Supporting Information

Synthesis of Substituted Cy5 Phosphoramidite Derivatives and Their Incorporation into Oligonucleotides Using Automated DNA Synthesis

Adam Meares,^{1,2} ^{\nu} Kimihiro Susumu,^{3,4} ^{\nu} Divita Mathur,^{1,2} Sang Ho Lee,^{3,4} Olga A. Mass,⁶ Jeunghoon Lee,^{6,7} Ryan D. Pensack,⁶ Bernard Yurke,^{6,8} William B. Knowlton,^{6,8} Joseph S. Melinger,⁵ and Igor L. Medintz^{1*}

¹Center for Bio/Molecular Science and Engineering Code 6900
³Optical Sciences Division Code 5600
⁵Electronics Science and Technology Division Code 6800
U.S. Naval Research Laboratory
Washington, D.C. 20375 USA

²College of Science George Mason University Fairfax, Virginia 22030 USA

⁴Jacobs Corporation Hanover, MD 21076 USA

⁶Micron School of Materials Science & Engineering ⁷Department of Chemistry & Biochemistry ⁸Department of Electrical & Computer Engineering Boise State University Boise, ID 83725 USA

^ψ Equal contributions

*Email: Igor.medintz@nrl.navy.mil

Table of Contents

Section 1: Additional Structural Figures	<i>S-3</i>
Section 2: Synthetic Procedures and Additional Compounds	S-4
Section 3: ¹ H and ¹³ C NMR Spectra	S-16
Section 4: Automated DNA Synthesis Coupling Protocols	<i>S-63</i>
Section 5: Mass Spectral Summary and LC/MS Traces for DNA-Cy5 Sequences	<i>S-66</i>
Section 6: Additional Absorption Spectra and Unsubstituted Cy5-oligonucleotide	
Properties	S-89
Section 7: Supporting References	<i>S-92</i>

Figure S1: Mono-methoxy trityl (left) versus Di-methoxy trityl (DMTr, right). Under acidic hydrolysis conditions, DMTr cleavage proceeds approximately 10-fold faster than MMTr cleavage.⁴

Figure S2: cyanoethyl-*N*,*N*-diisopropyl-H-phosphonamidate impurity generated during phosphoramidite conversion. NMR shown below in Figures S48-S50.

Figure S3: Structure of the 4-way Holliday junction. The four DNA sequences (A-D) synthesized with modified Cy5s self-assemble into a tetrameric Holliday junction structure. The fifth strand - A-comp – is complementary to A strand and allows the formation of a linear duplex to perform comparative studies with

the tetramer. Left: 2D line model of the Holliday junction and duplex. Right: 3D space-filled molecular model of the Holliday junction and duplex.

Section 2: Synthetic Procedures and Additional Compounds

5-methoxy-2,3,3-trimethylindolenine (1-OMe). A mixture of *p*-methoxyphenylhydrazine hydrochloride (8.00 g, 45.8 mmol) and 3-methyl-2-butanone (5.00 mL, 46.4 mmol) in ethanol (160 mL) was refluxed for 19 h under N₂. The solution was allowed to cool to room temperature, and the solvent was evaporated. The residue was chromatographed on silica gel with CHCl₃ \rightarrow CHCl₃:MeOH (25:1), yielding a pale, red-tinted solid (8.143 g, 94%). ¹H NMR (400 MHz, CDCl₃): δ 7.43 (d, 1H, J = 8.0 Hz, Ph), 6.79-6.85 (m, 2H, Ph), 3.83 (s, 3H, CH₃O), 2.25 (s, 3H, CH₃), 1.29 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 185.8, 158.0, 147.5, 147.3, 120.1, 112.1, 108.2, 55.7, 53.8, 23.3, 15.3; LCMS (ESI): m/z [M+H]⁺ Calcd for C₁₂H₁₆NO 190.1237; Found 190.15.

5-hydroxy-2,3,3-trimethylindolenine (1-OH). A mixture of 5-methoxy-2,3,3-trimethylindolenine **1-OMe** (4.04 g, 21.3 mmol) and 48% HBr (70 mL) was refluxed for 2 h under N₂. After cooling, the reaction mixture was poured into 280 mL of deionized water. Solid NaHCO₃ was slowly added until the solution was basified. The product was extracted with CHCl₃ (3 × 100 mL). The combined CHCl₃ layers were washed with brine, and dried over Na₂SO₄. The solid was filtered off, and the solvent was evaporated to give a brown solid (3.29 g, 88%). ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, 1H, J = 8.4 Hz, Ph), 6.82 (d, 1H, J = 1.6 Hz, Ph), 6.76 (dd, 1H, J = 8.2, 1.8 Hz, Ph), 2.26 (s, 3H, CH₃), 1.29 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 186.0, 155.8, 147.4, 145.2, 120.0, 114.3, 109.9, 53.8, 23.3, 15.1; LCMS (ESI): m/z [M+H]⁺ Calcd for C₁₁H₁₄NO 176.1081; Found 176.12.

5-*n*-hexyloxy-2,3,3-trimethylindolenine (2-Hex). A mixture of 5-hydroxy-2,3,3-trimethylindolenine 1-OH (6.69 g, 38.2 mmol), 1-bromo-hexane (7.56 g, 45.8 mmol) and Cs₂CO₃ (14.92 g, 45.8 mmol) in dry DMF (135 mL) was stirred at 60°C for 2 hours under N₂. After cooling, DMF was removed in vacuo. Resultant red solid was dissolved in CH₂Cl₂/water (1:1), then the aqueous layer was drained. The organic layer was then washed with water, brine, dried (Na₂SO₄) and concentrated to a pale brown oil. The oil solidified upon thorough drying, yielding a tan brown solid (9.69g, 98%). ¹H NMR (400 MHz, CDCl₃): δ 7.40 (d, 1H, J = 8.3 Hz, Ph), 6.83 (d, 1H, J = 2.4 Hz, Ph), 6.80 (dd, 1H, J₁ = 8.3, J₂ = 2.4 Hz, Ph), 3.96 (t, 2H, J = 6.6, CH₂), 2.23 (s, 3H, CH₃), 1.74-1.82 (m, 2H, CH₂), 1.42-1.52 (m, 2H, CH₂), 1.31-1.38 (m, 4H, CH₂), 1.27 (s, 6H, CH₃), 0.87-0.94 (m, 3H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 185.7, 157.6, 147.5, 147.4, 120.2, 112.7, 108.9, 68.6, 53.9, 31.8, 29.5, 25.9, 23.4, 22.7, 15.4, 14.2. LCMS (ESI): m/z [M+H]⁺ Calcd for C₁₇H₂₆NO 260.2020; Found 260.34.

5-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}-2,3,3-trimethylindolenine (2-Peg). A mixture of 5-hydroxy-2,3,3-trimethylindolenine **1-OH** (4.00 g, 22.8 mmol), 1-bromo-2-[2-(2-methoxyethoxy)ethoxy]ethane **S1** (6.18 g, 27.2 mmol) and Cs₂CO₃ (9.71 g, 29.8 mmol) in dry DMF (70 mL) was stirred at 60°C for 6 days under N₂. After cooling, the inorganic salt was filtered off and further washed with acetone. The solvent was removed in vacuo. The residue was chromatographed on silica gel with CHCl₃:MeOH (50:1), yielding a viscous oil (6.90 g, 94%). ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, 1H, J = 8.4 Hz, Ph), 6.87 (d, 1H, J = 2.4 Hz, Ph), 6.82 (dd, 1H, J = 8.4, 2.4 Hz, Ph), 4.15 (t, 2H, J = 5.0 Hz, CH₂), 3.87 (t, 2H, J = 4.8 Hz, CH₂), 3.73-3.77 (m, 2H, CH₂), 3.64-3.71 (m, 4H, CH₂), 3.55 (t, 2H, J = 4.6 Hz, CH₂), 3.38 (s, 3H, CH₃O), 2.25 (s, 3H, CH₃), 1.28 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 186.0, 157.2, 147.7, 147.4, 120.1, 112.9, 109.1, 72.1, 70.9, 70.8, 70.7, 70.0, 68.0, 59.1, 53.9, 23.3, 15.4; LCMS (ESI): m/z [M+H]⁺ Calcd for C₁₈H₂₈NO₄ 322.2024; 322.35.

