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Supplementary figure legends 

Supplementary Figure 1. rs299290 is an HMMR eQTL in normal breast tissue and cancer. 

a, Forest plot showing the normalized effect size (NES) and 95% confidence interval (CI) of the 

association between rs299290-C and HMMR expression across human tissue in the GTEx 

database. The result for breast tissue is marked in red and corresponds to rs299290-C HMMR 

overexpression with nominal p = 0.009. b, Violin plots of HMMR expression in TCGA breast 

cancer subtypes and grouped by the rs299290 genotype. In the box plots inside violin plots the 

horizontal lines represent the sample medians, the boxes extend from first to third quartile, and the 

whiskers indicate values at 1.5 times the interquartile range. The number of tumors of each 

genotype is indicated. 
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Supplementary Figure 2. rs299290 is associated with outcome of basal-like breast cancer. 

Kaplan–Meier plots showing progression-free interval (PFI) effects of rs299290 genotypes in 

breast cancer subtypes (HER2, luminal A, and luminal B). The log-rank p value (not significant) 

is shown for each setting. The number of patients of each genotype/subtype is indicated by the 

color-coded number at risk. 
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Supplementary Figure 3. rs299290 is a pan-cancer HMMR eQTL and is associated with 

features of genomic instability. rs299290 association with HMMR expression, homologous 

recombination (HR) defects, cell proliferation, aneuploidy, and fraction of genome altered. The 

box plots represent the sample medians, the boxes extend from first to third quartile, the whiskers 

indicate values at 1.5 times the interquartile range, and the outliers are shown. The median value 

of each feature for tumors with the rs299290-CC genotype is indicated by a red line. Pan-cancer 

results (left) and detailed TCGA cancer type results (right) are shown. The one-way ANOVA p 

values of each pan-cancer analysis and of each TCGA cancer result, and the number of tumors of 

each genotype are also shown in each panel. 

  



 4 

Supplementary Figure 4. Cre-induced HMMR overexpression in cells with the loxP-STOP-

loxP-HMMR transgene. a, PCR detection of Cre-mediated recombination of the loxP-STOP-loxP 

HMMR cassette in mammary glands of parous HMMRTg heterozygous (left panels, two 

individuals) and homozygous (right panels, two individuals) mice. The recombination is not 

detected in liver samples from the same animals. M = 100 base pair (bp) DNA ladder. b, Western 

blot results of human HMMR and loading control (tubulin a) using cell extracts of primary mouse 

fibroblasts transduced with a Cre-expression or empty vector, and corresponding to different 

genotypes (no HMMR transgene, +/+; one allele HMMRTg; or two alleles HMMRTg). The results 

of cell extracts of murine 4T1 cells (negative control) and human MCF7 cells are also shown. kDa: 

kilodaltons. c, Top panel, representative immunofluorescence images of human HMMR 

expression and/or DAPI staining in MECs transduced with EGFP or EGFP-Cre lentivirus. Scale 

bars = 40 µm. Bottom panel, quantification of HMMR intensity (mean ± s.d.; n = 2 experiments; 

n = 30 measurements; arbitrary units (arb. units). One-way ANOVA; ****p < 0.0001. d, Top 

panel, representative immunofluorescence images of mouse BRCA1 in MECs transduced with 

EGFP or EGFP-Cre lentivirus. Colonies were irradiated with 1 gray (Gy) to induce BRCA1-

positive foci. Scale bars = 40 µm. Bottom panel, quantification of BRCA1 intensity (mean ± s.d.; 

n = 2 experiments; n = 30 measurements; arb. units). One-way ANOVA; ****p < 0.0001. 
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Supplementary Figure 5. No evidence of abnormal epithelial cell structures in normal 

mammary tissue of virgin and parous Blg-Cre;HMMRTg/Tg. Representative mammary gland 

tissue images of four animals of each genotype, at the end of the study. Scale bar = 100 µm. 
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Supplementary Figure 6. Genotyping of HMMR, Brca1 and Trp53 alleles. Representative 

results of germline mouse DNA genotyping using targeted PCR assays. The PCR products are 

listed and the inferred genotypes are detailed at the bottom. M = 100 bp DNA ladder. 
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Supplementary Figure 7. Analysis of HMMR, Brca1 and Trp53 gene expression in incident 

tumors. Top panel, detection of HMMR expression by RT-PCRs using mRNA extracted from Blg-

Cre;HMMRTg/Tg;Brca1f/f;Trp53+/- tumors (right five lanes), but not in Blg-Cre;Brca1f/f;Trp53+/- 

tumors (left five lanes). The mouse assay gene control is shown (Ppia). M = 100 bp DNA ladder. 

