Supplementary Materials for

Title: Intercepting IRE1 Kinase-FMRP Signaling Prevents Atherosclerosis Progression

Authors: Zehra Yildirim^{1,2}, Sabyasachi Baboo³, Syed M. Hamid¹, Asli E. Dogan^{1,2}, Ozlem Tufanli⁴, Sabrina Robichaud⁵, Christina Emerton⁵, Jolene K. Diedrich³, Hasan Vatandaslar⁶, Fotis Nikolos⁷, Yanghong Gu⁸, Takao Iwawaki⁹, Elizabeth Tarling¹⁰, Mireille Ouimet⁵, David L. Nelson⁸, John R. Yates III³, Peter Walter¹⁰, Ebru Erbay^{1,11}*

This PDF file includes:

Figures and Figure Legends for Appendix Fig.S1-S6

Appendix Figure S1

тG

+

10	20	30	40	50	60	70	80	90	100
MEELVVEVR <mark>G</mark>	<mark>SNGAFYK</mark> AFV	KDVHEDSITV	AFENNWQPDR	QIPFHDVR <mark>FP</mark>	PPVGYNKDIN	ESDEVEVYSR.	ANEKE PCCWW	<mark>lak</mark> vrmikge	FYVIEYAACD
110	120	130	140	150	160	170	180	190	200
ATYNEIVTIE	rlr <mark>svnpnkp</mark>	ATKDTFHKIK	LDVPEDLRQM	<mark>CAK</mark> EAAHKDF	K <mark>KAVGAFSVT</mark>	<mark>YDPE</mark> NYQLVI	LSINEVTSK <mark>R</mark>	AHMLIDMHFR	SLR <mark>TKLSLIM</mark>
210	220	230	240	250	260	270	280	290	300
RNEEASKQLE	<mark>SSR</mark> QLASR <mark>FH</mark>	EQFIVREDLM	GLAIGTHGAN	IQQARKVPGV	TAIDLDEDTC	TFHIYGEDQD	AVKKARSFLE	FAEDVIQVPR	<mark>NLVGKVIGK</mark> N
310	320	330	340	350	360	370	380	390	400
GK <mark>LIQEIVDK</mark>	SGVVR VRIE A	ENEKNVPQEE	EIMPPNSLPS	NNSRVGPNAP	EEKKHLDIKE	P NSTHFSQPNS 362	TKVQRVLVAS	SVVAGE SQKP	ELKAWQGMVP
410	420	430	440	450	460	470	480	490	500
FVFVGTK DSI	ANATVLLDYH	LNYLKEVDQL	rler <mark>lqideq</mark>	LRQIGASSRP	PPNRTDKEKS	YVTDDGQGM <mark>G</mark>	<mark>R</mark> GSRPYRNRG	HGR <mark>RGPGYTS</mark>	ppp GTNSEASNAS 500
510	520	530	540	550	560	570	580	590	600
PP ETESDHRDEL	SDWSLAPTEE	ERESFL <mark>R</mark> RGD	GRRRGGGGRG	QGGRGRGGGF	KGNDDHSRTD	NRPRNPREAK	GRTTDGSLQI	RVDCNNERSV	PP HTKTLQNTSS 592
610	620	630	640	650	660				
<mark>EGSR</mark> LRTGKD	rnqk <mark>kekpds</mark>	VDGQQPLVNG	VP <u>TRTRPLEO</u>	KLISEEDLAA C-Myc/DDI	NDILDYKDDD K-Tag	DKV			

κ

AA	Sequence	z	XCorr	DeltaCN	[M+H]+	A-Score
<mark>p\$</mark> 362	HLDIKEN <i>pS</i> THFSQPNSTK	3	2.8194	0.3306	2162.9890	14.23
	KHLDIKEN pSTHFSQPNSTK	3	3.2526	0.3569	2291.0808	33.7
	KHLDIKEN <i>pS</i> THFSQPNSTK	4	3.4197	0.2304	2291.0813	34.46
<mark>pS</mark> 494	RGPGYTSGTN <i>pS</i> EASNA	2	3.0995	0.4448	1648.6614	13.27
<mark>pS</mark> 497	$RGPGYTSGTNSEA {\it pS} NASETESDHRDELSDWSLAPTEEERE$	4	3.457	0.3924	4476.8633	7.81
pS 500	pSETESDHRDELSDW	2	3.1722	0.3710	1785.6604	22.85
	NApSETESDHRDELSDW	2	3.1225	0.3763	1970.7406	30.93
>	NApSETESDHRDELSDW	2	4.0257	0.4280	1970.7393	39.56
	NApSETESDHRDELSDW	2	3.3907	0.3348	1970.7386	33.68
<u>р</u> 7502	RGPGYTSGTNSEASNASE pTESDHRDELSDWSLAPTEEERE	4	6.2067	0.5107	4476.8564	4.6
<mark>p\$</mark> 504	SETEpSDHRDELSDW	2	3.431	0.3944	1785.6588	15.5
<u>р</u> 7592	SVH <i>pT</i> KTLQNTSSEGSR	3	3.996	0.2936	1811.8281	6.17
	SVHpTKTLQNTSSEGSR	3	4.4606	0.3795	1811.8282	7.53
	SVH <i>pT</i> KTLQNTSSEGSR	3	3.5417	0.3859	1811.8276	11.79
рТ 594	SVHTK <i>pT</i> LQNTSSEGSR	3	3.1378	0.3386	1811.8282	10.36

