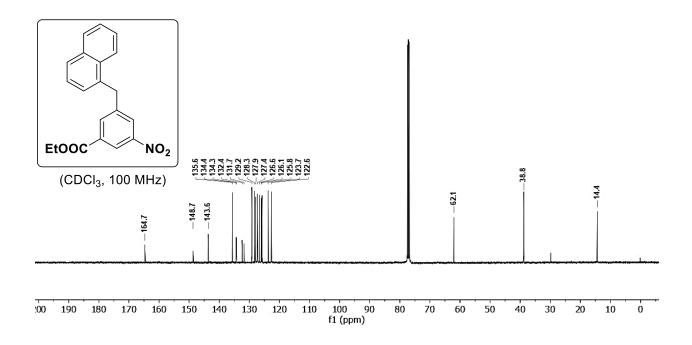

¹³C NMR spectrum of 4-(4-fluorobenzyl)benzonitrile (7).

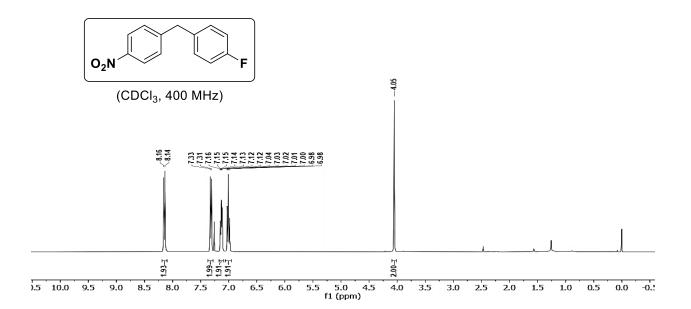

¹⁹F NMR spectrum of 4-(4-fluorobenzyl)benzonitrile (7).

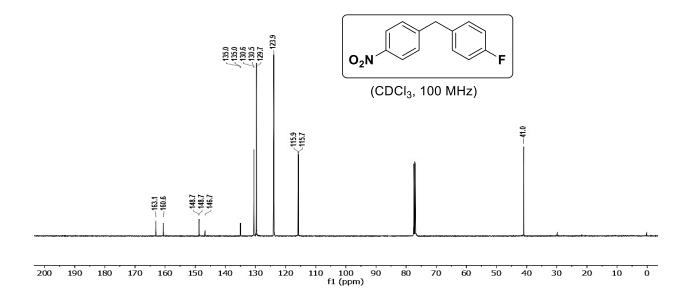

¹H NMR spectrum of 1-(4-nitrobenzyl)naphthalene (8).

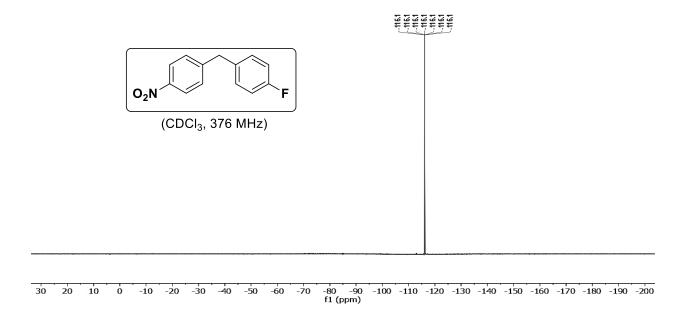

¹³C NMR spectrum of 1-(4-nitrobenzyl)naphthalene (8).

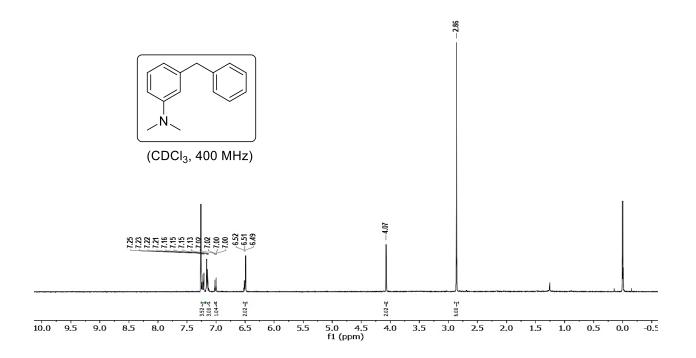

¹H NMR spectrum of 4-((4-methylthiophen-2-yl)methyl)benzonitrile (9).

