SUPPLEMENTARY INFORMATION

Supplementary tables and table legends 1-5

Supplementary figures 1 (raw gel data) and 2 (FACS gating strategies for immune cell analysis)

Raw data (weight monitoring over disease time course) of in vivo experiment (oxazolone colitis)

Total organic synthesis of BfaGC analogue (SB2201-SB2223) library

	Molecular	Sphingosine	Fatty Acyl	MS2	Retention
Name	Weight	Structure	Structure	Fingerprint	Time
SB2201	717.58	n18	3-OH-n16	504	8.47
SB2202	703.56	n18	3-OH-n15	504	8.05
SB2203	731.59	n18	3-OH-i17	504	8.72
SB2204	731.59	n18	3-OH-a17	504	8.72
SB2205	731.59	n19	3-OH-n16	518	8.84
SB2206	717.58	n19	3-OH-n15	518	8.45
SB2207	745.61	n19	3-OH-i17	518	9.08
SB2208	745.61	n19	3-OH-a17	518	9.06
SB2209	703.56	i17	3-OH-n16	490	7.92
SB2210	689.54	i17	3-OH-n15	490	7.40
SB2211	717.58	i17	3-OH-i17	490	8.24
SB2212	717.58	i17	3-OH-a17	490	8.23
SB2213	703.56	a17	3-OH-n16	490	7.87
SB2214	689.54	a17	3-OH-n15	490	7.35
SB2215	717.58	a17	3-OH-i17	490	8.23
SB2216	717.58	a17	3-OH-a17	490	8.20
SB2217	717.58	i17	3-OH-n17	490	8.33
SB2218	717.58	a17	3-OH-n17	490	8.33
SB2219	717.58	n17	3-OH-n17	490	8.42
SB2220	717.58	n17	3-OH-i17	490	8.35
SB2221	717.58	n17	3-OH-a17	490	8.33
SB2222	701.58	i17	n17	538*	8.91
SB2223	703.56	n16	3-OH-n17	476	8.06

n	straight-chain
i	Isomethyl (omega-2)-branching
а	Ante-isomethyl (omega-3)-branching

*does not have acyl 3-OH: fingerprint ion is [M-H-162]

Supplementary Table 1. Molecular weight and sphingolipid structure information for 23

synthetic BfaGCs.

Name	Sequence
pNJR6_3671_L-F	AAC GAA AAA TTT AAA CAA ATT ATT AAT CAG AGT CTG TAT TGG CTG CCC T
pNJR6_3671-L-R	ATC GAA CGT ATC GTT AGT TAT TAG TTA TTT TCG ATT GAG C
pNJR6_3671-Rg-F	CTA ATA ACT AAC GAT ACG TTC GAT AAA TGA ACT ACA AAA TAA CAA CCC
pNJR6_3671-Rg-R	CGG ATC CCC GGG TAC TCG CCA CGT CCG CAA CCC
3671-500F (1F)	GAC GCT TCG CCT CAG AAA C
3671+1520R (1R)	TTC AAA AGT ATC GGG ACG CAT C
pNBU2-3671F (2F)	AAA GAC ATA TAA AAG AAA AGA CAC CAT GAA AGA AAT AGA CTG GGC TAA TCT G
pNBU2-3671R (2R)	CAC TGG AAG ATA GGC AAT TAG TTA TTC AAC AAT AGT CAC CCA TCC G

Name	Sequence
Leu-3	CAC TTG ACT GTT GTA GAT AAA GC
Leu-4	CAT CTT CAT TGC AGC ATT ATC C
BACT1369F	CGG TGA ATA CGT TCY CGG
PROK1492R	GGW TAC CTT GTT ACG ACT T

Supplementary Table 2. Primer sequences used for the B. fragilis KO generation (top) and

abundance analysis in HMB stool samples by qPCR (bottom).

	2C12 TCR-mCD1d-	2C12 TCR-mCD1d-		
	SB2217	SB2219		
Data collection				
Temperature	100K	100K		
Resolution limits (Å)	76.79-2.4 (2.5-2.4)	48.56-2.8 (2.9-2.8)		
Space Group	P212121	P212121		
Cell dimensions (Å)	a=58.5, b=80.9, c=243.3	a=58.3, b=80.6, c=242.8		
	<i>α</i> =β=γ=90°	<i>α</i> =β=γ= 90°		
Total Nº. observations	299101 (44393)	267870 (36163)		
Nº. unique observations	46370 (6678)	29106 (4070)		
Multiplicity	6.5 (6.6)	9.2 (8.9)		
Data completeness	100 (100)	99.2 (97)		
Wilson B-factors (Å ²)	62.1	82.7		
I/σ ₁	7.2 (1.9)	10.8 (2.1)		
R_{p,im^1} (%)	5.5 (36.6)	4.2 (28.3)		
Refinement statistics				
R _{factor} ² (%)	18.4	20.1		
R _{free} ³ (%)	23	27.4		
Non-hydrogen atoms				
- Protein	6530	6542		
- Water	226	152		
- Heterogen	152	155		
Ramachandran plot (%)				
- Allowed region	99.52	99.52		
- Disallowed region	0.48	0.48		
rmsd bonds (Å)	0.010	0.008		
rmsd angles (°)	1.15	1.03		

 ${}^{1}R_{p,i,m} = \Sigma_{hkl} \left[1/(N-1) \right]^{1/2} \Sigma i \ | \ I_{hkl}, \ i \ - < I_{hkl} > | \ / \ \Sigma_{hkl} < I_{hkl} >$

 2 R_{factor} = ($\Sigma \mid |Fo| - |Fc| \mid$) / ($\Sigma \mid Fo|$) - for all data except as indicated in footnote 3. ³5% of data was used for the R_{free} calculation.

Values in the parentheses refer to the highest resolution shell.

Supplementary Table 3. Data collection and refinement statistics of X-ray crystallography study.

TCR gene	TCR residues	CD1d residues	Bond type
CDR3a	Asp94-Oδ1	Arg79-Nη2	HB
CDR3a	Asp94-Oð2	Arg79-Nη1	HB
CDR3a	Asp94	Arg79	VDW
CDR3a	Arg95-Nε	Asp80-Oδ1, Asp80-Oδ2	HB
CDR3a	Arg95-Nη1	Arg79-Nε	HB
CDR3a	Arg95-Nη2	Arg79-Nη2	HB
CDR3a	Arg95	Ser76, Arg79, Asp80	VDW
CDR3a	Gly96-O	Ala152-O	HB
CDR3a	Gly96	Ala152, Asp153	VDW
CDR3a	Ser97	Arg79, Val149, Ala152, Asp153	VDW
CDR3a	Leu99-O	Arg79-Nη2	HB
CDR3a	Leu99	Asp80, Leu84, Met87, Val149	VDW
CDR3a	Gly100	Arg79	VDW
CDR3a	Arg103	Arg79, Glu83	VDW
CDR2β	Tyr48-Oŋ	Glu83-Oɛ2	HB
CDR2β	Tyr48	Glu83, Lys86	VDW
CDR2β	Tyr50-Oŋ	Glu83-Oɛ2	HB
CDR2β	Tyr50	Glu83, Met87, Lys86	VDW
CDR2β	Glu56	Lys86	VDW
CDR3β	Glu97-O82	Lys148-Nç	HB
CDR3β	Glu97	Ala152, Lys148	VDW
TCR gene	TCR residues	SB2217 atoms	Bond type
CDR1a	Pro28	C1, O5"	VDW
CDR1a	Asn30-Nδ2	3"-OH	HB
CDR1a	Asn30	4"-OH, C3, 3"-OH	VDW
CDR3a	Arg95	С1, С2, 2"-ОН, ОЗ	VDW
CDR3a	Gly96-N	2"-OH	HB
CDR3a	Gly96	С2, 3"-ОН	VDW

HB: Hydrogen bond, VDW: van der Waals, Cut-off at 4 Å for VDW interactions and 3.5 Å for HB.

Supplementary Table 4. 2C12 TCR contacts with SB2217 and mCD1d.

TCR gene	TCR residues	CD1d residues	Bond type
CDR1a	Thr27	Val72	VDW
CDR1a	Pro28	Ser76	VDW
CDR3a	Asp94-Oð1	Arg79-Nη1, Nη2	HB
CDR3a	Asp94	Arg79	VDW
CDR3a	Arg95-Nε	Asp80-Oδ1	HB
CDR3a	Arg95	Ser76, Arg79, Asp80	VDW
CDR3a	Gly96-O	Ala152-O	HB
CDR3a	Gly96	Ala152, Asp153	VDW
CDR3a	Ser97	Val149, Ala152	VDW
CDR3a	Leu99-O	Arg79-Nη2	HB
CDR3a	Leu99	Asp80, Glu83, Leu84, Met87, Val149	VDW
CDR3a	Gly100	Arg79	VDW
CDR3a	Arg101	Arg79, Glu83	VDW
CDR2β	Tyr48-Oŋ	Glu83-Oε1, Glu83-Oε2, Lys86-Nζ	HB
CDR2β	Tyr48	Glu83, Lys86	VDW
CDR2β	Tyr50-Oŋ	Glu83-OE2	HB
CDR2β	Tyr50	Glu83, Met87	VDW
CDR2β	Glu56-Oɛ1	Arg21-Nη1	HB
CDR2β	Glu56	Lys86	VDW
CDR3β	Glu96	Lys148, Val149, Ala152	VDW
TCR gene	TCR residues	SB2219 atoms	Bond type
CDR1a	Pro28	O5", C6, C1	VDW
CDR1a	Asn30-N82	3"-OH	HB
CDR1a	Asn30	С3, 4"-ОН, С2, 3"-ОН	VDW
CDR1a	Asn30-N82	4"-OH	HB
CDR3a	Asp94, Arg95	C1	VDW
CDR3a	Arg95, Gly96	С2, 3"-ОН	VDW
CDR3a	Gly96-N	2"-OH	HB
CDR3a	Arg95	C1, O1, O3, 2"-OH	VDW

HB: Hydrogen bond, VDW: van der Waals, Cut-off at 4 Å for VDW interactions and 3.5 Å for HB.