5-*tert*-butyl-2,3,3-trimethylindolenine (2-tBu). A mixture of (4-*tert*-butylphenyl)hydrazine hydrochloride (9.56 g, 47.6 mmol) and 3-methyl-2-butanone (5.10 mL, 47.6 mmol) was dissolved in ethanol (105 mL) then refluxed for 19 h in darkness, under N₂. The solution was allowed to cool to room temperature, and the solvent was evaporated. The resultant red-brown oil was dissolved in CH₂Cl₂ then washed with water, brine, dried (Na₂SO₄) and concentrated. Column chromatography [silica, hexanes/ethyl acetate (4:1)] yielded a pale brown oil that solidified after thorough drying and standing undisturbed overnight (7.97g, 78%). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, 1H, J = 7.6 Hz, Ph), 7.32 (dd, 1H, J₁ = 2.0 Hz, J₂ = 8.1 Hz, Ph), 7.29 (d, 1H, J = 2.0 Hz, Ph), 2.26 (s, 3H, CH₃), 1.35 (s, 9H, CH₃), 1.30 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 187.5, 151.7, 148.4, 145.5, 124.6, 119.2, 118.3, 53.7, 35.0, 31.9, 23.4, 15.5; LCMS (ESI): m/z [M+H]⁺ Calcd for C₁₅H₂₂N 216.1758; Found 216.26.

5-chloro-2,3,3-trimethylindolenine (2-Cl). A mixture of *p*-chlorophenylhydrazine hydrochloride (10.00 g, 55.9 mmol) and 3-methyl-2-butanone (5.68 g, 66.0 mmol) in ethanol (60 mL) and conc. H₂SO₄ (5.6 mL) was refluxed for 5 h under N₂. The solution was allowed to cool to room temperature, and the solvent was evaporated. H₂O (~150 mL) was added to the residue. The aqueous solution was washed with hexanes (2 times) and neutralized with Na₂CO₃. The product was extracted with CHCl₃ (3 times). The combined organic layers were dried over Na₂SO₄. The inorganic salt was filtered off, and the solvent was evaporated to give oil as the product (10.40 g, 96%). ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, 1H, J = 8.0 Hz, Ph), 7.23-7.29 (m, 2H, Ph), 2.27 (s, 3H, CH₃), 1.30 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 188.4, 152.3, 147.4, 130.9, 127.7, 122.0, 120.8, 54.1, 22.9, 15.4; LCMS (ESI): m/z [M+H]⁺ Calcd for C₁₁H₁₂NCl 194.0737; Found 194.15.

1-[3-(acetoxy)propyl]-5*n***-hexyloxy-2,3,3-trimethylindolinium iodide (3-Hex)**. A mixture of 5-hexyloxy-2,3,3-trimethylindolenine **2-Hex** (9.69g, 37.4 mmol) and freshly prepared 3-iodopropyl acetate **S2** (9.48g, 41.6 mmol) was stirred at 100°C for 3.5 h under N₂. The reaction mixture was allowed to cool to room temperature. The resultant black, tar-like solid was dissolved in CH₂Cl₂:MeOH (1:1), transferred to a 250 mL round bottom flask and concentrated. The crude material was dissolved in CH₂Cl₂ (~15-20 mL) then forced to precipitate by the rapid addition of hexanes, while swirling the flask. The dissolution/precipitation was performed a second time. The sticky brown solid was then dried thoroughly, yielding a brown foamy solid (15.58g, 86%). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, 1H, J = 9.5 Hz, Ph), 7.01-7.07 (m, 2H, Ph), 4.83 (t, 2H, J = 7.3 Hz, CH₂), 4.23 (t, 2H, J = 5.9 Hz, CH₂), 4.02 (t, 2H, J = 6.5 Hz, CH₂), 3.10 (s, 3H, CH₃) 2.34-2.44 (m, 2H, CH₂), 2.02 (s, 3H, OAc) 1.76-1.86 (m, 2H, CH₂), 1.64 (s, 6H, CH₃), 1.43-1.52 (m, 2H, CH₂), 1.31-1.40 (m, 4H, CH₂), 0.89-0.96 (m, 3H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.1, 170.6, 161.2, 143.6, 134.1, 116.6, 115.1, 109.9, 69.2, 61.1, 54.5, 47.4, 31.6, 29.1, 27.4, 25.7, 23.5, 22.6, 21.1, 16.9, 14.1; LCMS (ESI): m/z [M]⁺ Calcd for C₂₂H₃₄NO₃ 360.2544; Found 360.49.

1-[3-(acetoxy)propyl]-5-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}-2,3,3-trimethylindolinium iodide (3-Peg). A mixture of 5-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}-2,3,3-trimethylindolenine **2-Peg** (1.28 g, 3.97 mmol) and freshly prepared 3-iodopropyl acetate **S2** (1.20 g, 5.26 mmol) was stirred at 105 °C for 7 h under N₂. The reaction mixture was allowed to cool to room temperature. CHCl₃ (1.0 mL) and MeOH (0.1 mL) were added to the reaction mixture to dissolve the tar-like oily residue. Then ether (~50 mL) was added, and the supernatant was discarded. This washing process was repeated twice. The viscous dark brown oil was further dried under vacuum for a yield of 2.15 g (98%). ¹H NMR (400 MHz, CDCl₃): δ 7.62 (d, 1H, J = 8.8 Hz, Ph), 7.05-7.12 (m, 2H, Ph), 4.83 (t, 2H, J = 7.2 Hz, CH₂), 4.21 (m, 4H, CH₂), 3.89 (t, 2H, J = 4.4 Hz, CH₂), 3.72-3.77 (m, 2H, CH₂), 3.64-3.72 (m, 4H, CH₂), 3.54-3.59 (m, 2H, CH₂), 3.38 (s, 3H, CH₃O), 3.07 (s, 3H, CH₃), 2.36 (quint, 2H, J = 6.4 Hz, CH₂), 2.04 (s, 3H, CH₃CO), 1.63 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 193.4, 170.6, 160.8, 143.6, 134.2, 116.5, 115.3, 110.2, 71.9, 70.8, 70.6, 70.5, 69.4, 68.6, 61.0, 59.0, 54.5, 47.2, 27.3, 23.4, 21.0, 16.7; LCMS (ESI): m/z [M]⁺ Calcd for C₂₃H₃₆NO₆ 422.2548; Found 422.46.

1-[3-(acetoxy)propyl]-5-*tert***-butyl-2,3,3-trimethylindolinium iodide (3-tBu)**. A mixture of 5-*tert*-butyl-2,3,3-trimethylindolenine **2-tBu** (2.15g, 10.0 mmol) and freshly prepared 3-iodopropyl acetate **S2** (2.28 g, 10.0 mmol) was stirred at 100 °C for 3 h under N₂. The reaction mixture was allowed to cool to room temperature. The resultant black, tar-like solid was dissolved in CH₂Cl₂:MeOH (1:1), transferred to a 100 mL round bottom flask and concentrated. The crude material was dissolved in CH₂Cl₂ (~5 mL) then forced to precipitate by the rapid addition of diethyl ether (30 mL), while swirling the flask. The dissolution/precipitation was repeated five times in total, until the supernatant no longer indicated extraction of highly colored impurities. The sticky light brown solid was then dried thoroughly, yielding a pale brown foam (3.17g, 72%). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, 1H, J = 8.6 Hz, Ph), 7.50 (dd, 1H, J₁ = 1.8 Hz, Ph), 4.87 (t, 2H, J = 7.3 Hz, CH₂), 4.22 (t, 2H, J = 5.8 Hz, CH₂), 3.15 (s, 3H, CH₃), 2.33-2.41 (m, 2H, CH₂), 1.99 (s, 6H, OAc), 1.65 (s, 6H, CH₃), 1.36 (s, 9H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.7, 170.6, 154.6, 141.5, 138.9, 127.0, 120.1, 115.0, 61.1, 54.8, 47.4, 35.5, 31.5, 27.3, 23.5, 21.0, 17.2; LCMS (ESI): m/z [M]⁺ Calcd for C₂₀H₃₀NO₂ 316.2282; Found 316.36.

5-chloro-1-[3-(acetoxy)propyl]-2,3,3-trimethylindolinium iodide (3-Cl). A mixture of 5-chloro-2,3,3-trimethylindolenine **2-Cl** (1.00 g, 5.16 mmol) and freshly prepared 3-iodopropyl acetate **S2** (1.31 g, 5.74 mmol) was degassed under vacuum for 5 min, backfilled with N₂, then stirred at 105 °C for 21 h under N₂. The reaction mixture was allowed to cool to room temperature. CHCl₃ (1.0 mL) and MeOH (0.1 mL) were added to the reaction mixture to dissolve the oil residue. Then ether (~50 mL) was added, and the supernatant was discarded. This washing process was repeated 3 times. The viscous oil was further dried under vacuum for a final yield 2.05 g (94%). ¹H NMR (400 MHz, CDCl₃): δ 7.68 (d, 1H, J = 8.4 Hz, Ph), 7.51-7.61 (m, 2H, Ph), 4.86 (t, 2H, J = 7.2 Hz, CH₂), 4.21 (t, 2H, J = 5.8 Hz, CH₂), 3.12 (s, 3H, CH₃), 2.35 (quint, 2H, J = 6.4 Hz, CH₂), 2.04 (s, 3H, CH₃CO), 1.69 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.9, 170.6, 143.3, 139.7, 136.7, 130.0, 124.0, 117.2, 61.1, 55.0, 47.6, 27.3, 23.3, 21.1, 17.3; LCMS (ESI): m/z [M]⁺ Calcd for C₁₆H₂₁NO₂Cl 294.126; Found 294.23.