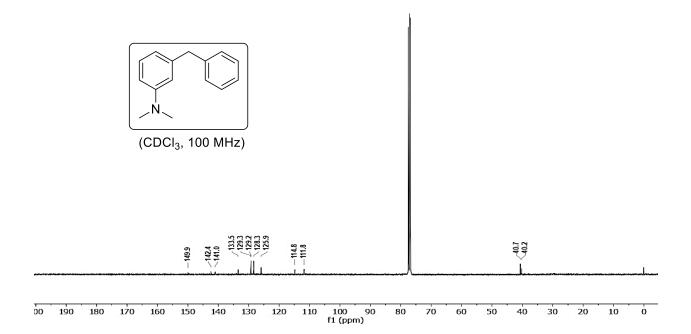

¹³C NMR spectrum of 4-((4-methylthiophen-2-yl)methyl)benzonitrile (9).

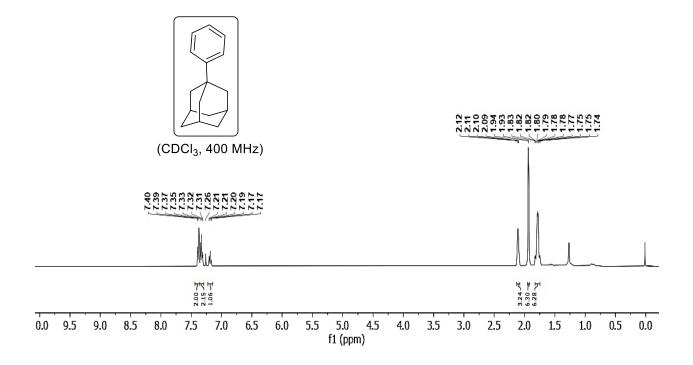

¹H NMR spectrum of ethyl 3-(naphthalen-1-ylmethyl)-5-nitrobenzoate (10).

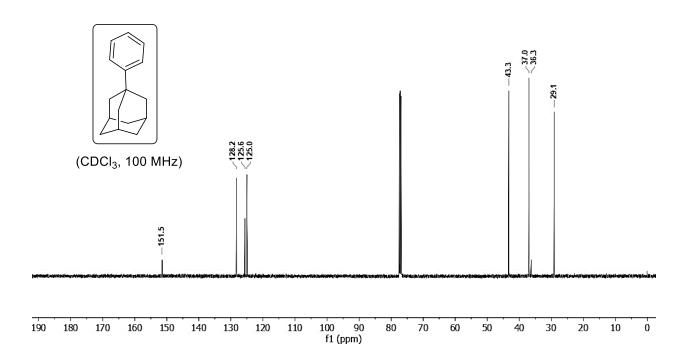

¹³C NMR spectrum of ethyl 3-(naphthalen-1-ylmethyl)-5-nitrobenzoate (10).

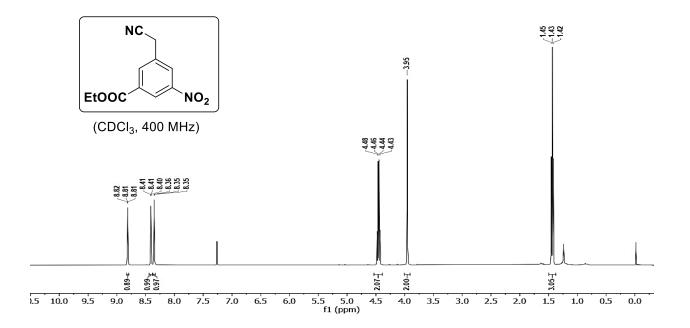

¹H NMR spectrum of 1-fluoro-4-(4-nitrobenzyl)benzene (11).