Supplementary table 5. 2C12 TCR contacts with SB2219 and mCD1d.

Supplementary Figure 1. Raw gel image for Extended figure 8A.

Supplementary Figure 2. Gating and sorting strategies of (A) colonic NKT cells and (B) splenic DCs.

Day after challenge				Veł	nicle		
	0	100	100	100	100	100	100
	1	93.5115	82.963	94.9807	89.1975	89.5604	86.6883
	2	88.5496	81.4815	99.2278	84.8765	81.8681	80.1948
	3	deceased	80	98.4556	83.0247	78.022	82.7922
				SB	2217		
				002			
		100	100	100	100	100	100
		99.5851	98.8372	96.9231	93.5211	94.2197	102.907
		105.3942	101.1628	100.3846	89.8592	94.2197	103.7791
		108.7137	106.2016	101.9231	87.8873	98.8439	103.7791

All data are weight(%) based on day 0 measurement of individual animal as 100%.

Supplemental Material for Oh et al. : Synthesis of BfaGC analog library

A. Synthesis of carboxylic acid building blocks

For the preparation of acyl building blocks, we first synthesized C_{13} alkyl iodide having diol at 1,3 position (**S12**) from L-(–)-malic acid. Then we obtained acyl building blocks (**S14***{i*17*}*–**S14***{n*16*}*) as a carboxylic acid form after the introduction of various normal and branch structure via sp³–sp³ cross-coupling followed by oxidation.

Synthesis of S2, (S)-butane-1,2,4-triol

To a solution of boron dimethyl sulfide complex (157 mmol) and trimethyl borate (269 mmol) in dry THF (70 mL) under Ar(g) was added **S1** (L-(-)-malic acid, 44.8 mmol) in dry THF (20 mL) dropwise for 1 hr at water bath, then the reaction mixture was stirred at 35 °C for overnight. After the completion of the reaction monitored by TLC, the reaction was guenched by slow

adding of MeOH (10 mL) at water bath and stirred for additional 4 hr at room temperature (r.t.). Solvent was evaporated under reduced pressure and azeotroped with MeOH 3 times. The residue was purified by silica-gel flash column chromatography (MeOH:DCM = 1:10 to 1:6 gradient elution) to provide the desired product (41.0 mmol, 91.6%). LRMS(ESI) m/z for C₄H₁₁O₃ [M + H]⁺ calcd: 107.06, found: 107.10.

Synthesis of S3a, S3b, and S4, (S)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethan-1-ol, (S)-(2,2-dimethyl-1,3-dioxan-4-yl)methanol, and (S)-4-(2-((4-methoxybenzyl)oxy)ethyl)-2,2-dimethyl-1,3-dioxolane

To a solution of **S2** (63.8 mmol) in acetone (300 mL) were added 2,2-dimethoxypropane (191.3 mmol), pyridinium-*p*-toluene sulfonate (5.10 mmol), then the reaction mixture was stirred at 70 °C (reflux) for overnight. After the completion of the reaction

monitored by TLC, solvent was evaporated under reduced pressure and the resultant was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:2 to 1.5:1 gradient elution) to provide the inseparable mixture of 5-membered and 6-membered as 9:1 ratio (45.5 mmol, 71%).

To a solution of NaH (8.89 mmol) in dry THF (60 mL) under Ar(g) was added resulting inseparable mixture (**S3a** and **S3b**, 6.84 mmol) at 0 °C slowly and the reaction mixture was stirred for 30 min at r.t. *p*-Methoxybenzyl chloride (8.89 mmol), tetrabutylammonium iodide (0.889 mmol) were added to the reaction mixture, then the reaction mixture was stirred at 60 °C for overnight. After the completion of reaction monitored by TLC, the reaction mixture was diluted with EtOAc (100 mL) and washed with brine. Resulting organic layer was dried over anhydrous Na₂SO₄(s) and solvent was evaporated under reduced pressure. The residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:15 to 1:5 gradient elution) to provide the desired product (1.55 g, 85%). ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.25 (d, *J* = 8.1, Hz, 2H), 6.87 (d, *J* = 8.7, Hz, 2H), 4.43 (s, 2H), 4.20 (quin, *J* = 6.6 Hz, 1H), 4.05 (dd, *J* = 8.1, 6.0 Hz, 1H), 3.80 (s, 3H), 3.59–3.51 (m, 3H), 1.96–1.79 (m, 2H), 1.34 (s, 3H), 1.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.4, 130.6, 129.4, 114.0, 108.7, 74.1, 73.0, 70.0, 67.0, 55.5, 34.1, 27.1, 26.0; LRMS(ESI) *m/z* for C₇H₁₅O₃ [M + H]⁺ calcd: 147.09, found: 147.10.

Synthesis of S5, (S)-4-((4-methoxybenzyl)oxy)butane-1,2-diol

To a solution of **S4**(14.1 mmol) in MeOH (100 mL) was added pyridinium-*p*-toluenesulfonate (1.41 mmol) and the reaction mixture was stirred at r.t. for 18 hr. Solvent was evaporated under reduced pressure and the residue was purified by silica-gel flash column chromatography (MeOH:DCM = 1:40 to 1:18 gradient elution) to provide the desired product (2.99 g, 93%). ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.25 (d, *J* = 8.4 Hz, 2H), 6.88 (d, *J* = 8.4 Hz, 2H), 4.46 (s, 2H), 3.90 (m, 1H), 3.81 (s, 3H), 3.69–3.60 (m, 3H), 3.49 (dd, *J* = 11.4, 6.2 Hz, 1H), 1.87–1.78 (m, 1H), 1.75–1.68 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 130.0, 129.6, 114.1, 73.2, 71.6, 68.2, 66.8, 55.5, 33.0, 14.4; LRMS(ESI) *m/z* for C₁₂H₁₈NaO4 [M + Na]⁺ calcd: 249.11, found: 249.05.

Synthesis of S6 and S7, (S)-2-hydroxy-4-((4-methoxybenzyl)oxy)butyl methanesulfonate and (S)-2-(2-((4-methoxybenzyl)oxy)ethyl)oxirane

To a solution of **S5** (5.46 mmol) and collidine (54.6 mmol) in dry DCM (100 mL) was added methanesulfonyl chloride (6.56 mmol) dropwise over 1 hr under Ar(g) at 0 °C and the reaction mixture was stirred for 12 hr. Then, the reaction mixture was diluted with DCM (100 mL) and washed with brine. Organic layer was dried over anhydrous Na₂SO₄(s) and solvent was evaporated under reduced pressure. Then, to a solution of **S6** in dry diethylether (60 mL) was added tetrabutylammonium hydroxide (1M solution in MeOH, 7.10 mmol) under Ar(g) at 0 °C slowly. The reaction mixture was stirred at 0 °C for 6 hr. After the completion of the reaction monitored by TLC, the reaction mixture was diluted with EtOAc (100 mL) and washed with NH₄Cl(aq.) and organic layer was dried over anhydrous Na₂SO₄(s) and solvent was evaporated under reduced pressure. The residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:10 to 1:5 gradient elution) to provide the desired product (932 mg, 82% as 2 step yield). ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.26 (d, *J* = 8.0 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2H), 4.46 (s, 2H), 3.80 (s, 3H), 3.61–3.57 (m, 2H), 3.07–3.04 (m, 1H), 2.78 (t, *J* = 4.5 Hz, 1H), 2.52 (dd, *J* = 4.5, 3.0 Hz, 1H), 1.92–1.87 (m, 1H), 1.80–1.73 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.4 129.5, 127.2, 114.0, 73.0, 66.9, 55.5, 50.3, 47.3, 33.2; LRMS(ESI) *m/z* for C₁₂H₁₆NaO₃ [M + Na]⁺ calcd: 231.10, found: 231.00.

Synthesis of S9, (3R)-1-((4-methoxybenzyl)oxy)-13-((tetrahydro-2H-pyran-2-yl)oxy)tridec-5-yn-3-ol

To a solution of **S8** (non-8-ynoxycyclohexane, 15.6 mmol) in dry THF was added *n*butyllithium (17.6 mmol) under Ar(g) at -78 °C slowly and reaction mixture was stirred for 15 min at -78 °C. **S7** (13.5 mmol), boron trifluoride diethyl etherate (14.9 mmol) in dry THF were added to the reaction mixture at -78 °C slowly and the

reaction mixture was stirred at ambient temperature. After the completion of the reaction monitored by TLC, the reaction mixture was diluted with EtOAc (100 mL) and washed with NH₄Cl (aq.) and organic layer was dried over anhydrous Na₂SO₄(s). Solvent was evaporated under reduced pressure and the residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:10 to 1:3 gradient elution) to provide the desired product (4.79 g, 82%). ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.25 (d, *J* = 14.0 Hz, 2H), 6.87 (d, *J* = 14.5 Hz, 2H), 4.57 (t, *J* = 6.0 Hz, 1H), 4.45 (s, 2H), 3.87–3.82 (m, 1H), 3.80 (s, 4H), 3.76–3.60 (m, 3H), 3.53–3.48 (m, 1H), 3.41–3.34 (m, 1H), 2.98 (d, *J* = 6.0 Hz, 1H), 2.36–2.34 (m, 2H), 2.17–2.11 (m, 2H), 2.04–1.99 (m, 1H), 1.89–1.79 (m, 3H), 1.61–1.43 (m, 6H), 1.37–1.08 (m, 8H); LRMS(ESI) *m/z* for C₂₆H₄₀NaO₅ [M + Na]⁺ calcd: 455.28, found: 455.20.