1,1'-bis(3-acetoxypropyl)-5,5'-bis(*n***-hexyloxy)-3,3,3',3'-tetramethyl-indodicarbocyanine** iodide (4-Hex). A mixture of 1-[3-(acetoxy)propyl]-5-hexyloxy-2,3,3-trimethylindolinium iodide **3-Hex** (6.44g, 13.2 mmol), malonaldehyde dianilide hydrochloride (1.63g, 6.29 mmol) and sodium acetate (1.55g, 18.87 mmol), was suspended in acetic anhydride (52 mL) then stirred vigorously at 120°C for 2 h. After cooling to room temp, the solvent was evaporated by short-path distillation. Crude blue solid was dissolved in CH₂Cl₂ then washed with aqueous sodium iodide (2 molar equivalents, ~ 2 grams), dried (Na₂SO₄) and concentrated. Crude material was then split into two equal portions for column chromatography [silica, CHCl₃:MeCN (4:1)] yielding a blue solid (4.58g, 82%) when combined.¹H NMR (400 MHz, CDCl₃): δ 7.91 (t, 2H, J = 13.0 Hz, =CH-), 6.98 (d, 2H, J = 8.7 Hz, Ph), 6.88 (d, 2H, J = 2.4 Hz, Ph), 6.80 (dd, 2H, J₁ = 2.4 Hz, J₂ = 8.7 Hz, Ph), 6.71 (t, 1H, J = 12.5 Hz, =CH-) 6.24 (d, 2H, J = 13.7 Hz, =CH-), 4.16 (t, 4H, J = 7.0 Hz, CH₂), 4.11 (t, 4H, J = 6.0 Hz, CH₂), 3.91(t, 4H, J = 6.5 Hz, CH₂), 2.09-2.17 (m, 4H, CH₂), 1.98 (s, 6H, OAc), 1.68-1.76 (m, 4H, CH₂) 1.65 (s, 12H, CH₃), 1.35-1.46 (m, 4H, CH₂), 1.24-1.32 (m, 8H, CH₂), 0.82-0.87 (m, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.7, 170.7, 157.6, 152.1, 142.7, 135.3, 125.4, 113.8, 111.0, 109.6, 103.3, 68.8, 61.2, 49.4, 41.5, 31.5, 29.1, 28.2, 26.5, 25.6, 22.5, 21.0, 14.0; LCMS (ESI): m/z [M]⁺ Calcd for C₄₇H₆₇N₂O₆ 755.5005; Found 755.50.

1,1'-bis(3-acetoxypropyl)-5,5'-bis(*tert***-butyl)-3,3,3',3'-tetramethyldicarboindocyanine iodide (4-tBu)**. A mixture of 1-[3-(acetoxy)propyl]-5-*tert*-butyl-2,3,3-trimethylindolinium iodide **3-tBu** (5.75 g, 13.0 mmol), malonaldehyde dianilide hydrochloride (1.67 g, 6.50 mmol), was dissolved in dichloromethane (130 mL) then treated with acetic anhydride (3.69 mL, 39.0 mmol) and triethylamine (9.06 mL, 65.0 mmol). The solution was stirred vigorously at room temp for 4.5 h, then aqueous sodium iodide (1 molar equivalent, ~ 2 g) was added, and stirring was continued for 12 hr. The two phases were then separated, dried (Na₂SO₄) and concentrated. Iterative column chromatography [silica, CH₂Cl₂:MeCN (8:1) \rightarrow (5:1)] yielded a blue solid (4.24g, 82%). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (t, 2H, J = 13.1 Hz, =CH-), 7.34-7.38 (m, 4H, Ph), 7.00 (d, 2H, J = 7.7 Hz, Ph), 6.94 (t, 1H, J = 12.5 Hz, =CH-), 6.44 (d, 2H, J = 13.7 Hz, =CH-), 4.24 (t, 4H, J = 7.0 Hz, CH₂), 4.17 (t, 4H, J = 6.1 Hz, CH₂), 2.16-2.24 (m, 4H, CH₂), 2.02 (s, 6H, OAc), 1.75 (s, 12H, CH₃), 1.33 (s, 18H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.9, 170.9, 153.2, 149.1, 141.1, 140.0, 126.5, 125.7, 119.3, 109.9, 104.0, 61.5, 49.6, 41.7, 35.1, 31.7, 28.4, 26.8, 21.2; LCMS (ESI): m/z [M]⁺ Calcd for C₄₃H₅₉N₂O₄ 667.4480; Found 667.72.

1,1'-bis(3-hydroxypropyl)-5,5'-bis(n-hexyloxy)-3,3,3',3'-tetramethyl-indodicarbocyanine iodide (5-Hex). Α sample of 1,1'-bis(3-acetoxypropyl)-5,5'-bis(n-hexyloxy)-3,3,3',3'-tetramethyldicarboindocyanine iodide 4-Hex (4.00g, 4.53 mmol) was dissolved in MeOH (400 mL) then treated with acetyl chloride (8.87g, 113 mmol) and allowed to stir at room temperature, in darkness, for 22 hours. The reaction mixture was carefully neutralized with NaHCO₃ (sat'd, aq.) while chilled in an ice bath. CHCl₃ was added to the mixture and the aqueous layer drained. Organic layer was then washed with aqueous sodium iodide (2 molar equivalents, ~ 1.5 g), dried (Na₂SO₄) and concentrated. Crude material was then split into two equal portions for column chromatography [silica, CHCl₃/MeCN (2:1)] yielding a blue solid (2.69g, 74%) when combined. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (t, 2H, J = 13.1 Hz, =CH-), 7.13 (d, 2H, J = 8.7 Hz, Ph), 6.77-6.90 (m, 5H, =CH- and Ph), 6.34 (d, 2H, J = 13.6 Hz, =CH-), 4.22 (t, 4H, J = 7.5 Hz, CH₂), 3.90 (t, 4H, J = 6.5 Hz, CH₂), 3.87-3.82 (m, 4H, CH₂), 3.74 (s, 2H, OH), 2.03-2.09 (m, 4H, CH₂), 1.69-1.78 (m, 4H, CH₂), 1.62 (s, 12H, CH₃), 1.38-1.47 (m, 4H, CH₂), 1.30-1.36 (m, 8H, CH₂), 0.87-0.93 (m, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.4, 157.7, 151.4, 142.7, 135.8, 126.0, 113.7, 111.5, 109.8, 103.5, 68.9, 58.7, 49.3, 42.1, 31.7, 30.3, 29.4, 28.2, 25.8, 22.7, 14.2; LCMS (ESI): m/z [M]⁺ Calcd for C₄₃H₆₃N₂O₄ 671.4793; Found 671.78.

1,1'-bis(3-hydroxypropyl)-5,5'-bis{2-[2-(2-methoxyethoxy)ethoxy]-3,3,3',3'-tetramethylindodicarbocyanine iodide (5-Peg). 1-[3-(Acetoxy)propyl]-5-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}-2,3,3-trimethylindolinium iodide (6.194 g, 11.3 mmol), malonaldehyde dianilide hydrochloride (1.45 g, 5.60 mmol), acetic anhydride (3.8 mL, 40.0 mmol), triethylamine (1.9 mL, 14.0 mmol) and ethanol (60 mL) were added to a 250-mL round-bottom flask, and the mixture was refluxed for 2 h under N_2 . After cooling, the solvent was evaporated. The residue was mixed with ether (~50 mL), and the supernatant was discarded (3 times). The crude intermediate 4-Peg was dissolved in methanol (90 mL), then 4M HCl (90 mL) was added dropwise. The reaction mixture was stirred at room temperature in the dark for 38 h under N_2 . Methanol was evaporated. The product was extracted with CHCl₃ (5 times). The combined organic layers were dried over Na₂SO₄. The inorganic salt was filtered off, and the solvent was evaporated. The residue was chromatographed on silica gel with CHCl₃:MeOH (8:1), yielding a blue solid (3.00 g, 65%). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (t, 2H, J = 12.8 Hz, =CH-), 7.06 (d, 2H, J = 8.8 Hz, Ph), 6.86-6.98 (m, 5H, Ph and =CH-), 6.43 (d, 2H, J = 13.2 Hz, =CH-), 4.20 (t, 4H, J = 7.2 Hz, CH₂), 4.15 (t, 4H, J = 4.6 Hz, CH₂), 3.87 (t, 4H, J = 4.8 Hz, CH₂), 3.82 (t, 4H, J = 5.2 Hz, CH₂), 3.72-3.77 (m, 4H, CH₂), 3.68-3.72 (m, 4H, CH₂), 3.64-3.68 (m, 4H, CH₂), 3.39 (s, 6H, CH₃O), 2.07 (quint, 4H, J = 6.0 Hz, CH₂), 1.65 (s, 12H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.5, 157.2, 151.5, 142.6, 135.9, 125.7, 114.0, 111.5, 109.9, 103.3, 71.9, 70.8, 70.6, 70.5, 69.7, 68.3, 59.0, 58.5, 49.3, 41.9, 30.2, 28.1; LCMS (ESI): m/z [M]⁺ Calcd for C₄₅H₆₇N₂O₁₀ 795.4790; Found 795.48.