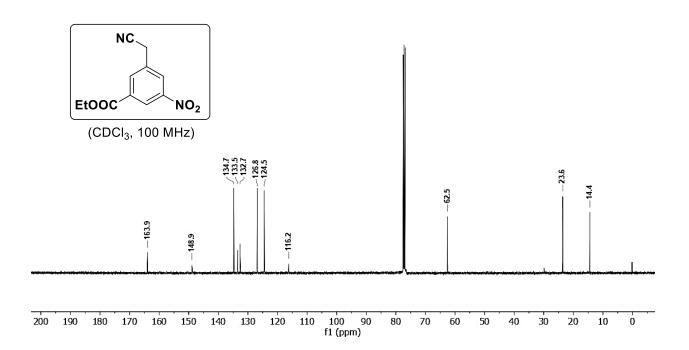

¹³C NMR spectrum of 1-fluoro-4-(4-nitrobenzyl)benzene (11).

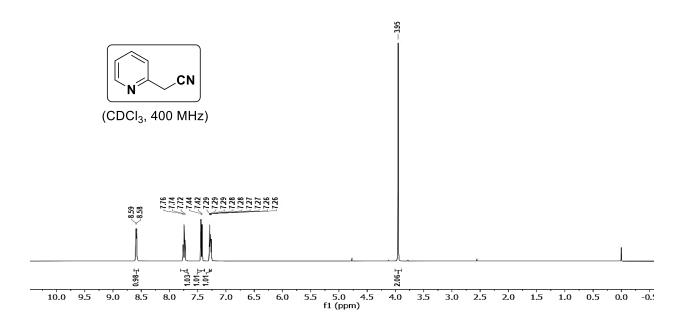

¹⁹F NMR spectrum of 1-fluoro-4-(4-nitrobenzyl)benzene (11).

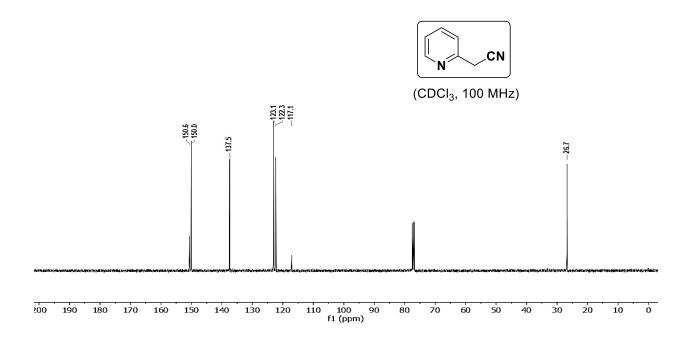

¹H NMR spectrum of 3-benzyl-*N*,*N*-dimethylaniline (12).

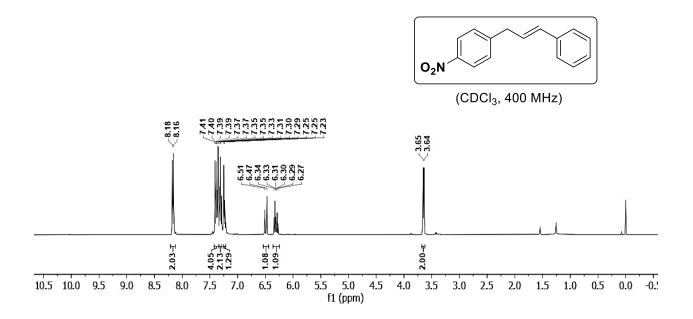

¹³C NMR spectrum of 3-benzyl-*N*,*N*-dimethylaniline (12).

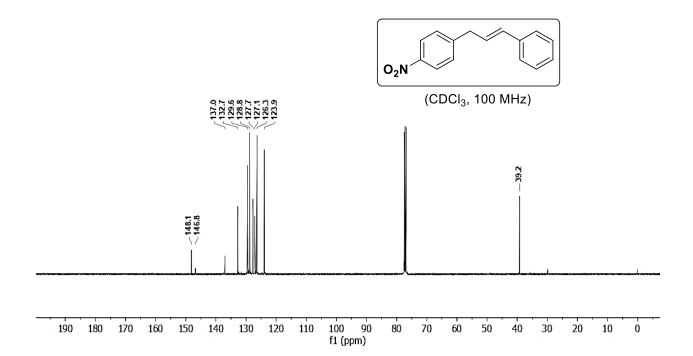

¹H NMR spectrum of 1-phenyladamantane (13).