J

Appendix Figure S1. Supplemental figure related to Figure 1.

- **A** Western blot quantifications for pFMRP/FMRP ratio in Fig 1C.
- **B** qRT-PCR analysis of Fmr1 mRNA from the samples in Fig 1C (n=4 biological replicates).
- **C** Western blot quantifications for pFMRP/FMRP ratio in Fig 1D.
- **D** qRT-PCR analysis for Fmr1 mRNA from the samples in Fig 1D (n=3 biological replicates).
- **E** Western blot quantifications for pFMRP/FMRP ratio in Fig 1E.
- **F** Western blot quantifications for pFMRP/FMRP ratio in Fig 1F.
- **G** qRT-PCR analysis for Fmr1 mRNA from the samples in Fig 1F (n=6 biological replicates).
- **H** Western blot quantifications for pFMRP/FMRP ratio in Fig 1G.
- I Western blot quantifications for pFMRP/FMRP ratio in Fig 1H.
- J pFMRP sequence covered (83%) with two different digestion strategies Proteinase K (red text) and Trypsin-GluC (highlighted yellow) using LC-MS/MS in samples from Fig 1H.
- K LC-MS/MS identified phosphorylated peptides from the samples in Fig 1H; with sites of phosphorylation (AA), charge state (z), identification parameters (XCorr and DeltaCN – greater values indicate higher confidence by peptide-spectrum match/PSM), measured precursor mass ([M+H]+), and a confidence score for localization of phosphorylation on an amino acid (A-Score, value > 19 and > 13, represent > 99% and > 95% confidence, respectively); the peptide marked with (>) was evaluated further.

Data information: Data are mean ± SEM. Unpaired *t*-test with Welch's correction.

Appendix Figure S2

Appendix Figure S2. Supplemental figure related to Figure 2.

- A Protein lysates from macrophages used in Fig 2C were analyzed by western blotting using specific antibodies for FMRP and β-Actin.
- **B** Fmr1^{-/-} or AMG-18 pre-treated cells (10 μ M, 1 hour) were treated with fluorescently labeled cholesterol for 4 hours (n=6 biological replicates).

Data information: Data are mean \pm SEM. Unpaired *t*-test with Welch's correction.

Appendix Figure S3. Supplemental figure related to Figure 4.

- A mRNA distribution of fractions from Fmr1^{+/+} and Fmr1^{-/-} RNA samples after sucrose gradient.
- **B** qRT-PCR analysis of Abca1, Abcg1, Mertk, Lrp1, Cd36 and Rac1 in total mRNA levels from same samples used in polysome fractions (n=3 biological replicates).
- **C** Western blot quantifications for ABCA1, ABCG1, MerTK and LRP1 in Fig 4C. The fold change of protein expression level was calculated relative to β-Actin.
- D Western blot quantifications for ABCA1, MerTK and LRP1 in Fig 4D. The fold change of protein expression level was calculated relative to β-Actin.

Data information: Data are mean \pm SEM. Unpaired t-test with Welch's correction.

myFmr1*/* myFmr1-/-

myFmr1+/+ myFmr1-/-

Fmr1+/+

Fmr1-/-

Appendix Figure S4_cont.

myFmr1+/+ myFmr1-/-

Appendix Figure S4. Supplemental figure related to Fig 5.