1,1'-bis(3-hydroxypropyl)-5,5'-bis(*tert*-butyl)-3,3,3',3'-tetramethyl-indodicarbocyanine iodide (5-tBu). A sample of 1,1'-bis(3-acetoxypropyl)-5,5'-bis(*tert*-butyl)-3,3,3',3'-tetramethyl-indodicarbocyanine iodide **4-tBu** (3.91 g, 5.00 mmol) was dissolved in MeOH (150 mL) then treated with acetyl chloride (5.89g, 75.0 mmol) and allowed to stir at room temperature, in darkness, for 16 hours. The reaction mixture was carefully neutralized with NaHCO₃ (sat'd, aq.) while chilled in an ice bath. CHCl₃ was added to the mixture and the aqueous layer drained. Organic layer was then washed with aqueous sodium iodide (2 molar equivalents, ~ 1.5 g), dried (Na₂SO₄) and concentrated. Column chromatography [silica, CH₂Cl₂/MeOH (40:1 \rightarrow 10:1)] yielded a blue solid (2.54 g, 73%). ¹H NMR (400 MHz, DMSO-d₆): δ 8.35 (t, 2H, J = 13.2 Hz, =CH-), 7.71 (d, 2H, J = 1.9 Hz, Ph), 7.44 (dd, 2H, J₁ = 1.9 Hz, J₂ = 8.4 Hz, Ph), 7.31 (d, 2H, J = 8.4 Hz, Ph), 6.54 (t, 1H, J = 12.4 Hz, =CH-), 6.32 (d, 2H, J = 13.9 Hz, =CH-), 4.78 (t, 2H, J = 5.0 Hz, CH₂), 4.15 (t, 4H, 7.1 Hz, CH₂), 3.36 (s, 3H, CH₃), 1.83-1.94 (m, 4H, CH₂), 1.72 (s, 12H, CH₃), 1.36 (s, 18H, CH₃); ¹³C{¹H} NMR (100 MHz, DMSO-d₆): δ 173.6, 154.4, 148.8, 142.0, 140.9, 126.2, 126.0, 120.5, 111.3, 103.8, 58.6, 50.0, 41.7, 35.7, 32.4, 31.2, 28.2; LCMS (ESI): m/z [M]⁺ Calcd for C₃₉H₅₅N₂O₂ 583.4269; Found 583.68.

5,5'-dichloro-1,1'-bis(3-hydroxypropyl)-3,3,3',3'-tetramethyl-indodicarbocyanine iodide (5-Cl). Samples of 1-[3-(acetoxy)propyl]-5-chloro-2,3,3-trimethylindolinium iodide (2.52 g, 5.98 mmol), malonaldehyde dianilide hydrochloride (0.770 g, 2.98 mmol), acetic anhydride (2.00 mL, 21.2 mmol), triethylamine (1.00 mL, 7.17 mmol) were added to a 250-mL round-bottom flask, dissolved in ethanol (40 mL), and the contents refluxed for 2 h under N₂. After cooling, the solvent was evaporated. The residue was mixed with hexanes (~50 mL), and the supernatant was discarded. Then, the residue was further mixed with ether (~50 mL), and the supernatant was discarded (2 times). The crude product was dried under vacuum and used for the subsequent acetyl deprotection without further purification. The crude intermediate 4-Cl was dissolved in dry methanol (15 mL) and CH₂Cl₂ (5.0 mL), then acetyl chloride (1.20 mL, 16.9 mmol) was added dropwise at room temperature under N2. The reaction mixture was stirred in the dark for 15.5 h under N_2 , then mixed with CHCl₃ (100 mL) and washed with brine (50 mL). The aqueous layer was washed with CHCl₃ (4~5 times). The combined organic layers were dried over Na₂SO₄. The inorganic salt was filtered off, and the solvent was evaporated. The residue was chromatographed on silica gel with CHCl₃:MeOH (8:1 \rightarrow 5:1), yielding a blue solid (1.40 g, 81%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (br s, 2H, =CH-), 7.34 (dd, 2H, J = 8.4, 2.0 Hz, Ph), 7.29 (d, 2H, J = 2.0 Hz, Ph), 7.12 (br s, 1H, =CH-), 7.09 (d, 2H, J = 8.4 Hz, Ph), 6.68 (br s, 2H, =CH-), 4.26 (t, 4H, J = 7.0 Hz, CH₂), 3.80 (t, 4H, J = 4.8 Hz, CH₂), 2.05 (m, 4H, CH₂), 1.66 (s, 12H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 172.2, 153.2, 142.6, 140.6, 130.4, 128.7, 126.9, 122.5, 112.1, 104.0, 58.3, 49.2, 41.9, 30.0, 27.8; LCMS (ESI): m/z [M]⁺ Calcd for C₃₁H₃₇Cl₂N₂O₂ 539.2227; Found 539.45.

1-(3-hydroxypropyl)-1'-[3-(4-monomethoxytrityloxy)propyl]-5,5'-bis(*n*-hexyloxy)-3,3,3',3'-

tetramethyl-indodicarbocyanine iodide (Cy5-Hex). A sample of 1,1'-bis(3-hydroxypropyl)-5,5'-bis(nhexyloxy)-3,3,3',3'-tetramethyl-indodicarbocyanine iodide 5-Hex (1.53g, 1.92 mmol) was dissolved in 25 mL of dry pyridine, then treated with 4-monomethoxytrityl chloride (1.18g, 3.82 mmol) and allowed to stir for 4 days at room temperature, in darkness. The pyridine was removed in vacuo then the resultant blue solid was dissolved in CH₂Cl₂, washed with aqueous sodium iodide (1 molar equivalent, ~ 0.9 g), dried (Na₂SO₄) and concentrated. Iterative column chromatography [silica, CHCl₃:MeCN (3:1)] yielded a blue solid (509.3 mg, 25%). ¹H NMR (400 MHz, CDCl₃): δ 7.94 (t, 1H, J = 13.1 Hz, =CH-), 7.85 (t, 1H, J = 12.9 Hz, =CH-), 7.39-7.44 (m, 4H, Ph), 7.22-7.33 (m, 8H, Ph)*, 7.15 (d, 1H, J = 8.6 Hz, Ph), 6.95 (d, 2Hz, Ph), 6.95 J = 8.7 Hz, Ph), 6.85-6.91 (m, 3H, Ph), 6.82 (d, 2H, J = 8.9 Hz, Ph), 6.73 (dd, 1H, $J_1 = 2.4$ Hz, $J_2 = 8.7$ Hz, Ph), 6.26 (t, 1H, J = 12.4 Hz, =CH-), 6.18 (d, 1H, J = 13.4 Hz, =CH-), 6.07 (d, 1H, J = 13.6 Hz, =CH-), 4.30 (t, 2H, J = 7.6 Hz, CH₂), 4.11 (t, 2H, J = 7.0 Hz, CH₂), 3.92-3.99 (m, 4H, CH₂), 3.82-3.89 (m, 2H, CH₂), 3.80 (s, 3H, OCH₃), 3.45 (s, 1H, OH), 3.10 (t, 2H, J = 5.6 Hz, CH₂), 2.05-2.13 (m, 4H, CH₂), 1.74-1.83 (m, 4H, CH₂), 1.66 (s, 6H, CH₃), 1.64 (s, 6H, CH₃), 1.43-1.51 (m, 4H, CH₂), 1.32-1.38 (m, 8H, CH₂), 0.89-0.94 (m, 6H, CH₃);¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.4, 171.1, 158.1, 157.2, 156.9, 151.5, 151.0, 144.0, 142.29, 142.25, 135.0, 134.8, 134.7, 129.8, 127.7, 127.4, 126.5, 124.2, 113.5, 113.3, 112.6, 111.5, 111.0, 109.0, 108.9, 102.4, 102.3, 86.3, 68.3, 59.3, 57.8, 54.9, 49.1, 48.9, 41.7, 40.7, 31.0, 29.8, 28.7, 27.7, 27.5, 27.1, 25.1, 22.0, 13.6; LCMS (ESI): m/z [M]⁺ Calcd for C₆₃H₇₉N₂O₅ 943.5994; Found 943.93.