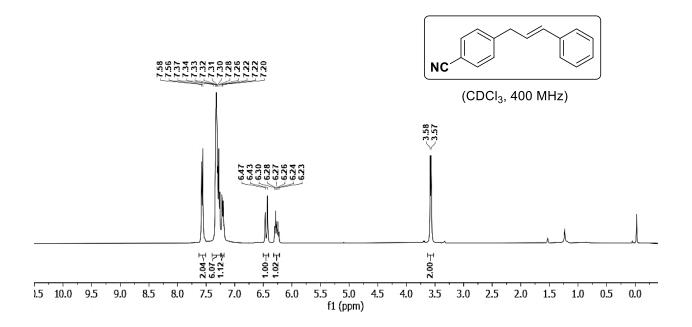

¹³C NMR spectrum of 1-phenyladamantane (13).

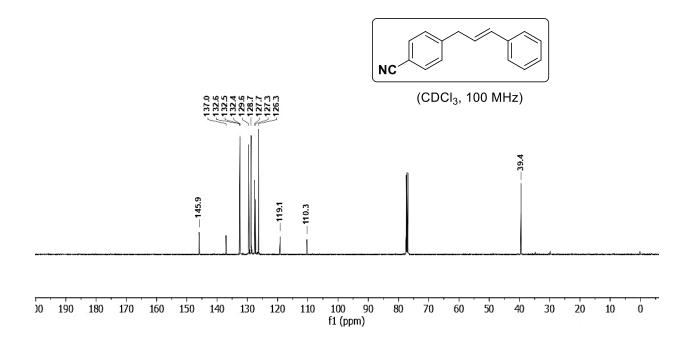

¹H NMR spectrum of ethyl 3-(cyanomethyl)-5-nitrobenzoate (14).

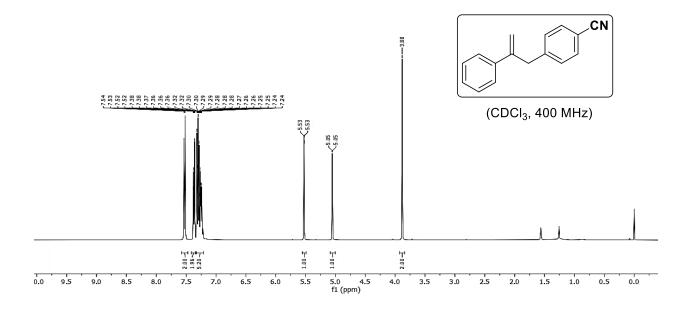

¹³C NMR spectrum of ethyl 3-(cyanomethyl)-5-nitrobenzoate (14).

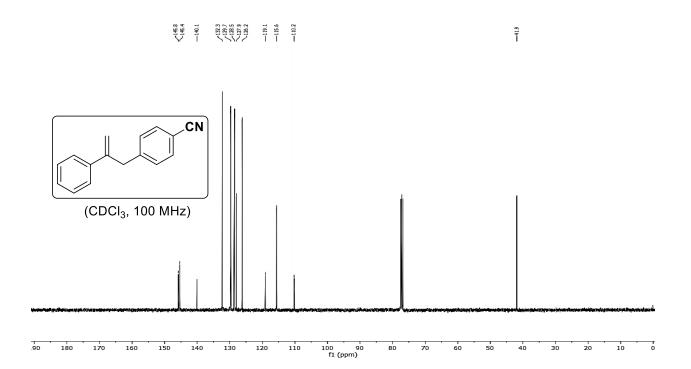

¹H NMR spectrum of 2-(pyridin-2-yl)acetonitrile (15).

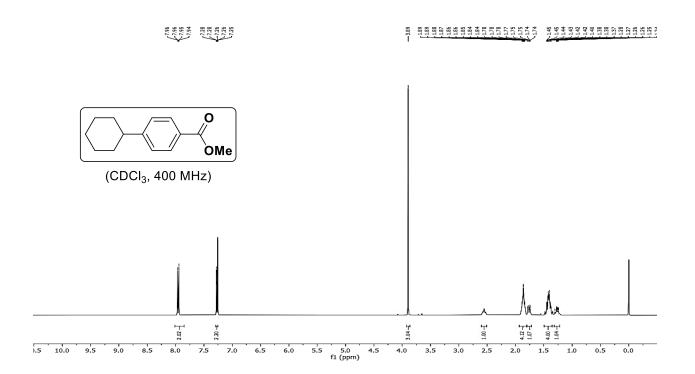

¹³C NMR spectrum of 2-(pyridin-2-yl)acetonitrile (15).

