
Assessing Exposures from the Deepwater Horizon Oil Spill Response and Clean-up 

 

Patricia Stewart1,13, Caroline P. Groth2, Tran B. Huynh3, Melanie Gorman Ng4, Gregory C. Pratt5 , 
Susan F. Arnold5, Gurumurthy Ramachandran6, Sudipto Banerjee7, John W. Cherrie8, Kate Christenbury9, 

Richard K. Kwok10,11, Aaron Blair12, Lawrence S. Engel10, 13 , Dale P. Sandler10, Mark R Stenzel14 

 

1Stewart Exposure Assessments, LLC, 6045 N. 27th. St., Arlington, VA USA 22207  

2Department of Epidemiology and Biostatistics, School of Public Health, West Virginia 
University, Morgantown WV 26506 USA 

3Department of Environmental and Occupational Health, Dornsife School of Public Health, 
Drexel University, Philadelphia, PA 19104 USA 

4School of Population and Public Health, Faculty of Medicine, 3rd Floor, 2206 East Mall, 
VANCOUVER BC V6T 1Z3 Canada 

5University of Minnesota, School of Public Health, Division of Environmental Health, 
Minneapolis, MN, USA  55455 

6Department of Environmental Health and Engineering, Bloomberg School of Public Health, 
Johns Hopkins University, Baltimore, MD 21205 USA 

7Department of Biostatistics, Suite: 51-254 CHS.  UCLA Fielding School of Public Health, 650 
Charles E. Young Drive South, Los Angeles, CA 90095-1772 USA 

8Insitute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, Midlothian 
EH14 4AP UK 

9Public Health Sciences Social & Scientific Systems Inc., 4505 Emperor Blvd, Suite 400, 
Durham, NC, 27703, USA  

10Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes 
of Health, 111 T.W. Alexander Drive – MD A3-05, Research Triangle Park, NC 27709 USA 

11Office of the Director, National Institute of Environmental Health Sciences, 9000 Rockville 
Pike, Bethesda, MD 20892, USA 

12National Cancer Institute, Bethesda, Maryland 20892 USA 

13Department of Epidemiology, Gillings School of Global Public Health, University of North 
Carolina, Chapel Hill, NC, 27599 USA 

14Exposure Assessment Applications, LLC, 6045 N. 27th. St., Arlington, VA, 22207 USA 

  



Table of Contents 

Appendix A, Determinants of Exposure Used in the Development of the Exposure Groups 

Appendix B, Statistical Methods 

1 Bayesian Modelling 

2 THC modeling strategy 

 2.1 Markov Chain Monte Carlo Sampling 

3 BTEX-H modeling strategy 

 3.1 Modeling details 

 3.2 MCMC sampling 

 3.3 Development of priors 

 3.4 Prior Downweighting 

 3.5 Considering a multivariate modeling strategy 

 3.6 Statistical Assumptions 

4 VOC Derived THC and BTEX-H Measurements 

5 N-hexane Missing Data Estimation 

6 JAGS Model Code 

 6.1 THC model 

 6.2 Bivariate left-censored Bayesian model 

 6.3 Final bivariate model incorporating priors 

Appendix C, Estimation of Exposure for Total Hydrocarbons, Benzene, Ethylbenzene, Toluene, 
Xylene and n-Hexane with Insufficient Measurements and Assignment of Confidence 

  



Excel File Tables 

Table S1 Job-activity descriptions 

Table S2 Time Periods 

Table S3 THC, BTEX-H Inhalation Estimates by Broad Group 

Table S4  PM2.5 exposure estimates (µg/m3) May 15-July 15, 2010 from flaring and in situ 
burns 

Table S5a.  AgDISP generated 1-hour average total aerosol concentrations (µg/m3) at 
horizontal distances downwind, perpendicular to flight path  

Table S5b.   AgDISP generated 1-hour average total aerosol concentrations, (µg/m3) at 
distances downwind of 9500A following surface spraying 

Table S6.   Oil mist estimates by broad groups (for all time periods)  