*multiplet overlaps with CHCl₃ residual, hydrogen count is assumed due to the accuracy of all remaining integrals. Resonance observed at 2.01 ppm attributed to MeCN.

1-(3-hydroxypropyl)-1'-[3-(4-monomethoxytrityloxy)propyl]-5,5'-bis{2-[2-(2-

methoxyethoxy)ethoxy]-3,3,3',3'-tetramethyl-indodicarbocyanine iodide (Cy5-Peg). А sample of **5-peg** (1.99 g, 2.39 mmol) was dissolved in 60 mL of dry CH₂Cl₂. Triethylamine (0.70 mL, 5.0 mmol) and 4-monomethoxytrityl chloride (0.89 g, 2.88 mmol) were added to the solution. The reaction mixture was stirred at room temperature in the dark for 3.5 h under N₂. The reaction was quenched by addition of methanol, and the solvent was evaporated. The residue was chromatographed on silica gel with CHCl₃:MeOH (8:1). The crude product was further purified by C18 reverse phase flash column chromatography (Biotage Selekt) with MeOH : 0.1 M triethylammonium acetate buffer (pH 7.0) (7:3 \rightarrow 8:2). Methanol was evaporated from the product fractions. The product was extracted with $CHCl_3$ (3~4 times). The combined organic layers were washed with aqueous NaI solution and dried over Na₂SO₄. The inorganic salt was filtered off and the solvent was evaporated to give viscous dark blue oil as the product (0.92 g, 32%). ¹H NMR (400 MHz, CDCl₃): δ 7.91 (t, 1H, J = 13.0 Hz, =CH-), 7.82 (t, 1H, J = 13.0 Hz, =CH-), 7.41 (d, 4H, J = 7.2 Hz, Ph), 7.20-7.34 (m, 8H, Ph), 7.15 (d, 1H, J = 8.8 Hz, Ph), 6.88-7.00 (m, 4H, Ph), 6.82 (d, 2H, J = 8.8 Hz, Ph), 6.73-6.79 (m, 1H, Ph), 6.27 (t, 1H, J = 12.6 Hz, =CH-), 6.18 (d, 1H, J = 14.0 Hz, =CH-), 6.09 (d, 1H, J= 13.2 Hz, =CH-), 4.29 (t, 2H, J = 7.2 Hz, CH₂), 4.08-4.20 (m, 6H, CH₂), 3.82-3.91 (m, 6H, CH₂), 3.80 (s, 3H, CH₃O), 3.72-3.78 (m, 4H, CH₂), 3.68-3.72 (m, 4H, CH₂), 3.63-3.68 $(m, 4H, CH_2), 3.53-3.60$ $(m, 4H, CH_2), 3.39$ $(s, 6H, CH_3O), 3.11$ $(t, 2H, J = 5.4 Hz, CH_2), 2.03-2.14$ $(m, 4H, CH_2), 2.03-2.14$ $(m, 4H, CH_2), 3.53-3.60$ $(m, 4H, CH_2), 3$ 4H, CH₂), 1.66 (s, 6H, CH₃), 1.64 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.9, 171.3, 158.4, 157.2, 156.9, 151.9, 151.3, 144.2, 142.5, 142.4, 135.6, 135.3, 135.2, 130.1, 128.0, 127.7, 126.8, 124.6, 114.0, 113.7, 113.0, 111.7, 111.0, 109.7, 109.6, 103.0, 102.5, 86.6, 71.7, 70.5, 70.3, 70.2, 69.4, 68.1, 68.0, 59.7, 58.8, 58.1, 55.2, 49.4, 49.1, 42.1, 41.1, 30.1, 28.0, 27.8, 27.4; LCMS (ESI): m/z [M]⁺ Calcd for C₆₅H₈₃N₂O₁₁ 1067.5991; Found 1067.89.

1-(3-hydroxypropyl)-1'-[3-(4-monomethoxytrityloxy)propyl]-5,5'-bis(*tert*-butyl)-3,3,3',3'tetramethyl-indodicarbocyanine iodide (Cy5-tBu). A sample of 1,1'-bis(3-hydroxypropyl)-5,5'-bis(*tert*- butyl)-3,3,3',3'-tetramethyl-indodicarbocyanine iodide **5-tBu** (2.50 g, 3.52 mmol) was dissolved in 50 mL of dry pyridine, then treated with 4-monomethoxytrityl chloride (816.0 mg, 2.64 mmol) and allowed to stir for 18 h at room temperature, in darkness. A second portion of 4-monomethoxytrityl chloride (544.0 mg, 1.76 mmol) was added, and the reaction was stirred an additional 2 h. The pyridine was removed in vacuo then the resultant blue solid was triturated with diethyl ether (100 mL). Crude was then dissolved in CH₂Cl₂, washed with aqueous sodium iodide (1 molar equivalent, ~ 0.9 g), dried (Na₂SO₄) and concentrated. Column chromatography [silica, CHCl₃/MeCN (8:1) \rightarrow (2:1)] yielded a blue solid (1.10 g, 32%). ¹H NMR (400 MHz, CDCl₃): δ 8.07 (t, 1H, J = 13.0 Hz, =CH-), 8.00 (t, 1H, J = 13.0 Hz, =CH-), 7.34-7.46 (m, 7H, Ph), 7.20-7.33 (m, 10H, Ph), 7.06 (d, 1H, J = 8.4 Hz, Ph), 6.81 (d, 2H, J = 9.0 Hz, Ph), 6.11-6.21 (m, 3H, =CH-), 4.27-4.34 (m, 2H, CH₂), 4.19-4.25 (m, 2H, CH₂), 3.85-3.92 (m, 2H, CH₂), 3.78 (s, 3H, OCH₂), 3.02-3.09 (m, 2H, CH₂), 2.07-2.23 (m, 4H, CH₂), 1.76 (s, 6H, CH₃), 1.69 (s, 6H, CH₃), 1.33 (s, 18H, CH₃); 1³C{¹H} NMR (100 MHz, CDCl₃): δ 172.8, 172.2, 158.2, 152.7, 152.1, 148.7, 148.2, 144.2, 140.7, 140.6, 139.6, 139.3, 135.1, 130.0, 127.9, 127.6, 126.7, 125.4, 125.0, 124.9, 118.7, 112.8, 110.4, 110.1, 103.1, 102.7, 86.5, 59.5, 58.1, 55.1, 53.5, 49.4, 49.1, 41.9, 40.8, 34.6, 34.5, 31.4, 31.3, 30.1, 28.0, 27.8, 27.3; LCMS (ESI): m/z [M]⁺ Calcd for C₅₉H₇₁N₂O₃ 855.5470; Found 855.85.

5,5'-dichloro-1-(3-hydroxypropyl)-1'-[3-(4-monomethoxytrityloxy)propyl]-3,3,3',3'-tetramethylindodicarbocyanine iodide (Cy5-Cl). A sample of 5-Cl (0.63 g, 1.10 mmol) was dissolved in 40 mL of dry CH₂Cl₂. Triethylamine (0.32 mL, 2.3 mmol) and 4-monomethoxytrityl chloride (0.340 g, 1.10 mmol) were added to the solution. The reaction mixture was stirred at room temperature in the dark for 2 h under N_2 . The reaction was washed with aqueous NaI solution (1 molar equivalent, ~0.17g), and dried over The inorganic salt was filtered off, and the solvent was evaporated. The residue was Na₂SO₄. chromatographed [silica, CHCl₃:CH₃CN (2:1)] to obtain a dark blue solid (0.52 g, 50%). ¹H NMR (400 MHz, CDCl₃): δ 8.12 (t, 1H, J = 13.0 Hz, =CH-), 8.02 (t, 1H, J = 13.0 Hz, =CH-), 7.39 (d, 4H, J = 7.2 Hz, Ph), 7.13-7.36 (m, 13H, Ph and =CH-), 7.00 (d, 1H, J = 8.4 Hz, Ph), 6.81 (d, 2H, J = 8.8 Hz, =CH-), 6.48 (t, 1H, J = 12.2 Hz, =CH-), 6.33 (d, 1H, J = 13.6 Hz, =CH-), 6.20 (d, 1H, J = 13.6 Hz, =CH-), 4.33 (t, 2H, J = 7.4 Hz, CH₂), 4.16 (t, 2H, J = 6.6 Hz, CH₂), 3.84 (t, 2H, J = 5.4 Hz, CH₂), 3.80 (s, 3H, CH₃O), 3.10 (t, 2H, J = 5.4 Hz, CH₂), 2.02-2.15 (m, 4H, CH₂), 1.69 (s, 6H, CH₃), 1.66 (s, 6H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 173.0, 172.2, 158.6, 153.9, 153.3, 144.3, 142.7, 140.7, 140.5, 135.3, 131.0, 130.4, 130.2, 128.9, 128.5, 128.2, 127.9, 127.0, 126.6, 122.7, 113.2, 112.4, 111.8, 104.2, 103.7, 86.9, 59.7, 58.2, 55.4, 49.6, 49.3, 42.4, 41.4, 30.1, 28.1, 27.9, 27.6; LCMS (ESI): m/z [M]⁺ Calcd for C₅₁H₅₃Cl₂N₂O₃ 811.3428; Found 811.64.