Synthesis of S10, (3R,Z)-1-((4-methoxybenzyl)oxy)-13-((tetrahydro-2H-pyran-2-yl)oxy)tridec-5-en-3-ol

To a solution of **S9** (7.40 mmol) in EtOH/DCM (3:1, v/v) was added Lindlar catalyst (450 mg, 20 wt%) and the reaction mixture was stirred under H₂(g) at r.t. for 8 hr. After the completion of the reaction monitored by TLC, the reaction mixture was filtered through celite and solvent was evaporated under reduced pressure to provide the desired product (3.14 g, 98%). ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.25 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 5.54–5.44 (m, 1H), 5.41–5.36 (m, 1H), 4.57 (t, *J* = 4.4 Hz, 1H), 4.45 (s, 2H), 3.90–3.80

(m, 1H), 3.78 (s, 4H), 3.76–3.66 (m, 2H), 3.64–3.58 (m, 1H), 3.52–3.47 (m, 1H), 3.40–3.35 (m, 1H), 2.89 (t, J = 3.0 Hz, 1H), 2.30–2.15 (m, 2H), 2.05–1.97 (m, 1H), 1.86–1.78 (m, 1H), 1.77–1.66 (m, 3H), 1.62–1.49 (m, 6H), 1.38–1.26 (m, 8H); LRMS(ESI) m/z for C₂₆H₄₂NaO₅ [M + Na]⁺ calcd: 457.29, found: 457.20.

Synthesis of S11, 2-(((R,Z)-11-(benzyloxy)-13-((4-methoxybenzyl)oxy)tridec-8-en-1-yl)oxy)tetrahydro-2H-pyran

To a solution of NaH (5.06 mmol) in dry DMF (40 mL) was added **S10** (3.89 mmol) under Ar(g) slowly at 0°C. After stirring at 0 °C for 1 hr, benzyl chloride (5.06 mmol), tetrabutylammonium iodide (1.01 mmol) were added to the reaction mixture. Then, the reaction mixture was stirred at 60 °C for overnight. After the completion of the reaction monitored by TLC, reaction was quenched by adding NH₄Cl (aq.) (40 mL) at water bath. Organic layer was extracted with EtOAc (20 mL × 3) and dried over anhydrous Na₂SO₄(s) and solvent was evaporated under reduced pressure. The

residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:12 to 1:3 gradient elution) to provide the desired product (875 mg, 43%). ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.23 (m, 7H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.50–5.39 (m, 2H), 4.60–4.56 (m, 2H), 4.45–4.36 (m, 3H), 3.87 (dt, *J* = 7.6, 2.8 Hz, 1H), 3.79 (s, 3H), 3.73 (q, *J* = 6.8 Hz, 1H), 3.64–3.47 (m, 4H), 3.41–3.35 (m, 1H), 2.39–2.25 (m, 2H), 1.86–1.77 (m, 2H), 1.74–1.68 (m, 1H), 1.61–1.50 (m, 9H), 1.36–1.25 (m, 15H); LRMS(ESI) *m*/z for C₃₃H₄₈NaO₅ [M + Na]⁺ calcd: 547.34, found: 547.30.

Synthesis of S12, (R,Z)-1-(((3-(benzyloxy)-13-iodotridec-5-en-1-yl)oxy)methyl)-4-methoxybenzene

Pyridinium-*p*-toluenesulfonate (0.431 mmol) was added to a solution of **S11** (4.31 mmol) in MeOH (30 mL) and the reaction mixture was stirred at r.t. for overnight. After the completion of the reaction monitored by TLC, solvent was evaporated under reduced pressure. The residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:5 to 1:2.5 gradient elution) to give the hydroxy product (1.90 g, quantitative). ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.22 (m, 7H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.56–5.38 (m, 2H), 4.58 (dd, *J* = 11.7, 3.3 Hz, 1H), 4.49–4.44 (m, 1H), 4.41–4.35 (m, 2H), 3.79 (s, 3H), 3.64–3.51 (m, 5H), 2.35–2.24 (m, 2H), 2.04–1.96 (m, 2H), 1.84–1.77 (m, 2H), 1.58–1.50 (m, 2H), 1.37–1.23 (m, 10H); LRMS(ESI) *m*/z for C₂₈H₄₁O₄ [M + H]⁺ calcd: 441.29, found: 441.25.

OH-S11 (4.31 mmol) and methanesulfonyl chloride (6.46 mmol) were dissolved in dry THF under Ar(g), then dry triethylamine (8.61 mmol) was added to the reaction mixture. After stirring at r.t. for 4 hr, solvent was evaporated under reduced pressure and the residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:5 to 1:2.5 gradient elution) to give mesylated product (2.21 g, 99%). ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.23 (m, 7H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.49–5.38 (m, 2H), 4.54 (ddd, *J* = 28.0, 11.2, 4.0 Hz, 1H), 4.45–4.36 (m, 3H), 4.20 (t, *J* = 6.4 Hz, 2H), 3.79 (s, 3H), 3.64–3.50 (m, 3H), 2.98 (s, 3H), 2.37–2.26 (m, 2H), 2.04–2.96 (m, 2H), 1.85–1.77 (m, 2H), 1.76–1.69 (m, 2H), 1.41–1.25 (m, 10H); LRMS(ESI) *m/z* for C₂₉H₄₃O₆S [M + H]⁺ calcd: 519.27, found: 519.20.

O-mesylated S11 (4.24 mmol), sodium iodide (3.86 g) and sodium carbonate (41.6 mg) were dissolved in acetone and the reaction mixture was stirred at reflux. After the completion of the reaction monitored by TLC, the reaction mixture was condensed under reduced pressure and the residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:20 to 1:7 gradient elution) to give iodinated product (2.19 g, 94%). ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.12 (m, 7H), 6.86 (d, *J* = 8.4 Hz, 2H), 5.49–5.38 (m, 2H), 4.54 (ddd, *J* = 28.0, 12.0, 4.4 Hz, 1H), 4.45–4.39 (m, 3H), 3.79 (s, 3H), 3.64–3.50 (m, 3H), 3.17 (quin, *J* = 4.6 Hz, 2H), 2.38–2.25 (m, 2H), 2.04–1.96 (m, 2H), 1.85–1.74 (m, 4H), 1.39–1.23 (m, 8H); LRMS(ESI) *m/z* for C₂₈H₄₀IO₃ [M + H]⁺ calcd: 573.18, found: 573.10.

General procedure of the Cu^(I)-mediated sp³-sp³ cross coupling

To a solution of **S12** (1.0 equiv.) in dry THF (0.1 M for **S12**) were added alkylmagnesium halide (4.0 equiv.) and dilithium tetrachlorocuprate (0.4 equiv.) successively at 0 °C. The reaction mixture was stirred at 0 °C for overnight. After the completion of the reaction monitored by TLC, the reaction was quenched by adding NH₄Cl(aq.) and organic layer was extracted with EtOAc (30 mL × 3) and dried over anhydrous Na₂SO₄(s). The resultant was condensed under reduced pressure and the residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:25 to 1:12 gradient elution) to provide the desired product.

Synthesis of S13{n15}, (R,Z)-1-(((3-(benzyloxy)pentadec-5-en-1-yl)oxy)methyl)-4-methoxybenzene

Yield: 79%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.23 (m, 7H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.51–5.39 (m, 2H), 4.59 (d, *J* = 11.2 Hz, 1H), 4.45–4.36 (m, 3H), 3.79 (s, 3H), 3.66–3.50 (m, 3H), 2.38–2.27 (m, 2H), 2.02 (q, *J* = 6.4 Hz, 2H), 1.86–1.78 (m, 2H), 1.32–1.26 (m, 12H), 0.88 (t, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 139.1, 132.4, 130.9, 129.5, 128.5, 128.0, 127.7, 125.2, 113.9, 76.3, 72.8, 71.5, 71.4, 66.9, 55.5, 34.7, 32.1, 32.1, 29.8, 29.8, 29.6,

29.5, 29.4 27.7, 22.9, 14.3; LRMS(ESI) *m*/*z* for C₃₀H₄₄NaO₃ [M + Na]⁺ calcd: 475.32, found: 475.25.