Table S7a.  Estimated GuLF DREAM units (GDUs) from oil for broad exposure groups by 
chemical and time period 

Table S7b.  Estimated GuLF DREAM units (GDUs) from tar for broad exposure groups 
from tar by chemical and tme Period 

  



Appendix A 

 Determinants of Exposure Used in the Development of the Exposure Groups (EGs)1 

Job/Activity (N) Location Comment 
Job title (n= 121) 4 rig vessels Had collected specific job titles in the 

questionnaire due to the number of 
possible study participants (1500) and the 
identification of job title in the 
measurement data 

Vessel (n=52) • 14 Vessels piloting remotely 
operated vehicles (ROV vessels) 
+ “All ROVs” 

• 3 burner fire control vessels  
• 33 research vessels + “All RVs” 

Substantially smaller pool of workers per 
vessel (generally 60).  All workers on a 
vessel were in the same EG.  Specific 
vessels were identified from the 
questionnaire and the measurement data. 

Activity-task 
(n=67)   

All water and land areas Job title often non-specific in 
measurement data (“responder” or “deck 
hand”).   Used activities identified from 
the measurement data in the 
questionnaire. See Supplemental Material 
(SM), Table S1. 

Area on the water 
(N=7) 

• The hot zone (within 1 nautical 
mile (nmi, 1.8 km) of the 
wellhead)  

• source (5 nmi (~9 km) of the 
wellhead excluding the hot 
zone)  

• offshore (the area generally 
outside the source area to within 
3 nmi (~5.5 km) of the shoreline  

• near shore (<3 nmi to the shore)  
• beaches and marshes  
• ports and docks  
• “other” land areas   

Weathering played a substantial role in 
the changing composition of the oil.  
Distance from the source of fresh oil is, in 
part, reflective of the amount of 
weathering the oil had undergone.   

State (N=4) • Louisiana (LA),  
• Mississippi (MS),  
• Alabama (AL)  
• Florida (FL)   

State indicates distance from the fresh oil 
source, similar to area on the water and so 
is reflective, in part, of oil weathering 

Time Period 
(N=7).   

 Weathering also affects oil composition 
over time.  In addition, different activities 
occurred over time.  See SM, Table S2 

 1See Stenzel et al., 2021a for more detail 

  



Appendix B

Statistical Methods

1 Bayesian modeling

To account for the censored values and to provide accurate exposure estimates, we investigated various sta-
tistical methods for analyzing censored data and conducted computer simulation studies to identify a method
that was most suitable for our needs (Huynh et al. 2014, 2016). A Bayesian method was selected because
it was found to provide low relative bias (<15%) and low imprecision (root mean squared error(<65%))
under the conditions of our study (measurements often with small N and/or high censoring and often high
geometric standard deviations (GSDs)), while providing statistically credible intervals (the Bayesian ana-
logue of classical confidence intervals) for all parameters of interest: the arithmetic mean (AM), geometric
mean (GM), GSD, and the 95th percentile (Huynh et al. 2016).

Total hydrocarbons (THC) was modelled separately from benzene, toluene, ethylbenzene, xylene and n-
hexane (BTEX-H). In addition, values for n-hexane were imputed where the chemical was not analyzed on
the same samples as THC and the BTEX chemicals. Throughout this document, we assume log-normality of
all of these chemicals, which is reasonable based on existing literature in the environmental health sciences
and industrial hygiene.

In this document, we provide statistical details of modeling strategies used in Ramachandran et al. (2021)
and Huynh et al. (2020 a, b and 2021) to model exposures to THC and BTEX-H. All modeling was done in
R using rjags (R Development Core Team 2015; Plummer 2003).

2 THC modeling strategy

For modeling THC, we develop a Bayesian analysis of variance (ANOVA) where we model the mean and
variance of each job group (also known as a intercept-only mean model). Bayesian models require the
specification of priors; informative uniform priors, i.e. priors with bounds, help stabilize estimates in cases
of limited information (i.e. very small sample size and/or high level of censoring). For the purposes of this
modeling approach, all job groups were modeled separately. We elucidate the model for one job group.