1-Bromo-2-[2-(2-methoxyethoxy)ethoxy]ethane (S1). ¹ A mixture of triethyleneglycol monomethyl ether (22.36 g, 136 mmol) and triphenylphosphine (42.86 g, 163 mmol) in CH₂Cl₂ was cooled to 0 °C in an ice bath under N₂. N-Bromosuccinimide (29.05 g, 163 mmol) was added portionwise to the reaction mixture, which was further stirred at 0 °C for 2 h. The solvent was evaporated, and ether (~200 mL) was added to the residue. The reaction mixture was sonicated for 1 h, and the solid was filtered off. The filtrate was cooled in an ice-bath, and the white precipitate was filtered off. This process was repeated several times until solid no longer precipitated. After the solvent was evaporated, the residue was chromatographed on silica gel with CHCl₃ \rightarrow CHCl₃:MeOH (50:1). Upon concentration, compound **S1** was yielded as a viscous, colorless oil (26.08 g, 84%). ¹H NMR (400 MHz, CDCl₃): δ 3.82 (t, 2H, J = 6.4 Hz, CH₂), 3.64-3.71 (m, 6H, CH₂), 3.54-3.58 (m, 2H, CH₂), 3.48 (t, 2H, J = 6.4 Hz, CH₂), 3.39 (s, 3H, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 72.0, 71.3, 70.7, 70.6, 59.1, 30.4. Unable to acquire LCMS data.

A mixture of 3-chloropropyl acetate (15.04 g, 110 mmol) and sodium iodide (33.00 g, 220 mmol) in acetone was refluxed for 25.5 h under N₂. After cooling, the solid was filtered off and further washed with acetone. The combined filtrate was evaporated. Ether was added to the residue. The solid was filtered off and further washed with ether. The filtrate was combined and evaporated to give **S2** as a clear, colorless oil (22.03g, 88%). ¹H NMR (400 MHz, CDCl₃): δ 4.14 (t, 2H, J = 6.0 Hz, CH₂), 3.23 (t, 2H, J = 6.8 Hz, CH₂), 2.15 (quint, 2H, J = 6.4 Hz, CH₂), 2.06 (s, 3H, CH₃CO); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.0, 64.2, 32.5, 21.0, 1.5. Unable to acquire LCMS data.

Method 2 (Modified from Baba)³

A mixture of 3-iodopropanol (9.30g, 50.0 mmol), Et_3N (7.35 ml, 52.5 mmol) was dissolved in dried dichloromethane (50 mL), covered in aluminum foil and cooled to 0°C, under N₂. Then, acetyl chloride (3.75 mL, 52.5 mmol) was added slowly over ~10 minutes. The solution was stirred at 0°C for 10 minutes then the ice bath was removed, stirring was continued for 1.5 h. Resultant cloudy solution was transferred to a separatory funnel and diluted with an addition 50 mL dichloromethane, the remaining solid was dissolved in water and added to the separatory funnel.

The organic phase was washed with water, brine, then dried (Na_2SO_4) and concentrated while covered with aluminum foil. The pale brown oil was dissolved in hexanes then filtered through a short column [silica, hexanes:dichloromethane (1:1)], yielding **S2** as a clear colorless oil (9.48 g, 83%) upon concentration. ¹H NMR resonances were consistent with those reported for Method 1.

cyanoethyl-N,N-diisopropyl-H-phosphonamidate This byproduct is formed during Cy5phosphoramidite synthesis reactions. Note that the provided ³¹P NMR (Figure S50) was not calibrated, nor decoupled, and was included only to demonstrate two highly (and identically) split but discrete resonances, corresponding to the single P(V) center. ¹H NMR (400 MHz, CDCl₃): δ 6.95 (d, J = 639.5 Hz, PH), 4.08-4.25 (m, 2H, CH₂), 3.43-3.59 (m, 2H, CH), 2.69-2.82 (m, 2H, CH₂), 1.28 (d, 6H, J = 5.6 Hz, CH₃), 1.26 (d, 6H, J = 5.6 Hz, CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 117.0 (s), 58.3 (d, J = 5.9 Hz), 45.5 (d, J = 6.6 Hz), 23.0-23.2 (m), 20.3 (d, J = 6.6 Hz); ³¹P NMR (162 MHz, CDCl₃): 16.0-16.6 (m), 12.0-12.4 (m); LCMS (ESI): m/z [M+Et₃NH]⁺ Calcd for C₁₅H₃₅N₃O₂P 320.2466; Found 320.39.

Section 3: ¹H and ¹³C NMR Spectra

NMR spectra are presented in order of appearance according to schema. Individual spectra are scaled to allow for easier visualization, in some cases residual solvent resonances corresponding to CHCl₃, TMS or DMSO exceed the viewing window. Commonly observed residual solvent resonances are CHCl₃, CH₂Cl₂, MeCN and water in CDCl₃ and DMSO in d_6 -DMSO, see Fulmer *et al.* ⁵ for corresponding δ ppm values.

Figure S4: 1H NMR of 1-OMe

Figure S5: ¹³C NMR of 1-OMe

Figure S6: ¹H NMR of 1-OH

Figure S7: ¹³C NMR of 1-OH

Figure S8: ¹H NMR of 2-hex

S-22

Figure S11: ¹³C NMR of 2-Peg

Figure S12: ¹H NMR of 2-tBu

Figure S13: ¹³C NMR of 2-tBu

Figure S14: ¹H NMR of 2-Cl

S-26

Figure S15: ¹³C NMR of 2-Cl

Figure S16: ¹H NMR of 3-hex

Figure S17: ¹³C NMR of 3-hex

Figure S18: ¹H NMR of 3-Peg

Figure S19: ¹³C NMR of 3-Peg

S-32

Figure S21: ¹³C NMR of 3-tBu

Figure S22: ¹H NMR of 3-Cl

Figure S23: ¹³C NMR of 3-Cl

Figure S24: ¹H NMR of 4-hex

Figure S25: ¹³C NMR of 4-hex

Figure S26: ¹H NMR of 4-tBu

Figure S27: ¹³C NMR of 4-tBu

Figure S28: ¹³C NMR of 5-hex

Figure S29: ¹³C NMR of 5-hex

Figure S30: ¹H NMR of 5-Peg

Figure S31: ¹³C NMR of 5-Peg

Figure S32: ¹H NMR of 5-tBu

Figure S33: ¹³C NMR of 5-tBu

Figure S34: ¹³C NMR of 5-Cl

Figure S35: ¹³C NMR of 5-Cl

Figure S36: ¹H NMR of Cy5-hex

Figure S37: ¹³C NMR of Cy5-hex

Figure S38: ¹H NMR of Cy5-Peg

Figure S39: ¹³C NMR of Cy5-Peg

Figure S40: ¹H NMR of Cy5-tBu

Figure S41: ¹³C NMR of Cy5-tBu

Figure S42: ¹H NMR of Cy5-Cl

Figure S43: ¹³C NMR of Cy5-Cl

Figure S44: ¹H NMR of compound S1

Figure S45: ¹³C NMR of compound S1

Figure S46: ¹H NMR of compound S2

Figure S47: ¹³C NMR of compound S2

Figure S48: ¹H NMR of cyanoethyl-N,N-diisopropyl-H-phosphonamidate impurity

Figure S49: ¹³C NMR of cyanoethyl-N,N-diisopropyl-H-phosphonamidate impurity

Figure S50: ³¹P NMR of cyanoethyl-N,N-diisopropyl-H-phosphonamidate impurity

Section 4: Automated DNA Synthesis Phosphoramidites and Coupling Protocols

Coupling times for phosphoramidite monomer incorporation into oligomer are shown below. Protocols for ATCG are the commercially available phosphoramidites corresponding to the naturally occurring nucleobases, protocol for Cy5 corresponds to the unsubstituted, commercial phosphoramidite (included as a reference protocol), and Cy5-R are the novel phosphoramidites prepared in this work. These protocols are represented in the syntax of the Expedite 8909 synthesizer protocols. Commercial phosphoramidites ATCG and Cy5 purchased from Glen-Research (Sterling, VA) catalog numbers are in Table S1, below.