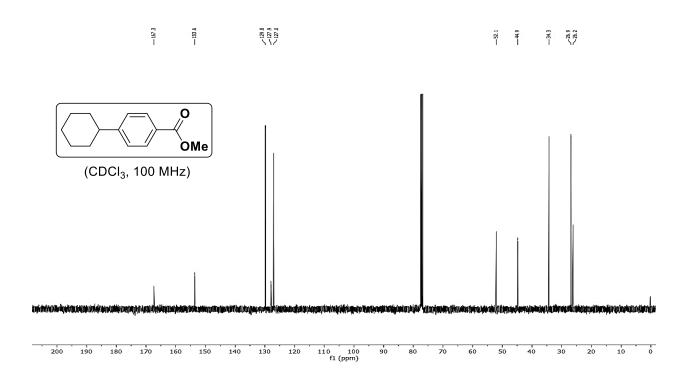

¹H NMR spectrum of (*E*)-3-(4-nitrophenyl)-1-phenylpropene (16).


¹³C NMR spectrum of (*E*)-3-(4-nitrophenyl)-1-phenylpropene (16).

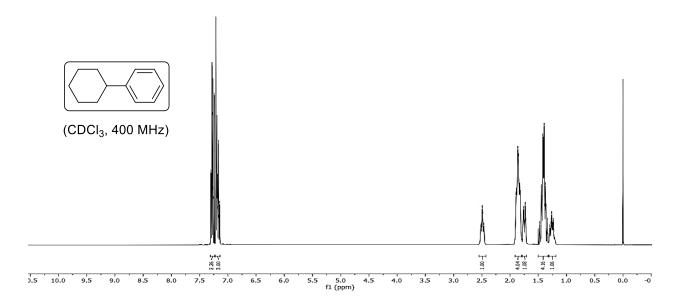

¹H NMR spectrum of (*E*)-3-(4-cyanophenyl)-1-phenylpropene (17).


¹³C NMR spectrum of (*E*)-3-(4-cyanophenyl)-1-phenylpropene (17).

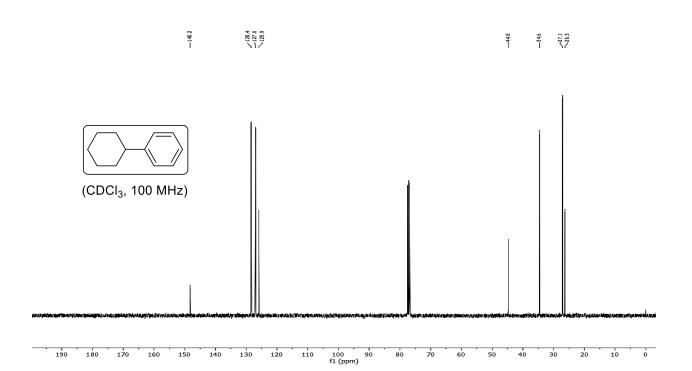

¹H NMR spectrum of 4-(2-phenylallyl)benzonitrile (18).


¹³C NMR spectrum of 4-(2-phenylallyl)benzonitrile (18).

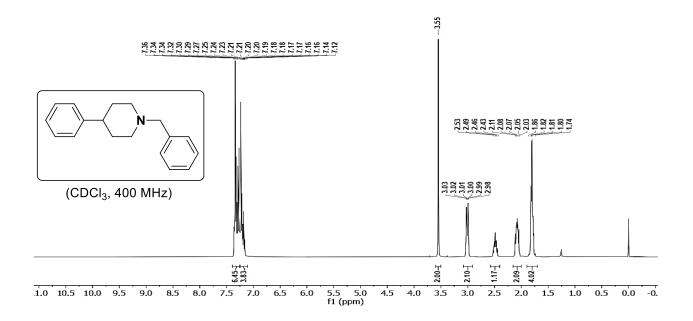
¹H NMR spectrum of methyl 4-cyclohexylbenzoate (21).