Let Yi be the natural log of THC for the it-h observation in a particular job group. Define µ to be the mean
of the natural log of THC and σ2 to be the variance. Let LODi(Y ) be the analytic limit of detection (LOD) for
observation i of THC (on the natural log scale). Then, let OY = {i : Yi > LODi(Y )} denote the observed
set of measurements of Y and CY = {i : Yi ≤ LODi(Y )} denote the censored set of measurements
(measurements below the respective LOD). Then, assuming standard definitions of the normal distribution



(N()) and the uniform distribution (Unif(, )) we can write the following joint distribution for our model:

Unif(µ | ln(0.025), ln(50))× Unif(σ | ln(1.01), ln(12))

×
∏
i∈OY

N(Yi |µ, σ2)×
∏
i∈CY

Φ

(
LODi(Y )− µ

σ

)
, (1)

where Φ(Z) is the cumulative distribution function (CDF) of Z. The CDF allows us to account for censored
measurements. We assign informative priors to µ (corresponding to the natural log of the GM) and σ (cor-
responding to the natural log of the GSD). We specified the following uniform priors for µ or ln(GM) and σ
or ln(GSD) as given below:

µ ∼ Unif(ln((0.025), ln(50)) (2)

σ ∼ Unif(ln(1.01), ln(12)) (3)

The minimum for µ was set at ln(0.025) (a ∼28% reduction of the lowest LOD among the THC mea-
surements (0.035 ppm)). The maximum value of µ was based on the Responsible Party’s policy of taking
specific actions to reduce workers’ exposures when continuous levels of volatile organic compounds (VOCs)
measured by direct-reading instruments on the rig vessels exceeded 100 ppm (approximately equivalent to
80 ppm THC) for 15 mins. Therefore, the upper GM prior was conservatively specified as 50 ppm THC as
a full-shift exposure. Because a GSD cannot be lower than 1, 1.01 was defined as the minimum GSD. The
maximum was set from an early analysis of the rig measurements (Huynh et al., 2016), where we found that
approximately 98% of the GSDs were less than 12.

2.1 Markov Chain Monte Carlo Sampling

Markov Chain Monte Carlo (MCMC) sampling enables us to quantify uncertainty around the desired sum-
mary statistic (AM, GM, GSD, and 95th Percentile). In order to ensure convergence, a burn-in period, which
is a set number of iterations, is designed to allow the parameters to converge. To develop the THC estimates
we used 5000 posterior estimates of the GMs and GSDs. From each set of 5000 GM and GSD posterior
samples, we calculated the associated (5000) AMs and 95th percentiles (Finney, 1941). The (posterior) me-
dian values and the 2.5 and 97.5 quantiles were selected to represent the statistic and the credible intervals
(uncertainty interval in Bayesian statistics).

3 BTEX-H modeling strategy

To estimate BTEX-H, we used a bivariate Bayesian regression framework to jointly model THC and each
of the BTEX-H chemicals individually (Groth et al., 2017). This approach allowed us to use THC, which
had the lowest level of censoring, to predict exposures for each of the BTEX-H chemicals using a simple
linear regression relationship of the natural log-transformed values while accounting for censoring in both



the predictor (THC) and the response (each of the BTEX-H chemicals). Censored BTEX-H measurements
were estimated at each iteration using information in THC, the censoring status of other (THC and BTEX-H)
measurements, and the linear relationship of the log transformed THC and each log transformed chemical
(used as the Bayesian priors) identified by the model (Groth et al. 2017; 2018). (It should be noted that these
models also will each produce estimates for THC. That said, we only present (and used) estimates for THC
obtained from the aforementioned univariate analysis in Section 2).

3.1 Modeling details

To build this model, we start with a simple linear regression. Let Yi be the natural log of the chemical of
interest andXi be the natural log of THC (both chemicals in ppb) for the ith measurement in a particular job
group. All job groups weremodeled separately. Then we can write the following linear regression expression
with intercept β0 and slope β1 (collectively known as β) as

Yi = β0 + β1Xi + ϵi (4)

where we assume ϵi
iid∼ N(0, σ2

Y |X) where σ2
Y |X is the variance of error terms ϵi.