Phosphoramidite	Amine Protecting Group	Amine Protecting Group Structure	Catalog Number.
Adenosine	benzoyl		10-1000-1C
Thymidine	n/a	n/a	10-1030-1C
Cytidine	acetyl	0 - 42	10-1015-1C
Guanosine	dimethylformamidyl	N N	10-1029-1C
Cyanine (unsubstituted)	n/a	n/a	10-5915-90

Fable S1 : Summary of commercia	l phosphoramidites utilized i	n oligonucleotide synthesis
--	-------------------------------	-----------------------------

А

Syntax code	Line		<u>Type</u>	Amount	Time (s)	Comment
1	/*Wsh	*/	PULSE	5	0	"Flush system with Wsh"
2	/*Act	*/	PULSE	5	0	"Flush system with Act"
18	/*A+Act	*/	PULSE	5	0	"Monomer + Act to column"
18	/*A+Act	*/	PULSE	2	16	"Couple monomer"
2	/*Act	*/	PULSE	3	24	"Couple monomer"
1	/*Wsh	*/	PULSE	7	56	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush system with Wsh"

Т

Syntax code	Line		Type	Amount	Time (s)	Comment
1	/*Wsh	*/	PULSE	5	0	"Flush system with Wsh"
2	/*Act	*/	PULSE	5	0	"Flush system with Act"
21	/*T +Act	*/	PULSE	6	0	"Monomer + Act to column"
21	/*T +Act	*/	PULSE	1	8	"Couple monomer"
2	/*Act	*/	PULSE	4	32	"Couple monomer"
1	/*Wsh	*/	PULSE	7	56	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush system with Wsh"

С						
Syntax code	Line		Type	Amount	Time (s)	Comment
1	/*Wsh	*/	PULSE	5	0	"Flush system with Wsh"
2	/*Act	*/	PULSE	5	0	"Flush system with Act"
19	/*C +Act	*/	PULSE	5	0	"Monomer + Act to column"
19	/*C +Act	*/	PULSE	2	16	"Couple monomer"
2	/*Act	*/	PULSE	3	24	"Couple monomer"
1	/*Wsh	*/	PULSE	7	56	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush system with Wsh"

G

Syntax code	<u>Line</u>		Type	<u>Amount</u>	<u>Time (s)</u>	Comment
1	/*Wsh	*/	PULSE	5	0	"Flush system with Wsh"
2	/*Act	*/	PULSE	5	0	"Flush system with Act"
20	/*G +Act	*/	PULSE	6	0	"Monomer + Act to column"
20	/*G+Act	*/	PULSE	1	8	"Couple monomer"
2	/*Act	*/	PULSE	4	32	"Couple monomer"
1	/*Wsh	*/	PULSE	7	56	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush system with Wsh"

Cy5 (commercial)

Syntax code	Line		Type	Amount	Time (s)	Comment
1	/*Wsh	*/	PULSE	5	0	"Flush system with Wsh"
2	/*Act	*/	PULSE	5	0	"Flush system with Act"
22	/*5 +Act	*/	PULSE	6	0	"Monomer + Act to column"
22	/*5 +Act	*/	PULSE	1	32	"Couple monomer"
2	/*Act	*/	PULSE	4	128	"Couple monomer"
1	/*Wsh	*/	PULSE	7	200	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush system with Wsh"

Cy5-R						
Syntax code	Line		<u>Type</u>	Amount	Time (s)	Comment
1	/*Wsh	*/	PULSE	5	0	"Flush system with Wsh"
2	/*Act	*/	PULSE	5	0	"Flush system with Act"
22	/*5 +Act	*/	PULSE	3	0	"Monomer + Act to column"
1	/*Wsh	*/	PULSE	10	0	"Push Monomer+Act"
1	/*Wsh	*/	PULSE	7	150	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush out Monomer+Act"
22	/*5 +Act	*/	PULSE	3	0	"Monomer + Act to column"
1	/*Wsh	*/	PULSE	9	0	"Push Monomer+Act"
1	/*Wsh	*/	PULSE	7	150	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush out Monomer+Act"
22	/*5 +Act	*/	PULSE	3	0	"Monomer + Act to column"
1	/*Wsh	*/	PULSE	9	0	"Push Monomer+Act"
1	/*Wsh	*/	PULSE	7	150	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush out Monomer+Act"
2	/*Act	*/	PULSE	4	300	"Couple monomer"
1	/*Wsh	*/	PULSE	7	150	"Couple monomer"
1	/*Wsh	*/	PULSE	8	0	"Flush system with Wsh"

Wsh (Anhydrous Acetonitrile); 5 (Cy5-R phosphoramidite); Act (Activator 0.25 M 5-Ethylthio-1H-Tetrazole (ETT) in Anhydrous Acetonitrile);

Section 5: Mass Spectral Summary and LC/MS Traces for DNA-Cy5 Sequences

All traces below were acquired on the continuous ACQUITY UPLC system, passing through detectors in the following order: PDA $e\lambda$, FLR, SQD2. ACUITY UPLC is operated by MassLynx 4.2 software. All samples were injected using the auto-sampler (ACQUITY FTN, 2.0 µL injection volume), with the elution program including isocratic phase (2 minutes of gradient initial solution), gradient phase (16 minutes), wash phase (8.5 minutes) and re-equilibration to starting conditions (5.5 minutes), with a constant flow rate of 0.2 mL/min. Each series of sequences utilized a different gradient of increasing methanol in 0.05M TEAA (aq.), the gradient is indicated below the corresponding figures in the following pages. Only Optima grade solvents were utilized. Sample purity determined by integration, using absorbance bands observed in the 260 nm channel. Spectra for each LC/MS trace are displayed as follows, Figure S47 is annotated as an example:

- A) Fluorescence Emission, single channel emission focused on λ max emission for given Cy5, acquired on ACQUITY FLR
- B) Absorbance Intensity, single channel absorption focused on λ max absorbance for given Cy5, acquired on ACQUITY PDA e λ Detector
- C) Absorbance Intensity, single channel absorption focused at 260 nm, acquired on ACQUITY PDA eλ Detector
- D) Total Absorbance Intensity, for all channels in range of 200-800 nm, acquired on ACQUITY PDA eλ Detector
- E) Total Ion Current Chromatogram (TIC) for all channels in range of 200-3000 amu, acquired on ACQUITY SQD2
- F) TIC for single channel focused on monoisotopic weight of target sequence, assuming charge of -4, acquired on ACQUITY SQD2
- G) Combined mass spectrum over time period target band elutes (denoted by asterisk), obtained from full mass range TIC spectrum

All found and calculated m/z are summarized in Table S2. Sample isotope envelop (used to determine base peak) as generated by MassLynx 4.2 shown in Figure S52.

Table S2. Summary of target verification for Cy5 containing DNA sequences. Predicted masses are acquired from continuum spectrum of isotope envelope of given sequence (feature of MassLynx 4.2 software, see Figure S51 for example) where Z = -4. Observed masses correspond to the base peak where Z = -4, and are in agreement with the predicted masses ± 1 amu.

DNA Sequence	Predicted m/z (amu)	Observed m/z (amu)						
Cy5-hex series:								
HJA	2168.15	2169.05						
HJB	2204.40	2205.31						
HJC	2121.36	2122.36						
HJD	2203.89	2204.56						
HJAcomp	2180.40	2181.20						
Cy5-Peg ser	ies:							
HJA	2199.16	2199.36						
HJB	2235.41	2236.19						
HJC	2152.38	2153.18						
HJD	2234.89	2235.35						
HJAcomp	2211.41	2212.04						
Cy5-tBu series:								
HJA	2146.11	2146.82						
HJB	2182.39	2183.12						
HJC	2099.34	2099.67						
HJD	2181.87	2182.36						
HJAcomp	2158.36	2158.86						
Cy5-Cl series:								
HJA	2135.28	2135.37						
HJB	2171.55	2171.94						
HJC	2088.49	2088.87						
HJD	2171.04	2171.43						
HJAcomp	2147.55	2147.88						

Figure S51: LC/MS Traces (top, A-F) and mass spectrum (bottom, G) of Purified HJA-Cy5hex, Gradient of 47-53% MeOH in 0.05 M TEAA (aq.)