Equivalent results were obtained using TaqMan assays: human HMMR Hs01063280_m1 and 

mouse Gapdh Mm99999915_g1 as control. Bottom panels, expression level of Brca1 (left) and 

Trp53 (right) in mammary tumors relative to spleen and liver, respectively. The box plots show 

the sample medians, the boxes extend from first to third quartile, and the whiskers extend from the 

minimum to the maximum values (experiments n = 2; tumors n = 5 and 3 replicates; control tissue 

n = 2-3 and 3 replicates). 
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Supplementary Figure 8. Overexpression of human HMMR relative to endogenous 

expression of mouse Hmmr. Graphs showing the HMMR/Hmmr fold-change expression in 

tumors and mammary glands of Blg-Cre-induced mice with different genotypes, as shown in the 

inset. Two different HMMR Taqman probes were used relative to a single Hmmr probe (top of 

each panel). The horizontal black lines depict sample medians (n = 2 experiments; 3 

replicates/sample). 
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Supplementary Figure 9. Histological features of tumors. Representative images (40x 

magnification) of hematoxylin-eosin stained tumors, including different morphologies and 

features. Scale bar = 100 µm. 
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Supplementary Figure 10. Immunohistochemical study of defined tumor markers. 

Representative images (20X magnification) of ERa negativity (top panel; normal acini positive 

cells are shown in the inset), and K8/K14 negativity/positivity (middle and bottom panels). Scale 

bar = 100 µm. 

  



 12 

Supplementary Figure 11. HMMRTg/Tg;Brca1f/f;Trp53+/- tumors are associated with the triple-

negative immunomodulatory and mesenchymal-like subtypes. Outputs of the GSEA tool 

applied with standard parameters and using the pre-ranked expression differences (RNA-seq log2-

fold change) between four HMMRTg/Tg;Brca1f/f;Trp53+/- and four Brca1f/f;Trp53+/- tumors, and 

gene sets corresponding to upregulated genes originally identified in the six Lehman’s subtypes 

(basal-like 1 (BL1), BL2, immunomodulatory (IM), luminal-androgen receptor (LAR), 

mesenchymal (M), and mesenchymal-like (ML)). The GSEA NES and p value are shown for each 

gene set analysis (not significant, n.s.). The red rectangles indicate the over-expressed leading 

edges of IM and ML genes in HMMRTg/Tg;Brca1f/f;Trp53+/- tumors. 
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Supplementary Figure 12. Measurement of phenotype of MEC CFC colonies. a, Example of 

a colony derived from primary mouse MECs that displays an epithelial phenotype. The boxed area 

(100 x 100 µm2) was used to determine the density of nuclei in the colony. Colonies with a nucleus 

density > 40 were classified as epithelial; those with a nucleus density < 20 were classified as 

mesenchymal or EMT. Scale bar = 40 µm. b, Frequency of nuclei per box in colonies with 

epithelial (n = 9) or mesenchymal (n = 9) phenotypes (mean ± s.d.; n = 3 experiments; n = 3 

colonies/experiment). Two-sided Student’s unpaired-samples t-test; ****p < 0.0001. c, Expression 

of CLDN1, VIM, and ZO-1 in MEC colonies with epithelial or EMT phenotype, as determined by 

the density of nuclei. Scale bars = 40 µm. d, Immunofluorescence detection of LMNB1 in 

subconfluent MEC cultures transduced with EGFP-only or EGFP-Cre lentivirus and with defined 

genotypes. Zoomed images are taken from Fig. 4b. Scale bars = 10 µm.  
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Supplementary Figure 13. HMMR overexpression is associated NF-kB signaling. a, 

Immunofluorescence analysis of the localization and levels of p65 in day 5 colonies generated 

from MECs cultures with indicated genotypes following transduction with indicated lentivirus 

(EGFP-empty or EGFP-Cre). Scale bars = 20 µm. b, Immunofluorescence analysis of the 

localization and levels of p52 in day 5 colonies generated from MECs with indicated genotypes 

following transduction with indicated lentivirus. Scale bars = 20 µm. 
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Supplementary Figure 14. HMMRTg/Tg;Brca1f/f;Trp53+/- tumors are associated with a non-

canonical NF-kB expression program. GSEA results using standard parameters and pre-ranked 

expression differences (RNA-seq log2-fold change) between four HMMRTg/Tg;Brca1f/f;Trp53+/- 

tumors and four Brca1f/f;Trp53+/- tumors, and gene sets corresponding to RELB:p52 and 

RELA:p50 gene targets based on conserved binding motifs (targets common to the two sets were 

excluded from the analysis). The GSEA NES and p value (Kolmogorov-Smirnov statistic and 

x1000 permutation test) are shown for each analysis. The red rectangle indicates the overexpressed 

leading edge associated with RELB:p52 targets, and the corresponding genes are depicted, 

including Vim. 
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Supplementary Figure 15. GFP-HMMR expression in HeLa (Tet-On) cells delays metaphase 

and disturbs the intrinsic spindle positioning pathway. a, Tet-On HeLa cells were treated with 

water (-dox) or doxycycline (+dox) for 24 hours to induce GFP-HMMR expression. Cells were 

synchronized at M phase with nocodazole and MG132, lysed, and HMMR expression was 

quantified by western blot, followed by Licor imaging. Equal loading was verified by GAPDH 

level. Signal intensity (arbitrary units (arb. units)) was quantified and tabulated. kDa: kilodaltons. 