Since ourX is the natural log of THC, it appears reasonable to assume thatX is also normally distributed.
Based on this assumption, we can write the following joint Bayesian framework for the model assuming all
units are measured, i.e., no censoring:

p(µX)× p(σ2
X)× p(β)× p(σ2

Y |X)×
N∏
i=1

N(Xi |µ, σ2
X)×

N∏
i=1

N(Yi |β0 + β1Xi, σ
2
Y |X) , (5)

where p(θ) denotes the prior of θ, µX is the mean of X , and σ2
X is the variance of X .

In this model, we would like to account for censored measurements. Therefore, we extend the framework
above to consider censored and observed sets of X and Y . Let LODi(Y ) and LODi(X) be the LODs of Yi
andXi, respectively, for measurement i. LetOY = {i : Yi > LODi(Y )} andOX = {i : Xi > LODi(X)}
be the observed sets of observations of Y and X , respectively. Similarly, let CY = {i : Yi ≤ LODi(Y )}
and CX = {i : Xi ≤ LODi(X)} be the censored measurements (measurements below the LOD). Then, we
can write the following joint distribution

p(µX)× p(σ2
X)× p(β)× p(σ2

Y |X)×
∏
i∈OX

N(Xi |µ, σ2
X)×

∏
i∈OY

N(Yi |β0 + β1Xi, σ
2
Y |X)

×
∏
i∈CX

Φ

(
LODi(X)− µX

σX

)
×

∏
i∈CY

Φ

(
LODi(Y )− (β0 + β1Xi)

σY |X

)
(6)

where Φ(Z) is the cumulative distribution function (CDF) of Z.
For more rigorous details on this modeling strategy, see Groth et al. (2017) and Groth et al. (2018).

These manuscripts also provide copies of the R code for developing each model using raw R code and also
with the help of the JAGS language for Bayesian hierarchical modeling.



3.2 MCMC sampling

This model was implemented in R (R Development Core Team 2015) using rjags (JAGS: Just Another
Gibbs Sampler; Plummer 2003). This program allows us to implement MCMC methods such as Gibbs
sampling, Metropolis Hastings, etc. For further details on different sampling methods, we refer the reader to
Gilks et al. (1996), Marin and Robert, (2007), Carlin and Louis, (2008), Gelman et al. (2013), and Brooks
et al. (2011).

Specifically, this program uses a Gibbs sampler and full conditional distributions of the parameters to
sample from the posterior distribution. For more information on Gibbs sampling, see Gelman et al. (2013).
First, the model samples the censored measurements using the parameter estimates (for variances, means,
and regression coefficients) found in the previous iteration. This creates a complete data set of measurements
(no missing values) at the particular iteration. Next, the model estimates the values of the regression coeffi-
cients (β), variances (σ2

X and σ2
Y |X ), and means (µX ) of this now complete data set (using full conditional

distributions). We repeat this process thousands of times to obtain posterior samples of the regression coef-
ficients, means, and variances (which are later reported as AMs, GMs, and GSDs). Due to the simultaneous
estimation of the censored values and the parameter estimates, Bayesian methods allow us to account for the
uncertainty in the censored values in the parameter estimates.

In practice we have seen that this model has immediate convergence under various prior settings. Con-
vergence here was assessed with the help of Gelman Rubin Diagnostics, Monte Carlo Standard Errors, and
trace plots.

3.3 Development of priors

Because many exposure groups (∼45%) had a small number of measurements (i.e. 5-20) and relatively high
censoring, we developed priors for the mean and variance parameters for each BTEX-H chemical. Because
of the presence of our chemicals in the crude oil, we were able to form the priors using the relationship
between the THC and the chemical of interest in broad overarching groups. This allowed us to leverage
information from all jobs within each job group to obtain more precise parameter estimates of BTEX-H for
the job group (reported as AM, GM, GSD, and 95th percentiles). The development of correlations for use
as priors is further described in Groth et al. (2021 b).

