Tissue-specific and repeat length-dependent somatic instability of the X-linked dystonia parkinsonism-

associated CCCTCT repeat

Lindsey N. Campion^{1,2#}, Alan Mejia Maza^{1,3#}, Rachita Yadav^{1,2,3,4}, Ellen B. Penney^{1,2}, Micaela G.

Murcar^{1,2} Kevin Correia³, Tammy Gillis³, Cara Fernandez-Cerado⁵, M. Salvie Velasco-Andrada⁵, G. Paul

Legarda⁵, Niecy G. Ganza-Bautista⁵, J. Benedict B. Lagarde⁵, Patrick J. Acuña^{1,2,5}, Trisha Multhaupt-

Buell^{1,2}, Gabrielle Aldykiewicz^{1,2}, Melanie L. Supnet^{1,2}, Jan K. De Guzman^{5,6}, Criscely Go⁶, Nutan

Sharma^{1,2}, Edwin L. Munoz⁷, Mark C. Ang⁷, Cid Czarina E. Diesta⁸, D. Cristopher Bragg^{1,2}, Laurie J.

Ozelius^{1,2}*, Vanessa C. Wheeler^{1,3}*

#Equal contribution

*Corresponding authors

¹Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

²Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, USA

³Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA

⁴Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA

⁵Sunshine Care Foundation, Roxas City, Capiz, Philippines

⁶Department of Neurology, Jose R. Reyes Memorial Medical Center, Metro Manila, Philippines

⁷Department of Pathology, College of Medicine, University of the Philippines, Manila, Philippines

⁸Department of Neurosciences, Makati Medical Center, Makati, Philippines

Fig S1. Repeat-related outcomes in individuals exhibiting dystonia or Parkinson's symptoms at onset. a Inverse correlations between CCCTCT repeat length (in blood) with AAO in individuals expressing dystonia (n=194) or parkinsonism (n=43) at onset. Grey shaded areas show 95% confidence interval. b Distribution of repeat length (in blood) in individuals expressing dystonia (n=194) or parkinsonism (n=43). c Distribution of expansion indices (in blood) in individuals expressing dystonia (n=122) or parkinsonism (n=29). Box-whisker plots show median \pm interquartile range (IQR) and red dots show values in individual patient samples. b-c showed no statistical differences between groups.

Fig S2: Modal repeat length variation in brain regions. Of the 23 postmortem samples in which multiple brain regions were analyzed, 4 (17-012, 17-17, 19-017 and 21-031) exhibited variation by one repeat unit in the modal repeat length.

Fig S3: Examples of XDP CCCTCT repeat GeneMapper traces from different tissues. a-f

GeneMapper traces of blood and different brain tissues from individual 17-19. "x" axis shows base pair size and peak height respectively. Indicated on the "x"-axes are assigned repeat lengths based on standard repeat controls.

Fig. S4: Technical variability in expansion index values. Expansion indices were derived from 5 independent XDP CCCTCT repeat PCRs from samples 19-022 (Cereb) and 18-001 (Parietal Cx).

Fig S5: Examples of *LIPG* CCCTCT GeneMapper traces from different tissues.

a-f GeneMapper traces of different brain tissues from individual 17-19. "x" axis shows base pair size and peak height respectively. Indicated on the "x"-axes are assigned repeat lengths based on base pair size.