b, Left panels, images of mitotic progression of HeLa cells or Tet-On HeLa cells treated with water 

(-dox) or doxycycline (+dox) for 24 hours, followed by live cell imaging. Mitotic phases are color-

coded and the mitotic kinetics of 50 cells per condition are tabulated (right panels). Scale bar = 5 

µm. c, Quantification of metaphase duration of HeLa cells or Tet-On HeLa cells treated with water 

(-dox) or doxycycline (+dox) for 24 hours followed by live cell imaging (mean ± s.d.; n = 50 cells; 

n = 2 experiments; n = 25 cells per experiment). One-way ANOVA; **p = 0.003. d, Illustration 

of spindle rotation during metaphase. Spindle orientation at the beginning of metaphase (red 

dashed line) and before anaphase (blue dashed line) is highlighted to demonstrate spindle rotation. 
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Supplementary Figure 16. GFP-HMMR overexpressing HeLa cells display abnormal 

chromosomes during cell division. Top panels, HeLa or Tet-On HeLa cells were incubated with 

CellLight Actin-RFP BacMam 2.0 for 2 days to visualize F-actin. Cells were pre-treated with water 

(-dox) or doxycycline (+dox) for 24 hours before imaging. Mitotic cells images were captured 

every 5 minutes. Yellow stars indicate membrane blebs and green arrowheads indicate the lagging 

chromosomes. Scale bar = 10 µm. Bottom panels indicate measurements from images of ~80 cell 

divisions per treatment and the resultant daughter cells, including the proportion of cells displaying 

anaphase membrane blebs (left panel; mean ± s.d.; n = 2 experiments; 2 wells per experiment); 

two-sided Student’s paired-samples t-test; **p = 0.001. Daughter cell size ratio; mean ± s.d.; n = 

2 experiments; n = 77 (HeLa), 80 (-dox), and 82 (+dox) mitotic cells; two-sided Student’s paired-

samples t-test, ***p = 0.001; bleb size mean ± s.d. from n = 19 (HeLa), 32 (-dox), 63 (+dox) 

blebbing anaphase cells; two-sided Student’s paired-samples t-test, *p = 0.022; and abnormal 

chromosomes for mitotic cells and their resultant daughter cells; mean ± s.d.; n = 2 experiments; 

n = 77 (HeLa), 80 (-dox), and 82 (+dox) mitotic cells; one-way ANOVA; **p = 0.008. 
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Supplementary Figure 17. HMMR interactome during mitosis. Mass spectrometry analysis of 

proteins co-precipitated from mitotic HeLa lysates with antibodies targeting HMMR or control 

immunoglobulin (log2-fold change in HMMR:control ratio). Known HMMR-binding partners are 

highlighted in blue and actin-binding proteins (ARP3 (ACTR3), MYH10, and MYO18A) are 

highlighted in red. The plot shows the -log10 two-sided Student’s t-test nominal p values against 

log2 fold-change of HMMR versus control immunoglobulin IP results. The vertical and horizontal 

dashed lines indicate p < 0.05 and log2 fold-change > 1, respectively. The symbols indicate the 

frequency at which proteins were found in the interaction screens as listed in the CRAPOME 

database (circle: rare interactor; open circle: common interactor; diamond: not listed in database); 

protein names in blue, red, and grey indicate known HMMR interactors, potential interactors (this 

study), and additional proteins found moderately to strongly enriched, respectively; and symbol 

size was proportional to the number of replicas a protein was identified in (n = 2 experiments; 2 

replicates/condition). 
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Supplementary Figure 18. Localization of non-muscle myosin MYH9 and MYH9 in GFP-

HMMR (Tet-On) HeLa cells. a, Immunofluorescence analysis of GFP-HMMR overexpressing 

anaphase cells and control HeLa cells probing for HMMR and MYH9. Scale bar = 5 µm. White, 

pink, and red dashed lines in the middle column indicate the measurement of plot profile in panel 

b. b, Plot profile measuring fluorescence intensity across the anaphase cells shown by the dashed 

lines in panel a. The blue shaded areas indicate 3 µm from the cortex. Arbitrary units (arb. units). 

c, Cortical MYH9 quantification in anaphase cells. The color-coded averages of three experiments 

are shown; mean ± s.d.; n = 30 (HeLa), 30 (-dox), 30 (+dox) cells. Two-sided Student’s paired-

samples t-test; n.s. d, Average intensity of MYH9 in anaphase cells; mean ± s.d.; n = 30 (HeLa), 