- A The ratio of mouse weight at the beginning of the experiment over the weight at the end of the experiment in Fig 5A (n=12-13 mice per group).
- B-D Plasma measurements for (B) glucose (n=12-13 mice per group), (C) cholesterol (n=12-13 mice per group) and (D) lipoproteins (n=4 mice per group) from mice in Fig 5A.
- **E** Gating strategy for the flow cytometry analysis of mouse peripheral blood.
- **F** Abundance of B cells, T cells and monocytes in the peripheral blood as % of total $CD45^+$ cells from the Fmr1^{+/+} and Fmr1^{-/-} mice in Fig.5A (n=12-13 mice per group).
- G Macrophage area was calculated from MOMA-2 (red)-stained aortic root sections as % of MOMA2⁺ stained area to total plaque area (n=8 mice per group; Scale bar = 100 μ m).
- **H** Apoptosis was calculated from the number of TUNEL⁺ cells (green) in the MOMA-2stained (red) plaque area (n=8 mice per group; Scale bar = $100 \mu m$).
- I Fmr1^{+/+} and Fmr1^{-/-} BMDMs or AMG-18 pre-treated cells (10 μM, 1 hour) were treated with PA (500 μM) treatment for 12 hours and then stained with Propidium iodide (PI) (n=5 biological replicates).
- J % Smooth muscle actin (α -SMA) was calculated from aortic root sections stained with α -SMA (green) as % α -SMA⁺ area to the total plaque area (n=8 mice per group, Scale bar 100 μ m).
- **K** % collagen area was calculated from Masson's Trichrome staining as the percentage of collagen (blue) area in total plaque area (n=8 mice per group; Scale bar = 100μ m).
- L The ratio of mouse weight at the beginning of the experiment over the weight at the end of the experiment in Fig. 5F (n=9 mice per group).
- M-N Plasma measurements for (M) glucose (n=9 mice per group) and (N) cholesterol (n=9 mice per group) from mice in Fig 5F.
- **Data information:** Data are mean ± SEM; Mann Whitney U test.

Appendix Figure S5. Supplemental figure related to Fig 6.

- A The ratio of mouse weight at the beginning of the experiment over the weight at the end of the experiment in Fig. 6A (n=5 mice per group).
- B-D Plasma measurements for (B) glucose (n=5 mice per group) and (C) cholesterol (n=5 mice per group) from mice in Fig. 6A. (D) Abundance of B cells, T cells and monocytes in the peripheral blood as % of total CD45⁺ cells from the vehicle (DMSO) or AMG-18 (30 mg/kg) once a day injected mice in Fig. 6A (n=5 mice per group).
- **C** Protein lysates of liver from mice in Fig. 6A. Proteins were analyzed by western blotting using specific antibodies for pIRE1 and β-Actin (n=5 mice per group).
- **F** The ratio of mouse weight at the beginning of the experiment over the weight at the end of the experiment in Fig. 6F (n=6 mice per group).
- **G-H** Plasma measurements for (G) glucose (n=6 mice per group) and (H) cholesterol (n=6 mice per group) from Fig 6F.
- I-J Protein lysates of (I) thioglycolate-elicited PM and (J) liver from mice in Fig 6F. Proteins were analyzed by western blotting using specific antibodies for pIRE1 and β-Actin (n=6 mice per group).

Data information: Data are mean ± SEM; Mann Whitney U test.

Appendix Figure S6

Appendix Figure S6. IRE1 Kinase domain and FMRP regulates IL-1β secretion in macrophages.

- A BMDMs were transfected with Fmr1- or control-siRNA and 24 hours after transfection cells were primed with LPS (200 μM) for 3 hours followed by PA (500 μM) treatment for 16 hours (n=6 biological replicates).
- **B** Quantification of secreted m-IL-1 β to intracellular pro-IL-1 β ratio normalized to β -Actin in Appendix Figure S6A.
- C Quantification of secreted p10 (caspase 1) to β -Actin in Appendix Figure S6A.
- **D** Fmr1^{+/+} and Fmr1^{-/-} BMDMs were primed with LPS (200 μ M) for 3 hours followed by PA (500 μ M) treatment for 16 hours (n=6 biological replicates).
- E Quantification of secreted m-IL-1 β to intracellular pro-IL-1 β ratio normalized to β -Actin in Appendix Figure S6D.
- **F** Quantification of secreted p10 (caspase 1) to β -Actin in Appendix Figure S6D.
- **G** The ratio of the pro-IL-1 β mRNA in polysome to NTR fraction (n=3 biological replicates).
- **H** qRT-PCR analysis of pro-IL-1 β in total mRNA levels from same samples used in polysome fractions (n=3 biological replicates).
- I BMDM cells were pre-treated with AMG-18 (10 μ M) for 1 hour and the primed with LPS (200 μ M) for 3 hours followed by PA (500 μ M) treatment for 16 hours (n=6 biological replicates).
- J Quantification of secreted m-IL-1 β to intracellular pro-IL-1 β ratio normalized to β -Actin in Appendix Figure S6I.

K Quantification of secreted p10 (caspase 1) to β -Actin in Appendix Figure S6I.

Data information: A representative blot is shown. In A and I data are cumulative results of 2 independent experiments. In D data are cumulative results of 3 independent experiments. Supernatants were analyzed by western blotting using specific antibody for IL-1 β and caspase-1 and protein lysates were analyzed by western blotting using specific antibodies for FMRP, pIRE1, IRE1 and β -Actin and fold inductions are depicted above the blots. Data are mean \pm SEM. Unpaired *t*-test with Welch's correction.