Synthesis of S13{n16}, (R,Z)-1-(((3-(benzyloxy)hexadec-5-en-1-yl)oxy)methyl)-4-methoxybenzene

Yield: 48%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.35–7.21 (m, 7H), 6.86 (d, *J* = 8.7 Hz, 2H), 5.52–5.37 (m, 2H), 4.59 (d, *J* = 11.4 Hz, 1H), 4.45–4.35 (m, 3H), 3.79 (s, 3H), 3.67–3.51 (m, 3H), 2.38–2.24 (m, 2H), 2.02 (q, *J* = 6.6 Hz, 2H), 1.85–1.76 (m, 2H), 1.26 (m, 14H), 0.88 (t, *J* = 6.6 Hz, 3H)x; ¹³C NMR (75 MHz, CDCl₃) δ 159.1, 138.9, 132.2, 130.7, 129.3, 128.3, 127.8, 127.5, 125.0, 113.8, 76.1, 72.6, 71.3, 66.7, 55.3, 34.5, 31.9, 31.9, 29.7, 29.6, 29.4, 29.3, 27.5, 22.7, 14.1; LRMS(ESI) *m/z* for C₃₁H₄₆NaO₃ [M + Na]⁺ calcd: 489.33,

found: 489.30.

Synthesis of S13{n17}, (R,Z)-1-(((3-(benzyloxy)heptadec-5-en-1-yl)oxy)methyl)-4-methoxybenzene

Yield: 68%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.22 (m, 7H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.50–5.38 (m, 2H), 4.59 (d, *J* = 4.0 Hz, 1H), 4.44–4.36 (m, 3H), 3.78 (s, 3H), 3.65–3.50 (m, 3H), 2.39–2.26 (m, 2H), 2.01 (q, *J* = 6.4 Hz, 2H), 1.81 (quint, *J* = 6.4 Hz, 2H), 1.26 (bs, 18H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 139.1, ,132.4, 130.9, 129.5, 128.5, 128.0, 127.7, 125.2, 114.0, 76.3, 72.8, 71.5, 66.9, 55.4, 34.7, 32.1, 32.1, 29.9, 29.9, 29.8, 29.6, 29.6, 27.7, 22.9, 14.3; LRMS(ESI) *m/z* for

C₃₂H₄₉O₃ [M + H]⁺ calcd: 503.35, found: 503.25.

Synthesis of S13{i17}, (R,Z)-1-(((3-(benzyloxy)-15-methylhexadec-5-en-1-yl)oxy)methyl)-4-methoxybenzene

Yield: 92%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.23 (m, 7H), 6.86 (d, *J* = 8.8 Hz, 2H), 5.51–5.39 (m, 2H), 4.58 (d, *J* = 11.6 Hz, 1H), 4.44–4.36 (m, 3H), 3.79 (s, 3H), 3.66–3.50 (m, 3H), 2.39–2.25 (m, 2H), 2.02 (q, *J* = 6.8 Hz, 2H), 1.81 (quin, *J* = 6.6 Hz, 2H), 1.51 (sep, *J* = 6.6 Hz, 1H), 1.33–1.26 (m, 12H), 1.17–1.12 (m, 2H), 0.86 (d, *J* = 6.4 Hz, 6H); LRMS(ESI) *m/z* for C₃₂H₄₉O₃ [M + H]⁺ calcd: 503.35, found: 503.25.

Synthesis of S13{a17}, 1-((((3R,Z)-3-(benzyloxy)-14-methylhexadec-5-en-1-yl)oxy)methyl)-4-methoxybenzene

Yield: 99%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.22 (m, 7H), 6.87 (d, *J* = 8.5 Hz, 2H), 5.49–5.39 (m, 2H), 4.58 (d, *J* = 17.0 Hz, 1H), 4.44–4.37 (m, 3H), 3.79 (s, 3H), 3.64–3.60 (m, 1H), 3.60–3.51 (m, 2H), 2.37–2.27 (m, 2H), 2.02 (q, *J* = 7.0 Hz, 2H), 1.84–1.78 (m, 2H), 1.35–1.23 (m, 14H), 1.16–1.08 (m, 1H), 0.87–0.83 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 139.1,

132.4, 130.9, 129.5, 128.5, 128.0, 127.7, 125.2, 114.0, 76.3, 72.8, 71.5, 66.9, 55.5, 36.9, 34.7, 34.6, 32.1, 30.2, 29.9, 29.8, 29.7, 29.6, 27.7, 27.3, 19.4, 11.6; LRMS(ESI) m/z for C₃₂H₄₉O₃ [M + H]⁺ calcd: 503.35, found: 503.25.

General procedure of PMB deprotection

S13 was dissolved in TFA/DCM (1:20, v/v, 0.1 M for **S13**) at 0 °C and the reaction mixture was stirred for 4 hr. After the completion of reaction monitored by TLC, reaction mixture was diluted with EtOAc and washed with NaHCO₃(aq.). Organic layer was dried over anhydrous Na₂SO₄(s) and condensed under reduced pressure. The residue was and purified by silica-gel flash column chromatography (EtOAc:Hex = 1:10 to 1:5 gradient elution) to provide the desired product.

Synthesis of OH-S13{n15}, (R,Z)-3-(benzyloxy)pentadec-5-en-1-ol

Yield: 59%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.38–7.27 (m, 5H), 5.54–5.46 (m, 1H), 5.42–5.34 (m, 1H), 4.68 (d, *J* = 11.4 Hz, 1H), 4.49 (d, *J* = 11.4 Hz, 1H), 3.34–3.64 (m, 3H), 2.50–2.28 (m, 3H), 2.07–1.99 (m, 2H), 1.84–1.76 (m, 1H), 1.27 (bs, 14H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.5, 132.8, 128.7, 128.1, 127.9, 124.7, 78.7, 71.3, 61.2, 36.3, 32.1, 31.5, 29.8, 29.8, 29.6, 29.6, 27.7, 22.9, 14.3; LRMS(ESI) *m/z* for C₂₂H₃₇O₂ [M + H]⁺ calcd: 332.27, found: 333.20.

Synthesis of OH-S13{n16}, (R,Z)-3-(benzyloxy)hexadec-5-en-1-ol

Yield: 77% ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.25 (m, 5H), 5.53–5.47(m, 1H), 5.41–5.35(m, 1H), 4.67 (d, *J* = 11.2 Hz, 1H), 4.49 (d, *J* = 11.2 Hz, 1H), 3.78–3.67 (m, 3H), 2.48–2.42 (m, 1H), 2.36–2.28 (m, 2H), 2.06–1.99 (m, 2H), 1.83–1.72 (m, 2H), 1.26 (bs, 16H), 0.88 (t, *J* = 6.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 132.8, 128.7, 128.1, 128.0, 124.7, 78.7, 71.3, 61.2, 36.3, 32.1, 31.5, 29.9, 29.8, 29.8, 29.6, 29.6, 27.7, 22.9, 14.3; LRMS(ESI) *m/z* for C₂₃H₃₉O₂ [M + H]⁺

calcd: 347.29, found: 347.25.

Synthesis of OH-S13{n17}, (R,Z)-3-(benzyloxy)heptadec-5-en-1-ol

Yield: 74%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.35–7.28 (m, 5H), 5.54–5.46 (m, 1H), 5.42–5.34 (m, 1H), 4.68 (d, *J* = 11.4 Hz, 1H), 4.49 (d, *J* = 11.4 Hz, 1H), 3.76–3.64 (m, 3H), 2.50–2.27 (m, 3H), 2.04 (q, *J* = 6.6 Hz, 2H), 1.81–1.73 (m, 2H), 1.26 (bs, 18H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.5, 132.8, 128.7, 128.1, 128.0, 124.7, 78.7, 71.3, 61.1, 36.3, 32.1, 31.5, 29.9, 29.9, 29.8, 29.8, 29.6, 29.4, 27.7, 22.9, 14.3; LRMS(ESI) *m/z* for C₂₄H₄₁O₂ [M + H]⁺ calcd: 361.30, found: 361.25.

Synthesis of OH-S13{i17}, (R,Z)-3-(benzyloxy)-15-methylhexadec-5-en-1-ol

Yield: 78%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.26 (m, 5H), 5.57–5.49 (m, 1H), 5.43–5.34 (m, 1H), 4.60 (q, *J* = 10.8 Hz, 2H), 3.97–3.87 (m, 1H), 2.58 (d, *J* = 5.1 Hz, 2H), 2.48–2.29 (m, 2H), 2.05–1.97 (m, 2H), 1.51 (sep, *J* = 6.6 Hz, 1H), 1.26 (m, 12H), 1.17–1.12 (m, 2H), 0.86 (d, *J* = 6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 177.2, 138.1, 133.4, 128.4, 127.8, 127.7, 123.8, 75.6, 71.7, 39.1, 31.7, 30.0, 29.7, 29.6, 29.4, 29.3, 28.0, 27.5, 27.4, 22.7; LRMS(ESI) *m/z* for C₂₄H₄₁O₂ [M + H]⁺

calcd: 361.30, found: 361.25.

Synthesis of OH-S13{a17}, (3R,Z)-3-(benzyloxy)-14-methylhexadec-5-en-1-ol

Yield: 84%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.26 (m, 5H), 5.57–5.49 (m, 1H), 5.42–5.34 (m, 1H), 4.60 (q, *J* = 11.7 Hz, 2H), 3.93 (quint, *J* = 6.0 Hz, 1H), 2.59 (d, *J* = 5.7 Hz, 2H), 2.54–2.29 (m, 2H), 2.02 (q, *J* = 6.9 Hz, 2H), 1.27 (bs, 13H), 1.16–1.07 (m, 2H), 0.85 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 138.2, 133.6, 128.6, 128.0, 128.0, 123.9, 75.8, 71.9, 39.4, 36.9, 34.6, 31.8, 30.2, 29.8, 29.8, 29.7, 29.6, 27.7, 27.3, 19.4, 11.6; LRMS(ESI) *m*/*z* for C₂₄H₄₁O₂ [M + H]⁺ calcd: 361.30, found: 361.25.