30 (-dox), 30 (+dox) cells. Two-sided Student’s unpaired-samples t-test; ***p = 0.001. e, 

Immunofluorescence analysis of GFP-HMMR overexpressing anaphase cells and control HeLa 

cells probing for HMMR and MYH10. Scale bar = 5 µm. White, pink, and red dashed lines in the 

middle column indicate the measurement of plot profile in panel f. f, Plot profile measuring 

fluorescence intensity across the cells shown by the dashed lines in panel e. The blue shaded areas 

mark 3 µm from the cortex. g, Cortical MYH10 enrichment in anaphase cells presenting the color-

coded averages of three experiments; mean ± s.d.; n = 30 (HeLa), 30 (-dox), 30 (+dox) cells. Two-

sided Student’s paired-samples t-test; n.s. h, Average intensity of MYH10 in GFP-HMMR 

overexpressing cells and control cells; mean ± s.d.; n = 30 (HeLa), 30 (-dox), 30 (+dox) cells. Two-

sided Student’s unpaired-samples t-test; **p = 0.002; and two-sided Student’s paired-samples t-

test, *p = 0.013. 
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Supplementary Figure 19. ARPC2 is mislocalized in HMMR overexpressing HeLa cells 

during metaphase and anaphase. a, Immunofluorescence analysis of ARPC2 and HMMR in 

mitotic cells. HeLa cells were arrested at prometaphase using S-trityl-L-cysteine (STLC, 5 µM) 

for 16 hours and forced to exit mitosis by the addition of RO-3306 (20 µM) for 5 minutes. Scale 

bar = 5 µm and for zoom = 2 µm. b, Immunofluorescence analysis of ARPC2 and pericentrin 

(PCNT) in mitotic cells. HeLa cells were arrested at prometaphase (+STLC) or forced to exit 

mitosis (+RO-3306). Scale bar = 5 µm and for zoom = 2 µm. c, Spindle pole intensity for ARPC2 

at prometaphase and forced mitotic exit presenting the color-coded averages of three experiments 

(mean ± s.d.; n = 60 prometaphase arrest and n = 60 forced mitotic exit cells). Two-sided Student’s 

paired-samples t-test; *p = 0.031. d, Immunofluorescence analysis of ARPC2 and pericentrin in 

mitotic cells overexpressing GFP-HMMR. GFP-HMMR expression induced Tet-On HeLa cells 

(+dox) and control (-dox) cells were arrested at prometaphase (+STLC) for 16 hours and forced to 

exit mitosis (+RO-3306) for 5 minutes. Scale bar = 5 µm (prometaphase arrest and forced mitotic 

exit +/- dox images) and 2 µm (zoom images). e, Spindle pole intensity of ARPC2 at prometaphase 

and anaphase in GFP-HMMR induced Tet-On HeLa cells (+dox) and control (-dox) cells (mean ± 

s.d.; 20 cells per experiment per treatment). Two-sided Student’s unpaired-samples t-test; ****p 

< 0.0001. 
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Supplementary Figure 20. Evaluation of endogenous co-immunoprecipitation of HMMR and 

ACTR3. Western blot results of HMMR immunoprecipitation using different methods of cell 

synchronization, as depicted at the bottom of each panel. While CHICA was found to co-

immunoprecipitate with HMMR, no robust signal was detected for ACTR3 in these conditions. 

The assays also evaluated MYH10 and GAPDH (negative control). WCL: Whole cell lysate; and 

IP: immunoprecipitation. kDa: kilodaltons. 
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Supplementary Figure 21. HMMR overexpression is associated with abnormal earlier 

detection of ARPC2 at the mitotic spindle poles. a, Representative images of 

immunofluorescence detection of HMMR (EGFP-tagged), ARPC2, and b-tubulin (TUBB) in 

parental and Tet-On (-dox and +dox) HeLa cells through interphase/G2 and mitosis. Scale bar = 

10 µm. b, Quantification of ARPC2 signal intensity at the centrosome (interphase/G2 phase) and 

spindle poles during phases of mitosis, relative to cytoplasmic intensity (mean ± s.d; n = 2 

experiments for interphase-prometaphase; n = 3 experiments for metaphase-anaphase). Two-sided 

Student’s unpaired-samples t-test; **p = 0.004 and ****p < 0.0001. 
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Supplementary Figure 22. AURKA inhibition normalizes blebbing and daughter cell size. a, 

Evaluation of viability of HeLa cells exposed to kinase inhibitors (X-axis, log M concentration). 