At first glance, this may raise concerns, as we are technically specifying our prior distributions using data
from the very jobs we expect to analyze – i.e. the common “using the data twice” critique of some empirical
Bayesian methods. It should be noted, however, that (a) the contribution of any given job toward the specifi-
cation of these priors was generally small; and (b) because these priors were based on large amounts of data,
we used the approach of Quick et al (2017) to downweight the informativeness of our prior distributions to
be equivalent to just five samples. For instance, it can be shown that the precision of a regression coeffi-
cient’s estimate in a classical frequentist analysis increases linearly with the sample size. If we multiply this
precision by the ratio of our desired prior sample size, n0, and the original sample size, N – i.e., n0

N – we
obtain a downweighted precision (i.e., inflated variance) analogous to that produced by a frequentist analysis
of only n0 samples. This downweighted precision can then be used to construct a normal prior distribution



for each regression coefficient with the same mean as the full sample posterior but with the desired informa-
tiveness. A similar approach can be used to construct a downweighted inverse gamma prior for all variance
parameters. This approach ensured that the data remained the primary driver of the posterior distribution
and were not overpowered by the prior. As a result, we believe our approach avoids the common pitfall of
inflated precision associated with some empirical Bayesian methods.

Once the prior information had been incorporated, we ran the bivariate linear modeling framework for
BTEX-H on each job group separately. We used 20,000 iterations (without burn-in) to obtain estimates of
the GMs and GSDs. From these we calculated 20,000 AMs, and 95th percentiles of BTEX-H for each job
group (Finney, 1941). The posterior median values and the 2.5, and 97.5th percentiles (quantiles forming a
95% credible interval) were selected to represent each statistic (AM, GM, etc). These estimates are reported
in Ramachandran et al. (2021) and Huynh et al. (2020 a, b and 2021).

3.4 Prior Downweighting

To describe the downweighting approach we use (based on the prior sample size approach of Quick et al.,
2017), consider the following example in which we develop estimates for xylene (a similar process would
occur for all BTEX-H chemicals). In Groth et al. (2021 b) we developed a correlation/linear relationship
between xylene and THC (both on the log scale) for an overarching group (A) which was developed based
on particular exposure determinants (see Groth et al. (2021 b) for more information on the overarching
relationships/correlations).

Specifically, for the linear relationship in the overarching group, we use the bivariate left-censored
Bayesian model as described above in (6) which accounts for measurements below the LOD in both our
response (in this case Y = ln(xylene)) and predictor (X = ln(THC)). Priors on the mean of X and the
regression coefficients β were set as wide normal distributions (with mean 0, and variance 100,000), while
the variance terms (σ2

Y |X and σ2
X ) were given inverse gamma priors (IG(shape=0.01, scale=0.01) using the

notation of Gelman et al. 2013). From this model, we obtain posterior distributions of the regression param-
eters (β and σ2

Y |X ) which we use to develop the informative priors. We will call these parameters from this
overarching relationship βA and σ2

A.
Quick et al. (2017) showed that it is sufficient to have summaries of this posterior distribution to construct

the priors. Therefore, from each overarching relationship, or in this example the overarching group A, we
ultimately use the 2.5, 97.5th, median, and mean estimates of the posterior distribution of each parameter.

In most Bayesian analyses, the priors are based on N observations (number of observations in the
dataset). In those cases, we would be concerned that the priors would contain much more information about
µ and σ2 than the data contributes via the likelihood. This is where the motivation for downweighting origi-
nates — i.e., we choose a prior sample size, n0 ≪ N , and instead consider a prior that depends on n0 rather
than N .