General procedure of oxidation

To a solution of **OH-S13** (1.0 equiv.) in acetone (0.1 M for **OH-S13**) was added Jones reagent (2.0 equiv.) at 0 °C, then the reaction mixture was stirred for 2.5 hr. After the completion of the reaction monitored by TLC, the reaction mixture was diluted with EtOAc (2 mL) and washed with 1N HCl (3 mL). Organic layer was dried over anhydrous Na₂SO₄(s) and condensed under reduced pressure. The residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:8 to 1:5 gradient elution with 0.5% AcOH) to provide the desired product.

Synthesis of S14{n15}, (R,Z)-3-(benzyloxy)pentadec-5-enoic acid

Yield: 76%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.26 (m, 5H), 5.56–5.49 (m, 1H), 5.41–5.35 (m, 1H), 4.60 (q, *J* = 11.8 Hz, 2H), 3.93 (quint, *J* = 6.0 Hz, 1H), 2.60–2.57 (m, 2H), 2.46–2.38 (m, 1H), 2.35–2.31 (m, 1H), 2.02 (q, *J* = 7.2 Hz, 2H), 1.26 (bs, 14H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 138.3, 133.6, 128.6, 128.0, 127.9, 124.0, 75.8, 71.9, 39.5, 32.1, 31.8, 29.8, 29.8, 29.5, 27.7, 22.9, 14.3.

Synthesis of S14{n16}, (R,Z)-3-(benzyloxy)hexadec-5-enoic acid

Yield: 61%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.28 (m, 5H), 5.57–5.49 (m, 1H), 5.42–5.34 (m, 1H), 4.60 (q, *J* = 11.4 Hz, 2H), 3.93 (quint, *J* = 6.0 Hz, 1H), 2.58 (d, *J* = 5.1 Hz, 2H), 2.49–2.29 (m, 2H), 2.02 (q, *J* = 6.6 Hz, 2H), 1.26 (bs, 16H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 177.0, 138.3, 133.6, 128.6, 128.0, 127.9, 124.0, 75.8, 71.9, 39.5, 32.1, 31.9, 29.9, 29.8, 29.6, 27.7, 22.9, 14.3.

Synthesis of S14{n17}, (R,Z)-3-(benzyloxy)heptadec-5-enoic acid

Yield: 76%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.25 (m, 5H), 5.57–5.49 (m, 1H), 5.42–5.34 (m, 1H), 4.60 (q, *J* = 10.8 Hz, 2H), 3.93 (quint, *J* = 6.0 Hz, 1H), 2.58 (dd, *J* = 6.3, 2.4 Hz, 2H), 2.46–2.29 (m, 2H), 2.02 (q, *J* = 6.9 Hz, 2H), 1.26 (bs, 18H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 177.3 138.3, 133.6, 128.6, 128.0, 127.9, 124.0, 75.8, 71.9, 39.5, 32.1, 31.9, 29.9, 29.9, 29.8, 29.6, 27.7, 22.9, 14.3; LRMS(ESI) *m/z* for C₂₄H₃₇O₃ [M - H]⁻ calcd: 373.28, found: 373.10.

Synthesis of S14{i17}, (R,Z)-3-(benzyloxy)-15-methylhexadec-5-enoic acid

Yield: 96%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.26 (m, 5H), 5.57–5.49 (m, 1H), 5.43–5.34 (m, 1H), 4.60 (q, *J* = 10.8 Hz, 2H), 3.97–3.87 (m, 1H), 2.58 (d, *J* = 5.1 Hz, 2H), 2.48–2.29 (m, 2H), 2.05–1.97 (m, 2H), 1.51 (sep, *J* = 6.6 Hz, 1H), 1.26 (m, 12H), 1.17–1.12 (m, 2H), 0.86 (d, *J* = 6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 177.2, 138.1, 133.4, 128.4, 127.8, 127.7, 123.8, 75.6, 71.7, 39.1, 31.7, 30.0, 29.7, 29.6, 29.4, 29.3, 28.0, 27.5, 27.4, 22.7; LRMS(ESI) *m/z* for C₂₄H₃₇O₃ [M - H]⁻ calcd: 373.28, found: 373.10.

Synthesis of S14{a17}, (3R,Z)-3-(benzyloxy)-14-methylhexadec-5-enoic acid

Yield: 75%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.26 (m, 5H), 5.57–5.49 (m, 1H), 5.42–5.34 (m, 1H), 4.60 (q, *J* = 11.7 Hz, 2H), 3.93 (quint, *J* = 6.0 Hz, 1H), 2.59 (d, *J* = 5.7 Hz, 2H), 2.54–2.29 (m, 2H), 2.02 (q, *J* = 6.9 Hz, 2H), 1.27 (bs, 13H), 1.16–1.07 (m, 2H), 0.85 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 138.2, 133.6, 128.6, 128.0, 128.0, 123.9, 75.8, 71.9, 39.4, 36.9, 34.6, 31.8, 30.2, 29.8, 29.8, 29.7, 29.6, 27.7, 27.3, 19.4, 11.6; LRMS(ESI)

m/*z* for C₂₄H₃₇O₃ [M - H]⁻ calcd: 373.28, found: 373.10.

B. Synthesis of α-galactosylsphingoid building blocks

In the case of sphinganine building blocks, α-galactosylsphinganine having iodide (S22) was prepared from Garner aldehyde. In a similar manner as acyl building blocks, sphingoid building blocks (S23{*i*17}–S23{*n*18}) were generated by decoration of terminal structures via sp³–sp³ cross-coupling.

Synthesis of S16, tert-butyl(dec-9-yn-1-yloxy)diphenylsilane

To a solution of 9-decyne-1-ol (25.9 mmol) in dry DCM (150 mL) were added *tert*-butyl(chloro)diphenylsilane (33.7 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (33.7 mmol) under Ar(g) at 0 °C. After being stirred for 1 hr at 0 °C, the reaction was warmed up to

ambient temperature and stirred for 4 hr. After the completion of the reaction monitored by TLC, the reaction mixture was diluted with EtOAc (100 mL) and washed with brine. Organic layer was dried over anhydrous Na₂SO₄ (s) and condensed under reduced pressure. The residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:80 to 1:40 gradient elution) to provide the desired product (9.78g, 96%). ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.68–7.66 (m, 4H), 7.44–7.36 (m, 6H), 3.65 (t, *J* = 7.0 Hz, 2H), 2.18 (td, *J* = 7.0, 2.5 Hz, 2H), 1.94 (t, *J* = 2.5 Hz, 1H), 1.58–1.49 (m, 4H), 1.39–1.31 (m, 4H), 1.28–1.26 (m, 4H), 1.05 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 135.8, 134.4, 129.7, 127.8, 85.0, 68.3, 64.2, 32.8, 29.4, 29.3, 28.9, 28.7, 27.1, 25.9, 19.4, 18.6; LRMS(ESI) *m*/z for C₂₆H₃₇OSi [M + H]⁺ calcd: 393.25, found: 393.20.

Synthesis of S17, *tert*-butyl (S)-4-((R)-11-((*tert*-butyldiphenylsilyl)oxy)-1-hydroxyundec-2-yn-1-yl)-2,2-dimethyloxazolidine-3-carboxylate

To a solution of **S16** (10.7 mmol) in dry THF (80 mL) was added *n*-butyllithium (12.9 mmol) slowly under Ar(g) at -78 °C and the reaction mixture was stirred for 45 min at -78 °C. Garner's aldehyde (11.8 mmol) in dry THF (20 mL) was added to reaction mixture dropwise at -78 °C. The reaction mixture was stirred at ambient temperature for overnight. After the completion of the reaction monitored by TLC, the reaction was guenched by adding NH₄Cl(ag.) (50 mL) and organic layer was extracted with

EtOAc (50 mL × 3). Organic layer was dried over anhydrous Na₂SO₄ (s) and condensed under reduced pressure. The residue purified by silica-gel flash column chromatography (EtOAc:Hex = 1:10 to 1:5 gradient elution) to provide the desired product (5.65g, 85%). ¹H NMR (400 MHz, CDCl₃, reference peak CDCl₃ at 7.26 ppm) δ 7.68–7.66 (m, 4H), 7.44–7.35 (m, 6H), 4.74 (d, *J* = 7.6 Hz, 1H), 4.51 (d, *J* = 7.6 Hz, 1H), 4.13–4.06 (m, 2H), 3.90 (bs, 1H), 3.65 (t, *J* = 6.4 Hz, 2H), 2.19 (td, *J* = 7.2, 1.6 Hz, 2H), 1.58–1.45 (m, 20H), 1.38–1.31 (m, 4H), 1.28–1.24 (m, 4H), 1.05 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 135.8, 134.4, 129.7, 127.8, 95.2, 64.2, 32.8, 29.5, 29.3, 29.1, 28.8, 28.6, 27.1, 26.0, 19.4, 19.0; LRMS(ESI) *m/z* for C₃₇H₅₅NaNO₅Si [M + Na]⁺ calcd: 644.37, found: 644.30.