The data points of three experiments are shown. The half-maximal inhibitory concentration (IC50) 

of each compound is denoted at the top of each panel. The blue areas correspond to the compound 

concentration range used in subsequent panels (n = 3 experiments). b, Quantification of nuclear 

blebbing (%) of HeLa cells exposed to vehicle (DMSO), and of HMMR-overexpressing HeLa 

cells exposed to DMSO or increasing concentrations of each inhibitor. The AURKA inhibitor 

(MLN8237) significantly reduces nuclear blebbing (mean ± s.d; n = 4 experiments). Two-sided 

Student’s unpaired-samples t-test; *p = 0.046 (DMSO versus dose 3 MLN8237), *p = 0.012 

(DMSO versus dose 1 BI2536), **p = 0.007 (DMSO versus dose 2 MLN8237), **p = 0.006 

(DMSO versus dose 1 D4476), **p = 0.004 (DMSO versus dose 2 D4476), and ****p < 0.0001. 

c, Quantification of daughter cell-size ratio in HeLa cells exposed to vehicle or inhibitors as 

depicted in panel b. The cell size was normalized with inhibitors of AURKA and AURKB 

(AZD1152) (mean ± s.d; n = 4 experiments). Two-sided Student’s unpaired-samples t-test; *p = 

0.015, **p = 0.003, and ****p < 0.0001. 
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Supplementary Figure 23. HMMR overexpression in premalignant mammary tissue of Blg-

Cre;HMMRTg/Tg;Brca1f/f mice. Left panel, cartoon representation (edited from Shuryak et al., 

PLoS One 2013 Dec 20;8(12):e85795; doi:10.1371/journal.pone.0085795; distributed under 

Creative Commons Attribution License) of premalignant tissue taken from the mammary glands 

contralateral to the incident tumor. Middle panel, immunofluorescence analysis and quantitation 

of human HMMR in mouse mammary tissue. Scale bar = 20 µm. Right panel, tissue from six mice 

were examined per genotype and the mean value for each mouse is plotted (arbitrary units (arb. 

units) per µm2; mean ± s.e.m.; frames n = 3 per tissue; each frame > 100 cells; n = 3 experiments). 

Two-tailed Student’s t-test; *p = 0.024. 
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Supplementary Figure 24. Gene expression changes by HMMR overexpression in 

premalignant mammary tissue of Blg-Cre;HMMRTg/Tg;Brca1f/f mice. a, Overexpressed genes-

biological processes (p < 10-6) between the Blg-Cre;HMMRTg/Tg;Brca1f/f;Trp53+/- relative to Blg-

Cre;Brca1f/f;Trp53+/- premalignant mammary tissue. b, Underexpressed genes-biological 

processes (p < 10-6) between the Blg-Cre;HMMRTg/Tg;Brca1f/f;Trp53+/- relative to Blg-

Cre;Brca1f/f;Trp53+/- premalignant mammary tissue. 
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Supplementary Figure 25. Evaluation of mitotic and cycling cells in premalignant mammary 

tissue. a, Immunofluorescence analysis and quantitation of mitotic mammary epithelial cells as 

determined by TUBB staining. Premalignant mammary tissue from six mice were examined per 

genotype and the mean value for each mouse is plotted (mean ± s.e.m.; frames n = 3 per tissue; 

each frame > 100 cells; n = 3 experiments). Two-tailed Student’s unpaired-samples t-test; **p = 

0.008. b, Immunofluorescence analysis and quantitation of cyclin B1 (CCNB1). The tissue from 

six mice were examined per genotype and the mean value for each mouse is plotted  (mean ± 

s.e.m.; 3 frames per tissue; > 100 cells per frame; n = 3 experiments). Two-tailed Student’s 

unpaired-samples t-test; n.s. Scale bar = 10 µm. 
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Supplementary Figure 26. HMMR-associated perturbations in premalignant progression of 

the Blg-Cre;Brca1f/f;Trp53+/- mammary tumorigenesis model. a, Violin plots displaying sample 

medians and outliers of Hmmr expression level (mouse endogenous) in single cells across 

premalignant stages (1 to 4; stage 5, tumor) in Blg-Cre;Brca1f/f;p53+/− mammary tissue (publicly 

available data, see Data availability section; mice n = 3 per time point; premalignant stages n = 15; 

tumors n = 2; approximately 100.000 cells total). The inset shows Hmmr expression across stages 

1-4 considering only luminal progenitors (plot shows linked sample medians (red dots); stage 5 is 

not included as only contained 16 such cells). One-way ANOVA; *p = 0.019 and ****p < 0.0001. 

b, Violin plots of the expression level of defined gene sets (inset) across premalignant and tumor 

stages, using all single cell RNA-seq data. The three depicted pathways showed significant 

differences; Kruskal−Wallis test; ****p < 0.0001. “TNF signaling via NF-kB” and “KEGG 

cytosolic DNA sensing” increased, while “Reactome tight junction interactions” decreased 

through stages. In the box plots inside violin plots the horizontal lines represent the sample 

medians, the boxes extend from first to third quartile, the whiskers indicate values at 1.5 times the 

interquartile range, and there are shown outliers. The horizontal lines connect sample medians. c, 

Violin plots (format as panel b) of the expression level of defined gene sets (inset) across 

premalignant and tumor stages, using only RNA-seq data from luminal progenitors. 