In order to make the priors for the regression coefficients β0 and β1 depend on n0 rather thanN , we will
scale the variance of the previous posterior distribution by a particular factor. Specifically, in this exam-
ple, we obtain posterior estimates of β0 and β1 for overarching group A. Thus we can determine the mean
(µβ0 , µβ1) and variance (σ2

β0
, σ2

β1
) of the distributions of β0 and β1 that we previously found. Based on the



parameterization used in the bivariate framework, the priors on β0 and β1 will also be Normal with the same
means identified of the posterior (µβ0 , µβ1), but we will adjust the variance/inflate the variance to allow the
distribution to be wider (and depend on n0 sample size; for exact details of this adjustment see Quick et al.
(2017). We perform a similar adjustment on the variance σ2

A to obtain a prior on the conditional variance of
the natural log of xylene given the information in ln(THC). For the variances, we add some small adjustments
are made at the end to restrict the variances in particular ranges (GSDs between 1.01 and 12).

We did this for all BTEX-H chemicals under each overarching relationship. This downweighting process
provided the priors for β0, β1, and σ2

Y |X which were used in the final bivariate left-censored Bayesian model
that was used for exposure estimation. We selected the closest overarching group for development of priors
for each exposure group (unless sufficient sample sizes were not available).

In the final exposure estimation process, the data provided to the model consisted of only those observa-
tions in that exposure group. The model forms a relationship between THC and the BTEX-H chemical (both
on the natural log scale) in order to better estimate exposure for the BTEX-H chemical. The priors serve to
help inform this relationship, and thus the exposure estimates if there are few observed measurements (either
because of low sample size, or because of censoring). However, if sufficient data is present, the data will
continue to drive the inference. Outputs of the final exposure model are posterior distributions of the AM,
GM, GSD, and 95th percentile of the BTEX-H chemical exposures for that exposure group.

3.5 Considering a multivariate modeling strategy

We considered using a multivariate modeling strategy, where we include THC and all of the BTEX-H chem-
icals in one model. This question is addressed in Groth et al. (2018), but we briefly address this issue here.
For the bivariate modeling strategy to be appropriate we are expecting the crude oil mixture to be the primary
source of exposure. When correlations are low between multiple chemicals, it has been suggested that multi-
ple mixtures are the primary sources of exposure and a multivariate modeling strategy would be appropriate
(Groth et al., 2018). We have, however, generally observed high correlations (greater than 0.5) between
THC and the BTEX-H chemicals and among the BTEX-H chemicals themselves. Thus, if these chemicals
were included in the same multivariate model, there would be multicollinearity (collinearity) which could
lead to increased variances on the regression estimates. As we are using the regression equation to estimate
the mean exposures, increased variances would be problematic because the variance is used to estimate the
AM.

In the GuLF STUDY, we have seen that THC by far has the highest consistent correlations observed with
the individual BTEX-H chemicals. Similarly, it also has the lowest censoring, meaning that it could provide
inference (more information to guide estimation) above another chemical with greater censoring.

We chose not to obtain THC estimates from the bivariate modeling strategy since we would have had
to select a chemical to “trust” as a covariate (or chose one of the bivariate models previously run). Since
exposures to the BTEX-H chemicals varied greatly, wewould havewanted to select different chemicals under
different conditions in order to promote accurate estimation. This would lead to a high level of complexity
when what we desire are estimates that can be compared with one another (i.e. using same methodology).
Therefore, we used the BayesianANOVAmodel to estimate exposure to THC and THC to estimate exposures



for the BTEX-H chemicals.

3.6 Statistical Assumptions

The use of this model relies on several assumptions. First, we assume each chemical is log-normally dis-
tributed such thatX and Y are normal after log transformation (for all BTEX-H and THC chemicals). This
assumption is valid based on most of the environmental health literature. Second, this model assumes a
linear relationship is present betweenX and Y and that relationship is approximately constant over the time
period of interest. This further assumes that this linear relationship continues below the LOD. Third, this
model assumes other assumptions of linear regression including independence of observations, normality
of error terms, and equal variances. Finally, we modeled each exposure group independently/separately of
other exposure groups.