Synthesis of S18, *tert*-butyl (S)-4-((R)-1-(benzyloxy)-11-((*tert*-butyldiphenylsilyl)oxy)undec-2-yn-1-yl)-2,2-dimethyloxazolidine-3-carboxylate

Sodium hydride (13.0 mmol) was dissolved in dry DMF (50 mL) under Ar(g) at 0 °C. **S17** in dry DMF (10 mL) was added to the reaction mixture slowly and the reaction mixture was stirred at 0 °C for 30 min. Tetrabutylammonium iodide (1.30 mmol) and benzyl chloride (13.0 mmol) were added to the reaction mixture and the reaction mixture was stirred at r.t. for overnight. After the completion of the reaction monitored by TLC, the reaction was guenched by adding NH₄Cl(aq.) (50 mL) at 0 °C and

organic layer was extracted with EtOAc (40 mL × 3). The resultant was dried over anhydrous Na₂SO₄(s) and condensed under reduced pressure. The residue purified by silica-gel flash column chromatography (EtOAc:Hex = 1:20 to 1:15 gradient elution) to provide the desired product (5.73g, 81%). ¹H NMR (300 MHz, CDCl₃, reference peak CDCl₃ at 7.26 ppm) δ 7.68–7.66 (m, 4H), 7.42–7.32 (m, 11H), 4.82 (dd, *J* = 12.3, 5.1 Hz, 1H), 4.54 (d, *J* = 72 Hz, 1H), 4.52 (dd, *J* = 12.3, 5.1 Hz, 1H), 4.30–4.25 (m, 1H), 4.03 (d, *J* = 40.5 Hz, 1H), 4.01 (t, *J* = 7.8 Hz, 1H), 3.65 (t, *J* = 6.6 Hz, 2H), 2.24–2.17 (m, 2H), 1.62–1.47 (m, 15H), 1.36–1.26 (m, 12H), 1.05 (s, 9H); LRMS(ESI) *m/z* for C₄₄H₆₁NNaO₅Si [M + Na]⁺ calcd: 734.42, found: 734.50.

Synthesis of S19, (2S,3R)-2-azido-3-(benzyloxy)-13-((tert-butyldiphenylsilyl)oxy)tridec-4-yn-1-ol

S18 (3.62 mmol) was dissolved in HCl (4 M in dioxane)/THF (9 mL/9 mL) under Ar(g) and the reaction mixture was stirred at 0 °C. After the completion of the reaction monitored by TLC, the reaction mixture was poured to sat. NaHCO₃ (aq.) (40 mL) and organic layer was extracted with EtOAc (40 mL × 3). The organic layer was dried over anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resultant, 4-(dimethylamino)pyridine (5.43 mmol) and imidazole-1-sulfonylazide¹¹ (7.25 mmol) were dissolved in MeOH (40 mL) and the reaction mixture was stirred at r.t. for overnight. After the completion of reaction monitored by TLC, the reaction mixture was diluted with DCM (50 mL) and washed with sat. NH₄Cl(aq.). The resulting organic layer was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried over anhydrous Na₂SO₄(s) and condensed under reduced pressure. The resulting organic layer was dried over anhydrous Na₂SO₄(s) and condensed (a, 15 gradient elution) to provide the desired product (2.18g, 47%). ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.68–7.66 (m, 4H), 7.43–7.27 (m, 11H), 4.84 (d, *J* = 12.0 Hz, 1H), 4.52 (d, *J* = 12.0 Hz, 1H), 4.28–4.26 (m, 1H), 3.82 (bs, 2H), 3.65 (t, *J* = 6.4 Hz, 2H), 3.60 (q, *J* = 5.2 Hz, 1H), 2.27 (td, *J* = 7.2, 1.6 Hz, 2H), 2.05 (bs, 1H), 1.58–1.51 (m, 4H), 1.41–1.32

Synthesis of S20, (((11R,12S)-12-azido-11-(benzyloxy)-13-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tridec-9-yn-1-yl)oxy)(*tert*-butyl)diphenylsilane

To a solution of 1-O-acetyl-2,3,4,6-tetra-O-benzyl-D-galactopyranoside (6.14 mmol) in dry DCM (50 mL) at 0 °C was added trimethylsilyl iodide (TMSI, 7.37 mmol). After being stirred for 30 min at 0 °C, the reaction was stopped by adding anhydrous toluene (30 mL) and residual TMSI was removed by azeotropic evaporation with anhydrous toluene 3 times. The resultant (slight yellow) was dissolved in anhydrous benzene (15 mL) and kept under Ar(g). In a separate round-bottom flask, molecular sieve

(4 Å, 1 g), tetrabutylammonium iodide (TBAI, 22.1 mmol), **S19** (2.46 mmol) and diisopropylethylamine (7.37 mmol) were added into dry benzene (55 mL). The reaction mixture was stirred under Ar(g) at 65 °C for 10 min. As the complete dissolution of TBAI, the galactosyl iodide in dry benzene was added into this flask and the reaction mixture was stirred at 65 °C for 2 hr. After the completion of reaction monitored by TLC, the reaction mixture was poured into cold sat. NaHCO₃(aq.). Organic layer was extracted with EtOAc (50 mL × 3) and dried over anhydrous Na₂SO₄(s). The resulting mixture was condensed under reduced pressure and purified by silica-gel column chromatography (EtOAc:Hex = 1:20 to 1:3 gradient elution) to provide the desired product (1.49g, 54%). ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.66 (dd, *J* = 7.6, 1.6 Hz, 4H), 7.41–7.23 (m, 26H), 4.93 (d, *J* = 11.2 Hz, 1H), 4.87 (d, *J* = 3.6 Hz, 1H), 4.83–4.75 (m, 3H), 4.73–4.65 (m, 2H), 4.56 (d, *J* = 12 Hz, 1H), 4.48–4.42 (m, 2H), 4.40–4.36 (m, 1H), 4.31–4.30 (m, 1H), 4.04 (dd, *J* = 10.0, 3.6 Hz, 1H), 3.98–3.86 (m, 4H), 3.80–3.76 (m, 1H), 3.67–3.62 (m, 3H), 3.53–3.50 (m, 2H), 2.21 (td, *J* = 7.2, 1.6 Hz, 2H), 1.53 (septet, *J* = 7.2 Hz, 4H), 1.42–1.21 (m, 8H), 1.04 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 138.8, 138.2, 137.7, 135.8, 134.4, 129.7, 128.6, 128.5, 128.5, 128.4, 128.0, 128.0, 127.9, 127.9, 127.9, 127.8, 127.7, 127.7, 127.7, 127.6, 98.8, 89.7, 79.0, 76.6, 75.2, 75.2, 75.0, 73.7, 73.4, 70.8, 69.9, 69.4, 69.1, 67.6, 64.2, 64.1, 32.8, 29.9, 29.5, 29.3, 29.1, 28.8, 27.1, 26.0, 19.4, 19.0; LRMS(ESI) *m/z* for C₇₀H₈₂N₃O₈Si [M + H]* calcd: 1120.58, found: 1120.30.

Synthesis of S21, *tert*-butyl ((2S,3R)-3-(benzyloxy)-13-((*tert*-butyldiphenylsilyl)oxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tridec-4-yn-2-yl)carbamate

To a solution of **S20** (1.33 mmol) in benzene/H₂O (10 mL/0.1 mL) was added triphenylphosphine (2.67 mmol) and the reaction mixture was stirred at 60 °C for 3 hr. After the completion of reaction monitored by TLC, solvent was evaporated under reduced pressure and residual H₂O was removed by azeotropic evaporation with toluene three times. The resulting mixture was dissolved in DCM (10 mL) then di-*tert*-butyl dicarbonate (2.67 mmol), triethylamine (4.69 mmol) were added to the reaction mixture. After being stirred at r.t. for overnight, solvent was evaporated under reduced pressure and the residue was purified by silica-gel column chromatography (EtOAc:Hex = 1:10 to 1:5 gradient elution) to provide the desired product (1.28g, 80%). ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.81–7.65 (m, 4H), 7.40–7.22 (m, 31H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.92 (d, *J* = 11.4 Hz, 1H), 4.85 (d, *J* = 3.0 Hz, 1H), 4.80 (d, *J* = 11.7 Hz, 1H), 4.76–4.68 (m, 3H), 4.64–4.50 (m, 3H), 4.46–4.35 (m, 3H), 4.15–4.07 (m, 1H), 4.00 (dd, *J* = 9.9, 3.6 Hz, 1H), 3.92–3.83 (m, 3H), 3.76 (d, *J* = 5.1 Hz, 1=2H), 3.64 (t, *J* = 6.6 Hz, 2H), 3.48 (d, *J* = 6.6 Hz, 2H), 2.16 (td, *J* = 6.9, 1.5 Hz, 2H), 1.56–1.50 (m, 4H), 1.42 (s, 9H), 1.34–1.24 (m, 8H), 1.04 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 139.1, 138.9, 138.8, 138.2, 138.1, 135.8, 134.4, 129.7, 128.6, 128.6, 128.6, 128.5, 128.5, 128.4, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 98.7, 88.7, 79.4, 79.1, 75.2, 75.0, 73.7, 73.3, 70.7, 69.7, 69.2, 69.0, 67.9, 64.2, 53.9, 32.8, 29.5, 29.3, 29.2, 28.9, 28.6, 27.1, 26.0, 19.4, 19.0; LRMS(ESI) *m/z* for C₇₅H₉₁NaNO₁₀Si [M + Na]⁺ calcd: 1216.63, found: 1216.45.