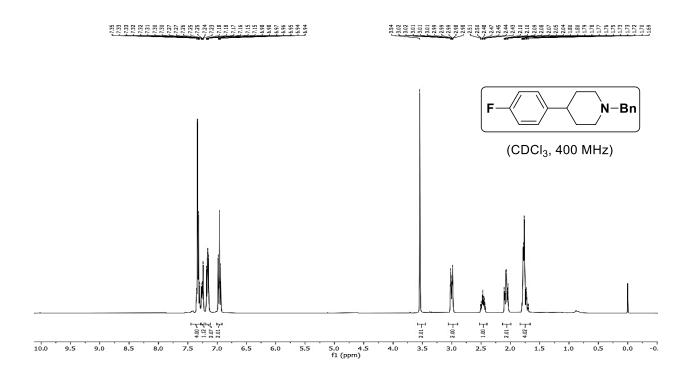
¹³C NMR spectrum of methyl 4-cyclohexylbenzoate (21).



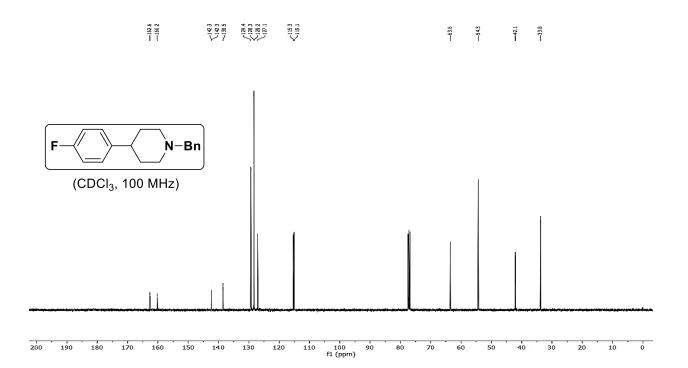
¹H NMR spectrum of cyclohexylbenzene (22).

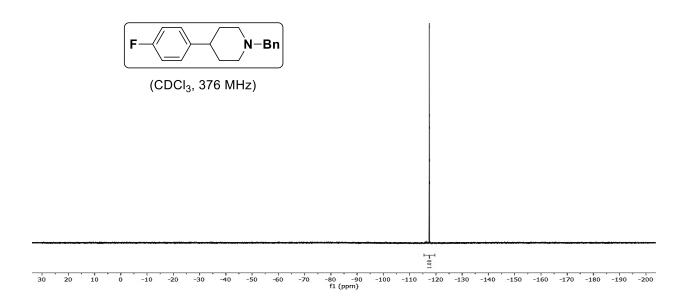



¹³C NMR spectrum of cyclohexylbenzene (22).

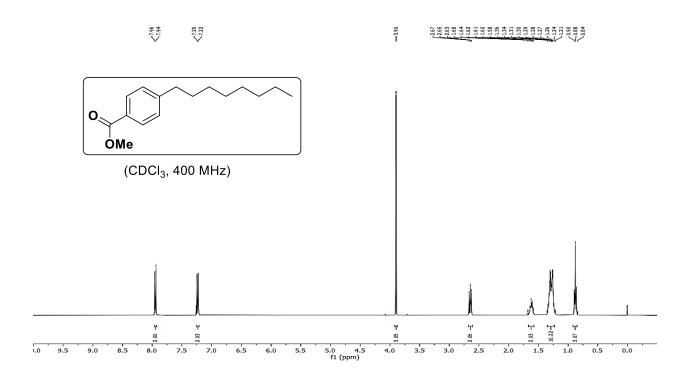


¹H NMR spectrum of 1-benzyl-4-phenylpiperidine (23).