4 VOC Derived THC and BTEX-H Measurements

In Groth et al. (2021 a) and Ramachandran (2021), we describe the process to impute THCmeasurements us-
ing a VOC direct reading area measurement database. These estimates were developed on vessels operating
remotely operated vehicles and onmarine vessels. While someTHC estimates are provided in Ramachandran
et al. (2021), these measurements were sometimes incorporated into exposure estimates for large overarch-
ing groups. For further information on the BTEX-H imputation from VOC derived THC samples, see Groth
et al. (2021 b).

5 N-hexane Missing Data Estimation

Although n-hexane is a component of the crude oil, it was not analyzed in all of the air samples in which
THC and BTEX were analyzed. Because the period with the missing hexane measurements (April through
May) had many of the highest THC and BTEX exposures, n-hexane levels were imputed for the n-hexane
unanalyzed samples in that period. We use the word “imputation/imputed” here to refer to values that were
estimated or predicted using a full model based Bayesian inference (not multiple imputation). The imputation
of measurements from n-hexane are further discussed in Groth et al. (2021 b).



6 JAGS model code

6.1 THC model

model {

for(i in 1:N){
above.lod[i] ~ dinterval(x[i],llodVec[i])
x[i]~dnorm(mu[i],tau)
mu[i] <- alphabeta

}

alphabeta~dunif(log(25),log(50000))
tau<-1/(sigma*sigma)
sigma~dunif(log(1.01),log(12))
}

6.2 Bivariate left-censored Bayesian model

Note: inverse-gamma priors for the variances are currently given, but this can be adjusted to other priors.

model {

for (i in 1:N){
is.notcensoredx[i]~dinterval(X[i],cx[i])
X[i]~dnorm(mux, tausqx)
is.notcensoredy[i]~dinterval(Y[i],cy[i])
Y[i]~dnorm(mu[i],tausqy)
mu[i]<-beta[1]+beta[2]*X[i] }

mux~ dnorm(0,0.00001)
for (j in 1:2) { beta[j] ~ dnorm(0,0.00001) }
tausqy~dgamma(0.01,0.01)
tausqx~dgamma(0.01,0.01)
sigmayx<-1/tausqy
sigmax<-1/tausqx
cov<-sigmax*beta[2]
variancey<-sigmayx+cov*tausqx*cov
mu.seg<-beta[1]+beta[2]*mux
corr<-cov/(sqrt(variancey)*sqrt(sigmax))
Rsquared<-corr*corr



}

6.3 Final bivariate model incorporating priors:

This model is built off the model in 5.2 and accounts for downweighting of the priors. This code is available
upon request.



Appendix C 

Estimation of Exposures to Total Hydrocarbons, Benzene, Ethylbenzene, Toluene, Xylene and n-Hexane 
for Exposure Groups with Insufficient Measurements and Assignment of Confidence 

When job-activity-task/location/time period determinants matched the same job-activity-
task/location/time period of the measurement data and there were at least 5 measurements with <80% 
censoring, Bayesian methods were used to develop the exposure statistics.  There remained, however, 
many other exposure groups (EGs, i.e. job-activity-task, location and time period combinations) that did 
not meet the measurement criteria.   We applied other approaches for estimating exposure levels for EGs 
with greater censoring (Stenzel et al., 2021b), but always maintained the requirement of at least 5 
measurements.  Even after applying these approaches, however, there were a number of EGs that had 
insufficient measurements (n=0-4).  We, therefore, developed a set of rules to assign the same type of 
statistics (arithmetic means, geometric means, geometric standard deviations, 95th percentiles and their 
95% credible intervals) to these other EGs as we did for EGs that met the criteria. 