Synthesis of OH-S21, *tert*-butyl ((2S,3R)-3-(benzyloxy)-13-hydroxy-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tridec-4-yn-2-yl)carbamate

To a solution of **S20** (0.228 mmol) at r.t. in THF (2 mL) was added TBAF (1 M in THF, 0.274 mL), then stirred at r.t. for 2.5 hr. When the reaction was completed checked by TLC, the reaction mixture was concentrated *in vacuo*. The residue was purified by silica-gel flash column chromatography (20% EA in hexane gradient to 33.33%) to obtain the desired product (0.218g, quantitative). ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.39–7.20 (m, 25H), 5.25 (d, *J* = 9.3 Hz, 1H), 4.93–4.89 (m, 1H), 4.86 (d, *J* =

3.0 Hz, 1H), 4.80 (m, 1H), 4.78–4.68 (m, 3H), 4.68–4.63 (m, 1H), 4.59–4.34 (m, 5H), 4.12–4.07 (m, 1H), 4.03–3.76 (m, 6H), 3.58 (t, J = 6.3 Hz, 2H), 3.49 (d, J = 6.6 Hz, 2H), 2.19–2.15 (m, 2H), 1.53–1.25 (m, 21H); ¹³C NMR (75 MHz, CDCl₃) δ 155.8, 139.0, 138.8, 138.7, 138.2, 138.1, 128.5, 128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 127.8, 127.7, 127.7, 127.6, 127.6, 98.6, 88.5, 79.3, 79.1, 76.8, 75.1, 74.9, 73.6, 73.3, 73.2, 70.6, 69.6, 69.1, 68.9, 67.8, 63.0, 53.9, 32.8, 29.2, 28.9, 28.7, 28.6, 25.7, 18.8.

Synthesis of O-mesylated S21, (11R,12S)-11-(benzyloxy)-12-((*tert*-butoxycarbonyl)amino)-13-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tridec-9-yn-1-yl methanesulfonate

To a solution of **OH-S21** (1.24 mmol) in THF were added methanesulfonyl chloride (1.87 mmol) and triethylamine (2.49 mL) and the reaction mixture was stirred at r.t. for 3 hr. After the completion of the reaction monitored by TLC, solvent was evaporated under reduced pressure. The residue was purified by silica-gel column chromatography (EtOAc:Hex = 1:5 to 1:2 gradient elution) to provide the desired product (1.28g, 99%). ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.39–7.21 (m, 25H), 5.08

(d, J = 9.0 Hz, 1H), 4.92 (d, J = 11.4 Hz, 1H), 4.85 (d, J = 3.0 Hz, 1H), 4.81 (d, J = 11.7 Hz, 1H), 4.76–4.69 (m, 3H), 4.64 (s, 1H), 4.58 (d, J = 12.6 Hz, 1H), 4.51 (d, J = 5.7 Hz, 1H), 4.43 (dd, J = 15.6, 3.3 Hz, 2H), 4.35 (quint, J = 2.4 Hz, 1H), 4.18 (t, J = 6.6 Hz, 2H), 4.13–4.09 (m, 1H), 4.00 (dd, J = 9.9, 3.6 H, 1H), 3.921 (bs, 1H), 3.87–3.83 (m, 2H), 3.77 (d, J = 5.1 Hz, 2H), 3.48 (d, J = 6.3 Hz, 2H), 2.97 (s. 3H), 2.17 (td, J = 6.9, 1.8 Hz, 2H), 1.72 (quint, J = 6.9 Hz, 2H), 1.52–1.46 (m, 2H), 1.42 (s, 9H), 1.40–1.21 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 139.1, 138.9, 138.8, 138.2, 138.1, 128.6, 128.5, 128.5, 128.4, 128.1, 128.0, 127.9, 127.7, 127.7, 127.6, 98.8, 86.6, 79.4, 79.1, 76.8, 75.2, 75.0, 73.7, 73.3, 70.7, 70.3, 69.7, 69.2, 69.0, 67.9, 53.9, 37.5, 29.3, 29.1, 29.0, 28.8, 28.6, 25.6, 18.9; LRMS(ESI) *m/z* for C₆₀H₇₅NaNO₁₂S [M + Na]⁺ calcd: 1056.49, found: 1056.30.

Synthesis of S22, *tert*-butyl ((2S,3R)-3-(benzyloxy)-13-iodo-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tridec-4-yn-2-yl)carbamate

To a solution of **O-mesylated S21** (1.23 mmol) in acetone were added sodium iodide (6.17 mmol) and sodium carbonate (0.25 mmol), then the reaction mixture was stirred at 65 °C for 3 hr. After the completion of reaction monitored by TLC, solvent was evaporated under reduced pressure. The residue was purified by silica-gel column chromatography (EtOAc:Hex = 1:10 to 1:5 gradient elution) to provide the desired product (1.26g, 96%). ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.39–7.21 (m, 25H), 5.07 (d, *J* = 9.3 Hz, 1H), 4.92 (d,

J = 11.4 Hz, 1H), 4.85 (d, J = 3.0 Hz, 1H), 4.81 (d, J = 11.7 Hz, 1H), 4.76–4.69 (m, 3H), 4.66 (s, 1H), 4.58 (d, J = 11.7 Hz, 1H), 4.51 (d, J = 6.3 Hz, 1H), 4.46–4.40 (m, 2H), 4.37–4.36 (m, 1H), 4.12 (q, J = 7.2 Hz, 1H), 4.01 (dd, J = 10.2, 3.6 Hz, 1H), 3.92 (bs, 1H), 3.90–3.83 (m, 2H), 3.77 (d, J = 5.1 Hz, 2H), 3.48 (d, J = 6.6 Hz, 2H), 3.15 (t, J = 6.9 Hz, 2H), 2.17 (t, J = 6.9 Hz, 2H), 1.79 (quint, J = 7.2 Hz, 2H), 1.58–1.26 (m, 19H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 139.1, 138.9, 138.8, 138.2, 138.1, 128.6, 128.6, 128.5, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 98.8, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 98.8, 128.5, 128.5, 128.5, 128.4, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 98.8, 128.5, 128

88.6, 79.4, 79.1, 75.2, 75.0, 73.7, 73.3, 70.7, 69.7, 69.2, 69.0, 67.9, 53.9, 33.7, 30.7, 29.1, 29.0, 28.8, 28.6, 18.9, 7.5; LRMS(ESI) m/z for C₅₉H₇₂INaNO₉ [M + Na]⁺ calcd: 1088.41, found: 1088.30.

General procedure of the Cu^(I)-mediated sp³-sp³ cross coupling

To a solution of **S22** (1.0 equiv.) in dry THF (0.1 M for **S22**) under Ar(g) were added alkylmagnesium halide (4.0 equiv.) and dilithium tetrachlorocuprate (0.4 equiv.) successively at 0 °C. The reaction mixture was stirred for 1.5 hr at 0 °C. After the completion of reaction monitored by TLC, the reaction was quenched by adding sat. NaHCO₃ (aq.) and organic layer was extracted with EtOAc three times and dried over anhydrous Na₂SO₄(s). Resulting mixture was condensed under reduced pressure and purified by silica-gel flash column chromatography (EtOAc:Hex = 1:10 to 1:6 gradient elution) to provide the desired product.

Synthesis of S23{a17}, *tert*-butyl ((2S,3R)-3-(benzyloxy)-14-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)carbamate

Yield: 59%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.38–7.25 (m, 25H), 5.07 (d, *J* =9.0 Hz, 1H), 4.92 (d, *J* = 11.4 Hz, 1H), 4.85 (d, *J* = 2.7 Hz, 1H), 4.80 (d, *J* = 11.7 Hz, 1H), 4.76–4.68 (m, 3H), 4.64 (s, 1H), 4.58 (d, *J* = 11.7 Hz, 1H), 4.51 (d, *J* = 6.3 Hz, 1H), 4.46 (s, 1H), 4.39 (dd, *J* = 12.6, 5.4 Hz, 2H), 4.14–3.90 (m, 1H), 4.00 (dd, *J* =9.9, 3.6 Hz, 1H), 3.92 (bs, 1H), 3.90–3.83 (m, 2H), 3.76 (d, *J* = 4.8 Hz, 2H), 3.49 (d, *J* =6.6 Hz, 2H), 2.17 (td, *J* = 6.9 Hz, 1.5 Hz, 2H), 1.48–1.42 (m,11H), 1.36–1.23 (m, 13H), 1.16–1.06 (m, 2H), 0.85 (t, *J* = 7.2 Hz, 6H); ¹³C NMR

 $(75 \text{ MHz}, \text{CDCI}_3) \ \delta \ 155.7, \ 139.1, \ 138.9, \ 138.8, \ 138.2, \ 138.1, \ 128.6, \ 128.5, \ 128.5, \ 128.5, \ 128.4, \ 128.3, \ 128.1, \ 128.0, \ 127.9, \ 127.7, \ 127.6, \ 98.7, \ 88.8, \ 79.4, \ 79.1, \ 75.2, \ 75.0, \ 73.7, \ 73.3, \ 70.7, \ 69.7, \ 69.2, \ 69.0, \ 67.9, \ 53.9, \ 36.9, \ 34.6, \ 30.2, \ 29.8, \ 29.7, \ 29.4, \ 28.9, \ 28.6, \ 27.3, \ 19.4, \ 19.0, \ 11.6; \ \text{LRMS}(\text{ESI}) \ \textit{m/z} \ \text{for} \ C_{63}\text{H}_{81}\text{NaNO}_9 \ [\text{M} + \text{Na}]^+ \ \text{calcd:} \ 1018.58, \ \text{found:} \ 1018.35.$