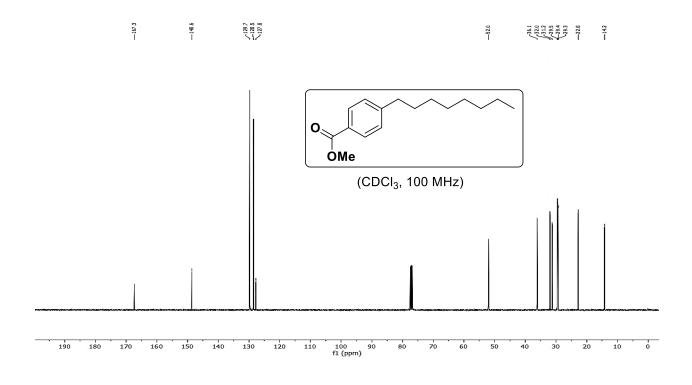

¹³C NMR spectrum of 1-benzyl-4-phenylpiperidine (23).

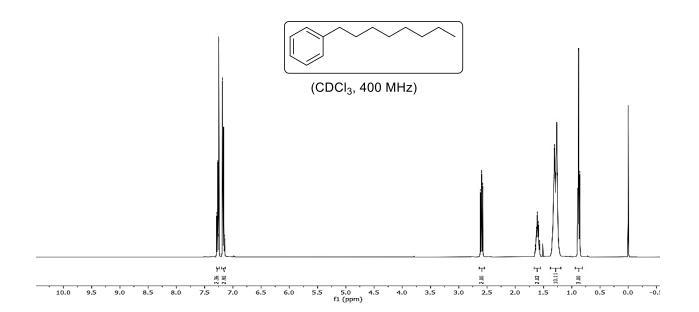

¹H NMR spectrum of 1-benzyl-4-(4-fluorophenyl)piperidine (24).

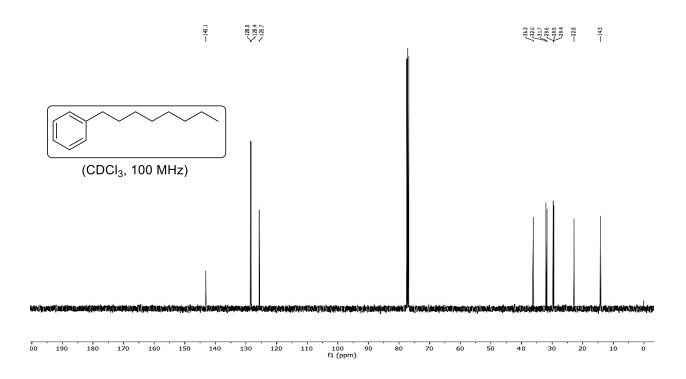
¹³C NMR spectrum of 1-benzyl-4-(4-fluorophenyl)piperidine (24).

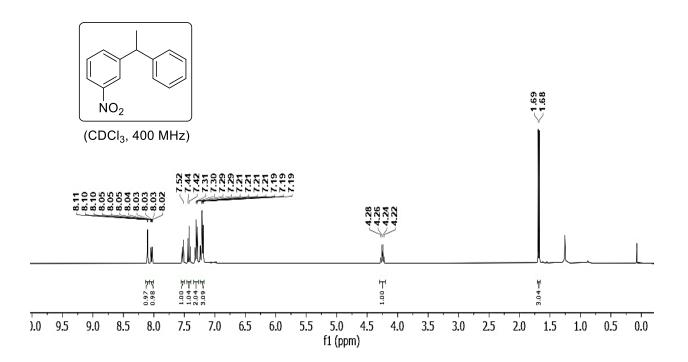


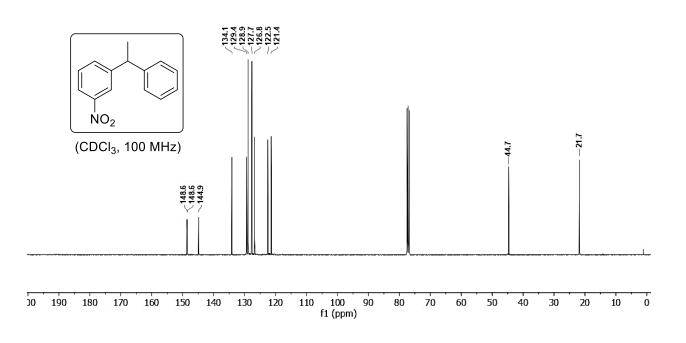
¹⁹F NMR spectrum of 1-benzyl-4-(4-fluorophenyl)piperidine (24).