First, we reviewed the jobs-activities-tasks performed and assigned the exposure statistics of a 
similar job.  Generally, on the rigs, we found few jobs-activities-tasks sufficiently comparable to assign 
exposure statistics to a second job (one example was workers piloting remotely operated vehicles (ROVs) 
and ROV supervisors).  Then, for jobs with insufficient measurements on the 4 rig vessels, we developed 
2 broader rig groups.  First, the Discoverer Enterprise (Enterprise) worked in tandem with the Helix 
Q4000 (Q4000).  They were located within about 500 m from each other at the wellhead.  Both were 
flaring collected oil and gas.  The rigs were populated by similar jobs and were present about the same 
time (although after the oil released had been stopped, the Q4000 left the area earlier than the Enterprise).  
We therefore considered these two vessels “sister” ships.  Similarly, the Development Driller II and 
Development Driller II were both drilling a relief well to intersect the existing well casing (~18,000 ft, 
5486 m) below the Gulf surface) above the oil and gas formation and plug it with cement and drilling 
mud to permanently seal and relieve pressure on the damaged well.  The two vessels were located within 
1 nmi (1852 m) of the wellhead for about the same length of time and had the same jobs performing 
similar functions.  These two vessels were also considered “sister” ships.  If a job on a rig with 
insufficient measurements was the same as a job on its sister ship that had sufficient measurements, the 
measurements from both jobs were combined into a single set of exposure statistics and assigned to the 
job with the insufficient measurements.  The job with sufficient measurements, however, retained its 
original estimate.  If the job had no measurements and the sister ship job had sufficient measurements, the 
sister ship’s job’s set of exposure statistics were assigned to the first job.   

For rig jobs that did not meet either of these 2 conditions, we assigned the descriptive statistics of 
broader groups.  Crew members such as roustabouts, roughnecks and tool pushers with insufficient data 
were assigned the exposure statistics of “Outside crew”, comprising all measurements taken on all outside 
crew jobs.  Generally, all crew members on a single vessel were workers of a single employer.  If no job 
title was provided, but a description was provided that was similar to a crew job or if the employer was 
the crew employer, the job was also assigned “Outside crew”.  Burner fire control workers and other 
workers brought in especially for the disaster response were employed by multiple employers.  Where 
measurements were insufficient, these jobs were assigned the exposure statistics of “Outside operations” 
comprising all measurements taken on all operations jobs.  Administrative workers were assigned the 



statistics associated with all “Inside/other” measurements.    Finally, if the job and the employer were 
ambiguous, the study participant was assigned to “All groups”, which comprised all measurements on the 
rig. 

Vessel type, e.g., “All ROVs”, was identified for participants who indicated an ROV activity in 
an open-ended question “Please describe any other tasks you did while on a boat, ship, or barge during the 
clean-up effort that I did not ask you about,” but did not identify a specific ROV vessel to the question 
asking for the name of the vessel.    Similarly, for participants who indicated taking water or oil samples 
on an unspecified research vessel (RV) we had a determinant value of “All RVs”. 

For workers with insufficient measurements performing activities or tasks on a vessel or on land, 
we first assigned the exposure statistics of a second activity, such as when we used the descriptive 
statistics calculated for “General Environment/land” for “Onsite driver”, based on the similarity of the 
environment.  More often, however, we based the assignment on adjacent states or time periods.  LA and 
MS were considered as “sister” states, as were AL and FL.  TP1a and TP1b, the 2 periods when the oil 
was being released, were considered “sister” time periods, as were TP2 and TP3 (work continued on 
capping the wellhead and drilling the relief well) and TP 4, 5 and 6 (decrease and eventual shut down of 
most work, except for beach clean-up).   Selection of activity, state or time period was based on the 
likelihood of the similar conditions and the availability of the data.   Even fewer measurements resulted in 
assigning measurements across “All states” or “All time periods”. 

Because of the lower confidence in the assignment of some of the exposure statistics, we 
identified a relative confidence level to each set of statistics.  If all 3 determinants of the EG matched 
those of the measurement data, a confidence of 5 was assigned.  If any 2 determinants matched those of 
the EG, a 4 was assigned.   If only 1 determinant matched a determinant of the EG, a 3 was assigned, and 
if no determinant matched any of those of the EG, a 2 was assigned.   The identification of the 3 types of 
determinants was identified in the JEM (e.g., the confidence for a roustabout on the Enterprise in TP1a 
might be 4 with the determinant information being “job/rig/TP1b”, meaning the job and rig matched those 
of the measurement, but the time period did not (i.e. TP1b measurements were used).   These confidences 
were then assigned to the study participants. 
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