Kruskal−Wallis test; ****p < 0.0001. “KEGG cytosolic DNA sensing” increased, while 

“Reactome tight junction interactions” decreased through stages.  
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Supplementary Figure 27. HMMR overexpression causes immune-related gene expression 

changes in MECs, and cGAS inhibition causes the opposite for target genes. a, Plot of 

differentially expressed genes between Blg-Cre;HMMRTg/Tg;Brca1f/f;Trp53+/- and Blg-

Cre;Brca1f/f;Trp53+/- MECs transduced with EGFP-Cre and examined by TaqMan Array Mouse 

Immune Response. Immune-related genes introduced are indicated, being overexpressed in 

HMMRTg/Tg MECs. b, Analysis of downregulation of defined gene targets (panel a) in MECs 

exposed to cGAS inhibition at the published IC50 concentration (0.7 µM) or twice the IC50 

concentration (1.4 µM). Significant downregulation of four of the tested genes was observed at the 

higher dose (mean ± s.d; n = 2 experiments; n = 2 wells per experiment). Two-sided Student’s 

unpaired-samples t-test; *p = 0.018 (Il1a), **p = 0.007 (Csf1), **p = 0.006 (Nfkb2), and ****p < 

0.0001 (Nfkb1). 
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Gene set Size ES NES p FDR
TIAN_TNF_SIGNALING_VIA_NFKB 24 0.81 2.07 0.00E+00 5.62E-01
WILLIAMS_ESR2_TARGETS_UP 27 0.78 2.02 0.00E+00 4.30E-01
REACTOME_INTERLEUKIN_10_SIGNALING 42 0.7 2 0.00E+00 4.79E-01
CROMER_TUMORIGENESIS_UP 48 0.67 1.98 0.00E+00 5.08E-01
LIAN_LIPA_TARGETS_6M 66 0.64 1.98 0.00E+00 4.46E-01
HINATA_NFKB_TARGETS_KERATINOCYTE_UP 77 0.63 1.97 0.00E+00 3.61E-01
REACTOME_ERCC6_CSB_AND_EHMT2_G9A_POSITIVELY_REGULATE_RRNA_EXPRESSION 56 0.63 1.91 0.00E+00 4.80E-01
ZHANG_RESPONSE_TO_IKK_INHIBITOR_AND_TNF_UP 197 0.54 1.9 0.00E+00 4.78E-01
OSWALD_HEMATOPOIETIC_STEM_CELL_IN_COLLAGEN_GEL_UP 206 0.53 1.89 0.00E+00 5.22E-01
SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP 311 0.51 1.87 0.00E+00 4.62E-01
ALTEMEIER_RESPONSE_TO_LPS_WITH_MECHANICAL_VENTILATION 106 0.57 1.87 0.00E+00 3.98E-01
SANA_TNF_SIGNALING_UP 69 0.61 1.86 0.00E+00 3.89E-01
LINDSTEDT_DENDRITIC_CELL_MATURATION_A 57 0.62 1.85 0.00E+00 4.18E-01
LINDGREN_BLADDER_CANCER_CLUSTER_2B 345 0.5 1.84 0.00E+00 4.59E-01
REACTOME_RHO_GTPASES_ACTIVATE_PKNS 72 0.59 1.82 0.00E+00 4.81E-01
ANASTASSIOU_MULTICANCER_INVASIVENESS_SIGNATURE 63 0.59 1.81 0.00E+00 4.80E-01
PLASARI_TGFB1_TARGETS_10HR_UP 187 0.51 1.8 0.00E+00 4.85E-01
HOLLERN_EMT_BREAST_TUMOR_UP 130 0.53 1.79 0.00E+00 5.17E-01
WESTON_VEGFA_TARGETS 95 0.55 1.75 0.00E+00 5.83E-01
QI_PLASMACYTOMA_UP 241 0.48 1.75 0.00E+00 5.92E-01
VART_KSHV_INFECTION_ANGIOGENIC_MARKERS_UP 154 0.51 1.74 0.00E+00 5.74E-01
PHONG_TNF_RESPONSE_VIA_P38_PARTIAL 156 0.49 1.71 0.00E+00 5.75E-01
ZWANG_CLASS_3_TRANSIENTLY_INDUCED_BY_EGF 205 0.48 1.68 0.00E+00 5.79E-01
VERHAAK_GLIOBLASTOMA_MESENCHYMAL 194 0.47 1.66 0.00E+00 5.67E-01
NAGASHIMA_NRG1_SIGNALING_UP 162 0.47 1.65 0.00E+00 5.75E-01
PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP 190 0.47 1.64 0.00E+00 5.75E-01
REACTOME_ESR_MEDIATED_SIGNALING 198 0.47 1.64 0.00E+00 5.62E-01
CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHYMAL_DN 437 0.42 1.61 0.00E+00 5.89E-01
REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION 286 0.44 1.6 0.00E+00 5.74E-01
PHONG_TNF_RESPONSE_NOT_VIA_P38 320 0.43 1.59 0.00E+00 5.58E-01
OISHI_CHOLANGIOMA_STEM_CELL_LIKE_DN 257 0.43 1.55 0.00E+00 5.73E-01
SMID_BREAST_CANCER_NORMAL_LIKE_UP 416 0.39 1.49 0.00E+00 5.66E-01