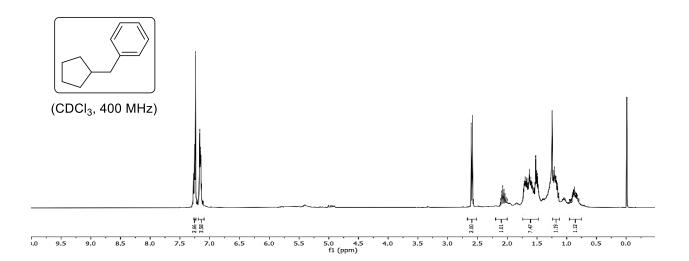

¹H NMR spectrum of methyl 4-octylbenzoate (25).


¹³C NMR spectrum of methyl 4-octylbenzoate (25).

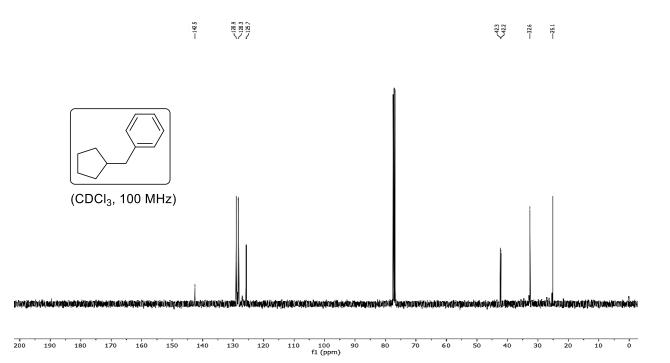

¹H NMR spectrum of octylbenzene (26).


¹³C NMR spectrum of octylbenzene (26).

¹H NMR spectrum of 1-nitro-3-(1-phenylethyl)benzene (27).



¹³C NMR spectrum of 1-nitro-3-(1-phenylethyl)benzene (27).



¹H NMR spectrum of (cyclopentylmethyl)benzene (29).

¹³C NMR spectrum of (cyclopentylmethyl)benzene (29).

7. Crystallographic analysis⁵

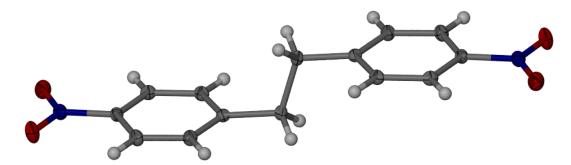


Figure S1. X-ray structure (ellipsoids are drawn at the 50% probability level) of 1,2-bis(4-nitrophenyl)ethane (4)

A single crystal was obtained by slow evaporation of a solution containing the homo-coupling product in a mixture of hexanes and ethyl acetate (4:1). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated with the Bruker SAINT program. Structure solution and refinement were performed using the SHELXT/PC suite and ShelXle. Intensities were corrected for Lorentz and polarization effects and an empirical absorption correction was applied using Blessing's method as incorporated into the program SADABS. Non-hydrogen atoms were refined with anisotropic thermal parameters and hydrogen atoms were included in idealized positions. Crystal data: C₁₄H₁₂N₂O₄, *M* = 272.26, pale yellow needle, 0.214 x 0.115 x 0.068 mm³, monoclinic, space group *P2*₁/*c*, a = 4.4892(6), b = 13.2061(19), c = 10.6589(15) Å, $\alpha = 90$, $\beta = 98.845(2)$, $\gamma = 90$, V = 624.40(15) Å³, Z = 2.

8. References

- 1. W-C. Dai, B. Yang, S-H. Xu, Z-X. Wang. J. Org. Chem. 2021, 86, 2235-2243.
- 2. Buden, M. E.; Bardagi, J. I.; Puiatti, M.; Rossi, R. A. J. Org. Chem. 2017, 82, 8325-8333.
- R.B. Bedford, P.B. Brenner, E. Carter, T.W. Carvell, P.M. Cogswell, T. Gallagher, J.N. Harvey, D.M. Murphy, E.C. Neeve, J. Nunn, D.R. Pye. *Chem. Eur. J.* 2014, 20, 7935-7938.
- 4. V. Saini, L. Liao, Q. Wang, R. Jana, M.S. Sigman. Org. Lett. 2013, 15, 5008-5011.
- CCDC 1992313 (compound 4) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.