Figure S52: Predicted Isotope Envelope of HJA-Cy5hex (center, and top as continuum spectrum) in comparison to observed mass spectrum of target mass where z = -4 (bottom).

Figure S53: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJB-Cy5hex, Gradient of 47-53% MeOH in 0.05 M TEAA (aq.)

Figure S54: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJC-Cy5hex, Gradient of 47-53% MeOH in 0.05 M TEAA (aq.)

Figure S55: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJD-Cy5hex, Gradient of 47-53% MeOH in 0.05 M TEAA (aq.)

Figure S56: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJAcomp-Cy5hex, Gradient of 47-53% MeOH in 0.05 M TEAA (aq.)

Figure S57: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJA-Cy5Peg, Gradient of 27.5-33.5% MeOH in 0.05 M TEAA (aq.)

Figure S58: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJB-Cy5Peg, Gradient of 27.5-33.5% MeOH in 0.05 M TEAA (aq.)

Figure S59: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJC-Cy5Peg, Gradient of 27.5-33.5% MeOH in 0.05 M TEAA (aq.)

Figure S60: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJD-Cy5Peg, Gradient of 27.5-33.5% MeOH in 0.05 M TEAA (aq.)

Figure S61: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJAcomp-Cy5Peg, Gradient of 27.5-33.5% MeOH in 0.05 M TEAA (aq.)

Figure S62: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJA-Cy5tBu, Gradient of 37-43% MeOH in 0.05 M TEAA (aq.)

Figure S63: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJB-Cy5tBu, Gradient of 37-43% MeOH in 0.05 M TEAA (aq.)

Figure S64: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJC-Cy5tBu, Gradient of 37-43% MeOH in 0.05 M TEAA (aq.)

Figure S65: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJD-Cy5tBu, Gradient of 37-43% MeOH in 0.05 M TEAA (aq.)

Figure S66: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJAcomp-Cy5tBu, Gradient of 37-43% MeOH in 0.05 M TEAA (aq.)

Figure S67: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJA-Cy5Cl, Gradient of 26.5-32.5% MeOH in 0.05 M TEAA (aq.)

Figure S68: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJB-Cy5Cl, Gradient of 26.5-32.5% MeOH in 0.05 M TEAA (aq.)

Figure S69: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJC-Cy5Cl, Gradient of 26.5-32.5% MeOH in 0.05 M TEAA (aq.)

Figure S70: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJD-Cy5Cl, Gradient of 26.5-32.5% MeOH in 0.05 M TEAA (aq.)

Figure S71: LC/MS Traces (top) and mass spectrum (bottom) of Purified HJAcomp-Cy5Cl, Gradient of 26.5-32.5% MeOH in 0.05 M TEAA (aq.)

Section 6: Additional Absorption Spectra and Unsubstituted Cy5-oligonucleotide Properties

Figure S72: Absorption (extinction coefficient) spectra of HJA-Cy5hex (black), HJA-Cy5Peg (green), HJA-Cy5tBu (red), HJA-Cy5Cl (blue), HJA-unlabeled (gold). All spectra acquired in neat water where concentration in the range of 4-5 μ M ($A \sim 1.0$).

Figure S73: Absorption (extinction coefficient) spectra of HJB-Cy5hex (black), HJB-Cy5Peg (green), HJB-Cy5tBu (red), HJB-Cy5Cl (blue), HJB-unlabeled (gold). All spectra acquired in neat water where concentration in the range of 4-5 μ M ($A \sim 1.0$).

Figure S74: Absorption (extinction coefficient) spectra of HJC-Cy5hex (black), HJC-Cy5Peg (green), HJC-Cy5tBu (red), HJC-Cy5Cl (blue), HJC-unlabeled (gold). All spectra acquired in neat water where concentration in the range of 4-5 μ M ($A \sim 1.0$).

Figure S75: Absorption (extinction coefficient) spectra of HJD-Cy5hex (black), HJD-Cy5Peg (green), HJD-Cy5tBu (red), HJD-Cy5Cl (blue), HJD-unlabeled (gold). All spectra acquired in neat water where concentration in the range of 4-5 μ M (A ~ 1.0).

Figure S76: Absorption (extinction coefficient) spectra of HJAcomp-Cy5hex (black), HJAcomp-Cy5Peg (green), HJAcomp-Cy5tBu (red), HJAcomp-Cy5Cl (blue), HJAcomp-unlabeled (gold). All spectra acquired in neat water where concentration in the range of 4-5 μ M (A ~ 1.0).

Table S3.Summary of properties for unsubstituted Cy5 sequences. All values determined in neat water. Extinction coefficients determined utilizing nearest-neighbor approximation for DNA absorbance at 260 nm,⁶⁻⁸ while also accounting for Cy5 contribution. Cy5 percent contribution (0.02-0.04) was based on ratio of absorbance at 260 nm and at Cy5 λ_{max} , for each of the parent dyes, obtained in neat methanol. It was assumed that Cy5 percent contribution at 260 nm is constant between MeOH and H₂O. Fluorescence QY determined against 5,10,15,20-tetraphenylporphyrin standard ($\Phi_F = 0.07$ in toluene)⁹.

DNA sequence	λ_{max}	E 260	ECy5	λ_{max}	Stokes'	$\Phi_{\rm F}$	$ au_{avg}$	$ au_1(ns)$ /	$\tau_2(ns)$ /
	abs (nm)	$(M^{-1}cm^{-1})$	(M ⁻¹ cm ⁻¹)	em (nm)	Shift (v)		(ns)	amplitude	amplitude
Cy5-unsubstitued series:									
HJA	647	266,500	247,600	666	441	0.37	1.45	0.66 / 0.26	1.73 / 0.74
HJB	649	277,000	231,900	666	393	0.40	1.82	0.73 / 0.18	2.06 / 0.82
HJC	649	254,100	240,000	665	371	0.41	1.89	1.04 / 0.15	2.04 / 0.85
HJD	649	265,100	249,700	665	371	0.33	1.64	0.59 / 0.15	1.83 / 0.85
HJAcomp	647	274,400	245,900	665	418	0.32	1.25	0.74 / 0.43	1.63 / 0.57

Section 7: Supporting References

- Liu, Q.; Kanahashi, K.; Matsuki, K.; Manzhos, S.; Feron, K.; Bottle, S. E.; Tanaka, K.; Nanseki, T.; Takenobu, T.; Tanaka, H.; Sonar, P., Triethylene Glycol Substituted Diketopyrrolopyrrole- and Isoindigo-Dye Based Donor-Acceptor Copolymers for Organic Light-Emitting Electrochemical Cells and Transistors. *Adv. Electron. Mater.* 2020, *6*, 1901414.
- 2) Brush, C. K.; Anderson, E. D. Preparation of Indocarbocyanine and Benzindocarbocyanine Dye-Linked Phosphoramidites. US5808044, 1998.
- 3) Baba, A.; Shibata, I.; Fujiwara, M.; Matsuda, H., Novel Use of Organotin Halide-Base Complex in Organic Synthesis. Cycloaddition Reaction of Oxetane with Isocyanates. *Tetrahedron Lett.* **1985**, *26*, 5167-5170.
- 4) Smith, M.; Rammler, D. H.; Goldberg, I. H.; Khorana, H. G., Studies on Polynucleotides. XIV. Specific Synthesis of the C3"-C5" Interribonucleotide Linkage. Syntheses of Uridylyl-(3"→5")-Uridine and Uridylyl-(3"→5")-Adenosine. J. Am. Chem. Soc. 1962, 84, 430-440.
- 5) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* 2010, 29, 2176-2179.
- 6) Breslauer, K. J.; Frank, R.; Bloecker, H.; Marky, L. A., Predicting DNA Duplex Stability From the Base Sequence. *Proc. Natl. Acad. Sci. U. S. A.* **1986**, *83*, 3746-3750.
- 7) Sugimoto, N.; Nakano, S.-i.; Yoneyama, M.; Honda, K.-i., Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes. *Nucleic Acids Res.* **1996**, *24*, 4501-4505.
- 8) SantaLucia, J.; Allawi, H. T.; Seneviratne, P. A., Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability. *Biochemistry* **1996**, *35*, 3555-3562.
- 9) Mandal, A. K.; Taniguchi, M.; Diers, J. R.; Niedzwiedzki, D. M.; Kirmaier, C.; Lindsey, J. S.; Bocian, D. F.; Holten, D., Photophysical Properties and Electronic Structure of Porphyrins Bearing Zero to Four meso-Phenyl Substituents: New Insights into Seemingly Well Understood Tetrapyrroles. J. Phys. Chem. A 2016, 120, 9719-9731.