Supplementary Table 1a. GSEA gene sets overexpressed (nominal p  < 0.001) in HMMRTg/Tg;Brca1f/f;Trp53+/- relative to Brca1f/f;Trp53+/- tumors.



Gene set Size ES NES p FDR
REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE 79 -0.51 -1.64 2.00E-03 1.00E+00
NIKOLSKY_BREAST_CANCER_7P22_AMPLICON 36 -0.66 -1.89 4.00E-03 1.00E+00
KEGG_GLUTATHIONE_METABOLISM 45 -0.54 -1.65 4.00E-03 1.00E+00
REACTOME_KERATINIZATION 82 -0.49 -1.62 9.00E-03 1.00E+00
SENGUPTA_NASOPHARYNGEAL_CARCINOMA_DN 292 -0.36 -1.39 9.00E-03 1.00E+00
REACTOME_ABC_TRANSPORTERS_IN_LIPID_HOMEOSTASIS 17 -0.72 -1.77 1.00E-02 1.00E+00
CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_DN 142 -0.41 -1.47 1.10E-02 1.00E+00
REACTOME_TIGHT_JUNCTION_INTERACTIONS 26 -0.63 -1.69 1.60E-02 1.00E+00
LIM_MAMMARY_STEM_CELL_DN 390 -0.34 -1.33 1.60E-02 1.00E+00
REACTOME_BILE_ACID_AND_BILE_SALT_METABOLISM 34 -0.54 -1.52 2.30E-02 1.00E+00
LIM_MAMMARY_LUMINAL_PROGENITOR_UP 55 -0.48 -1.51 2.60E-02 1.00E+00
REACTOME_GLUTATHIONE_CONJUGATION 33 -0.55 -1.52 2.80E-02 1.00E+00
MIKKELSEN_MEF_HCP_WITH_H3_UNMETHYLATED 183 -0.37 -1.34 2.80E-02 1.00E+00
YUAN_ZNF143_PARTNERS 22 -0.59 -1.56 2.90E-02 1.00E+00
REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS 28 -0.57 -1.52 2.90E-02 1.00E+00
NIKOLSKY_BREAST_CANCER_17Q11_Q21_AMPLICON 106 -0.4 -1.36 3.30E-02 1.00E+00
EBAUER_TARGETS_OF_PAX3_FOXO1_FUSION_UP 181 -0.36 -1.32 4.20E-02 1.00E+00
KEGG_ABC_TRANSPORTERS 38 -0.51 -1.47 4.30E-02 1.00E+00
REACTOME_MISCELLANEOUS_TRANSPORT_AND_BINDING_EVENTS 25 -0.58 -1.52 4.40E-02 1.00E+00
YAMASHITA_LIVER_CANCER_STEM_CELL_DN 58 -0.46 -1.43 4.90E-02 1.00E+00

Supplementary Table 1b. GSEA gene sets underexpressed (nominal p  < 0.05) in HMMRTg/Tg;Brca1f/f;Trp53+/- relative to Brca1f/f;Trp53+/- tumors.



Supplementary Table 2. Primers and TaqManÔ probes used in this study. 
 

Gene Accession number Forward 5'-3' Reverse 5'-3' 
Brca1 NM_009764.3 CCCTCAAGAAGCTGGAGATG TGCCCTCAGAAAACTCACAA 
Il10 NM_010548.2 CCCCTGTGAAAATAAGAGCAA TGCAGTTGATGAAGATGTCAAA 
Il6 NM_031168.2 TGATGGATGCTACCAAACTGG TTCATGTACTCCAGGTAGCTATGG 
Ppia NM_008907.2 CAAATGCTGGACCAAACACAAACG GTTCATGCCTTCTTTCACCTTCCC 
Slug/Snai2 NM_011415.3 TGGTCAAGAAACATTTCAACGCC GGTGAGGATCTCTGGTTTTGGTA 
Sparc NM_009242.5 TGTCCTGGTCACCTTGTACG CAGGCGCTTCTCATTCTCAT 
Trp53 NM_011640.3 CTCTCCCCCGCAAAAGAAAAA CGGAACATCTCGAAGCGTTTA 
Twist1 NM_011658.2 GGACAAGCTGAGCAAGATTCA CGGAGAAGGCGTAGCTGAG 
Vegfa NM_001025250.3 TGTACCTCCACCATGCCAAGT TGGTAGACATCCATGAACTTG 
Vim NM_011701.4 CGTCCACACGCACCTACAG GGGGGATGAGGAATAGAGGCT 

TaqManÔ (Thermo Fisher Scientific) 

Hs00234864 Catalog 4331182 Human HMMR  
Hs01063269 Catalog 4351372 Human HMMR  
Hs01063280 Catalog 4351372 Human HMMR  
Mm00469183 Catalog 4448489 Mouse Hmmr  
Mm99999915 Catalog 4331182 Mouse Gapdh  

 



Supplementary Table 3. Antibodies used in this study. 

Antibody Manufacturer Reference Species Application* Dilution Retrieval 
Anti-ARPC2 Santa Cruz 

Biotechnologies 
sc-515754 Mouse IF 1:200  

Anti-phospho-
Aurora A (Thr288) 

Cell Signaling 3079 Rabbit IF 1:1000  

Anti-BRCA1 EMD Millipore OP92 Mouse IF 1:20  
Anti-b-Tubulin 
(9F3) (Alexa 
Fluor®647 
conjugate) 

Cell Signaling  3624 Rabbit IF 1:300  

Anti-CCNB1 Cell Signaling 4138 Rabbit IF 1:500  
Anti-CD31 Abcam ab28364 Rabbit IHC 1:50 Citrate pH6 
Anti-mouse CD45 
(Alexa Fluor®488 
conjugate) 

Biolegend 103121 Rat IF 1:100  

Anti-CD45R Abcam ab64100 Rat IHC 1:100 Citrate pH6 
Anti-CD68 (Alexa 
Fluor®594 
conjugate) 

Biolegend 137020 Rat IF 1:100  

Anti-CD106 (Alexa 
Fluor®647 
conjugate) 

BD 561612 Rat IF 1:100  

Anti-cGAS 
(D3O8O) 

Cell Signaling 31659 Rabbit IF 1:500  

Anti-cGAS 
(D1D3G) 

Cell Signaling 15102 Rabbit IF 1:500  

Anti-CLDN1/3 
(MH25) 

Invitrogen 71-7800 Rabbit IHC 1:20 Citrate pH6 

Anti-ER� Invitrogen MA5-13304 Mouse IHC 1:40 Citrate pH6 
Anti-F4/80 (Alexa 
Fluor®488 
conjugate) 

Biolegend 123120 Rat IF 1:100  

Anti-GAPDH Proteintech/Cedarl
ane Labs 

60004-1-Ig Mouse WB 1:50000  

Anti-HMMR Abcam ab124729 Rabbit IF 1:1000  
Anti-HMMR Abcam ab124729 Rabbit WB 1:1000  
Anti-HMMR Abcam ab108339 Rabbit IF 1:1000  
Anti-K8 DSHB TROMA-I Rat IHC 1:100 Citrate pH6 
Anti-K14 Biolegend 905301 Rabbit IHC 1:200 Citrate pH6 
Anti-LMNB1 Abcam Ab16048 Rabbit IF   
Anti-NFkB p65 Abcam Ab16502 Rabbit IF 1:500  
Anti-NFkB p52 EMD Millipore 06-413 Rabbit IF 1:500  
Anti-NMIIa/MYH9 
(2B3) 

Abcam ab55456 Mouse IF 1:100  

Anti-
NMIIb/MYH10 
(3H2) 

Abcam ab684 Mouse IF 1:50  

Anti-PCNT Biolegend PRB-923701 Rabbit IF 1:500  
Anti-p34-ARC 
antibody (F5) 

Santa Cruz 
Biotechnologies 

sc-515754 Mouse IF 1:200  

Anti-Vimentin/VIM Cell Signaling 5741 Rabbit IF 1:500  
Anti-Vimentin/VIM Abcam ab92547 Rabbit IHC 1:200 Citrate pH6 
Anti-ZO1 Invitrogen 40-2200 Mouse IF 1:500  

*IF: immunofluorescence; IHC, immunohistochemistry; WB, western blotting. 



Original gel images Supplementary Figure 4a (included in Source data) 
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Uncropped images Supplementary Figure 4b (included in Source data) 

 

  



Original gel images Supplementary Figure 6 (included in Source data) 
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Original gel images Supplementary Figure 7 (included in Source data) 
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Uncropped images Supplementary Figure 15a (also in Source data) 
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Uncropped images Supplementary Figure 20 (included in Source data) 
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