Synthesis of S23{n17}, *tert*-butyl ((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)heptadec-4-yn-2-yl)carbamate

Yield: 68%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.39–7.22 (m, 25H), 5.07 (d, *J* = 8.7 Hz, 1H), 4.92 (d, *J* = 11.4 Hz, 1H), 4.85 (d, *J* = 3.0 Hz, 1H), 4.81 (d, *J* = 11.7 Hz, 1H), 4.76–4.69 (m, 3H), 4.64 (s, 1H), 4.59 (d, *J* = 5.7 Hz, 1H), 4.51 (d, *J* = 6.3 Hz, 1H), 4.64 (s, 1H), 4.42–4.36 (m, 2H), 4.16–4.09 (m, 1H), 4.01 (dd, *J* = 9.9, 3.6 Hz, 1H), 3.92 (bs, 1H), 3.90–3.83 (m, 2H), 3.76 (d, *J* = 5.1 Hz, 2H), 3.48 (d, *J* = 6.3 Hz, 2H), 2.16 (td, *J* = 7.2, 1.8 Hz, 2H), 1.51–1.42 (m, 11H), 1.36–1.25

(m, 18H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 139.1, 138.9, 138.8, 138.2, 138.1, 128.6, 128.6, 128.5, 128.5, 128.4, 128.4, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 98.7, 88.8, 79.4, 79.1, 75.2, 75.0, 73.7, 73.3, 70.7, 69.6, 69.1, 69.0, 67.9, 53.9, 32.1, 29.9, 29.8, 29.7, 29.6, 29.3, 29.2, 28.6, 28.0, 22.9, 18.9, 14.3; LRMS(ESI) m/z for C₆₃H₈₁NaNO₉ [M + Na]⁺ calcd: 1018.58, found: 1018.35.

Synthesis of S23{n18}, *tert*-butyl ((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)octadec-4-yn-2-yl)carbamate

Yield: 44%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.39–7.22 (m, 25H), 5.07 (d, *J* = 8.7 Hz, 1H), 4.92 (d, *J* = 11.4 Hz, 1H), 4.85 (d, *J* = 3.0 Hz, 1H), 4.81 (d, *J* = 11.7 Hz, 1H), 4.76–4.69 (m, 3H), 4.64 (s, 1H), 4.59 (d, *J* = 5.7 Hz, 1H), 4.51 (d, *J* = 6.3 Hz, 1H), 4.64 (s, 1H), 4.42–4.36 (m, 2H), 4.16–4.09 (m, 1H), 4.01 (dd, *J* = 9.9, 3.6 Hz, 1H), 3.92 (bs, 1H), 3.90–3.83 (m, 2H), 3.76 (d, *J* = 5.1 Hz, 2H), 3.48 (d, *J* = 6.3 Hz, 2H), 2.16 (td, *J* = 7.2, 1.8 Hz, 2H), 2.16 (td, J = 7.2, 1.8 Hz, 2H), 2.16 (td, J = 7.2, 1.8 Hz, 2H), 3.16 (td, J = 7.2, 1.8 Hz, 3.8 Hz), 3.18 (td, J = 7.2, 1.8 Hz)

2H), 1.51–1.42 (m, 11H), 1.36–1.25 (m, 20H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 139.1, 138.9, 138.8, 138.2, 138.1, 128.6, 128.6, 128.5, 128.5, 1284, 128.4, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 98.7, 88.8, 79.4, 79.1, 75.2, 75.0, 73.7, 73.3, 70.7, 69.6, 69.1, 69.0, 67.9, 53.9, 32.1, 29.9, 29.8, 29.6, 29.4, 29.2, 28.9, 28.6, 22.9, 19.0, 14.4; LRMS(ESI) m/z for C₆₄H₈₃NaNO₉ [M + Na]⁺ calcd: 1032.60, found: 1032.40.

Synthesis of S23{n19}, *tert*-butyl ((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)nonadec-4-yn-2-yl)carbamate

Yield: 59%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.38–7.25 (m, 25H), 5.07 (d, *J* = 9.0 Hz, 1H), 4.92 (d, *J* = 11.1 Hz, 1H), 4.85 (d, *J* = 2.7 Hz, 1H), 4.81 (d, *J* = 11.7 Hz, 1H), 4.76–4.69 (m, 3H), 4.64 (s, 1H), 4.58 (d, *J* = 11.7 Hz, 1H), 4.51 (d, *J* = 6.0 Hz, 1H), 4.46 (s, 1H), 4.42–4.36 (m, 2H), 4.13–4.09 (m, 1H), 4.01 (dd, *J* = 10.2, 3.6 Hz, 1H), 3.92 (bs, 1H), 3.90–3.83 (m, 2H), 3.76 (d, *J* = 4.8 Hz, 2H), 3.49 (d, *J* = 6.6 Hz, 2H),

2.16 (td, J = 6.9, 1.5 Hz, 2H), 1.51–1.46 (m, 2H), 1.42 (s, 9H), 1.37–1.25 (m, 22H), 0.88 (t, J = 6.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 139.1, 138.9, 138.8, 138.2, 138.1, 128.6, 128.5, 128.5, 128.5, 128.4, 128.1, 128.1, 128.0, 127.9, 127.7, 127.6, 98.7, 88.8, 79.4, 79.1, 76.8, 75.9, 75.2, 75.0, 73.7, 73.3, 70.7, 69.7, 69.1, 69.0, 67.9, 53.9, 32.1, 29.9, 29.9, 29.8, 29.6, 29.4, 29.2, 28.9, 28.6, 22.9, 19.0, 14.3; LRMS(ESI) *m/z* for C₆₅H₈₅NaNO₉ [M + Na]⁺ calcd: 1046.61, found: 1046.40.

C. Construction of α-GalCer library

General procedure of Boc deprotection and amide coupling

S23 (1.0 equiv.) was dissolved in TFA/DCM (0.2 mL/2 mL) and the reaction mixture was stirred at r.t. for 3 hr. After the completion of reaction monitored by TLC, the reaction was quenched by adding sat. NaHCO₃(aq.) and organic layer was extracted with EtOAc (10 mL × 3) and dried over anhydrous Na₂SO₄(s). The resulting mixture, **S14** (1.0 equiv.), *N*-3-dimethylaminopropyl-*N*'-ethylcarbodiimde hydrochloride (2.5 equiv.) and 4-(dimethylamino)pyridine (0.1 equiv.) were dissolved in dry THF (2 mL) and the reaction mixture was stirred at r.t. for overnight. After the completion of reaction monitored by TLC, the reaction mixture was diluted with EtOAc and was washed with brine. The resulting mixture was dried with anhydrous Na₂SO₄(s) and condensed under reduced pressure. The residue was purified by silica-gel flash column chromatography (EtOAc:Hex = 1:8 to 1:5 gradient elution) to provide the desired product.

Synthesis of S24{n18/n16}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)octadec-4-yn-2-yl)hexadec-5-enamide

Yield: 67%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.35–7.18 (m, 30H), 6.61 (d, *J* = 8.5 Hz, 1H), 5.48–5.43 (m, 1H), 5.37–5.32 (m, 1H), 4.89 (d, *J* = 12.0 Hz, 1H), 4.82 (d, *J* = 3.5 Hz, 1H), 4.75–4.69 (m, 3H), 4.60 (t, *J* = 12.5 Hz, 2H), 4.53–4.43 (m, 5H), 4.41–4.36 (m, 2H), 3.98 (dd, *J* = 10.0, 3.5 Hz, 1H), 3.88–3.84 (m, 3H), 3.80–3.73 (m, 3H), 3.46 (dd, *J* = 7.5, 3.0 Hz, 2H), 2.35–2.25 (m, 4H), 2.10 (t, *J* = 7.0 Hz, 2H), 1.97 (q, *J* = 7.0 Hz, 2H), 1.44 (quint, *J* = 7.5 Hz, 2H), 1.29–125 (m, 36H), 0.88 (t, *J* = 7.0 Hz, 6H); ¹³C NMR

 $(75 \text{ MHz}, \text{CDCI}_3) \delta 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.1, 79.1, 75.8, 75.1, 74.9, 73.6, 73.5, 73.5, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 32.1, 32.1, 31.9, 29.9, 29.9, 29.8, 29.6, 29.4, 29.2, 28.9, 27.7, 22.9, 18.9, 14.3; LRMS(ESI)$ *m*/*z*for C₈₂H₁₁₀NO₉ [M + Na]⁺ calcd: 1252.81, found: 1252.60.

Synthesis of S24{n18/n15}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)octadec-4-yn-2-yl)pentadec-5-enamide

Yield: 87%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.18 (m, 30H), 6.62 (d, *J* = 8.4 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.32 (m, 1H), 4.89 (d, *J* = 11.6 Hz, 1H), 4.82 (d, *J* = 3.2 Hz, 1H), 4.74–4.69 (m, 3H), 4.60 (t, *J* = 11.2 Hz, 2H), 4.53–4.44 (m, 5H), 4.39–4.33 (m, 2H), 3.98 (dd, *J* = 9.6, 3.2 Hz, 1H), 3.87–3.84 (m, 3H), 3.80–3.76 (m, 3H), 3.46 (d, *J* = 6.4 Hz, 2H), 2.36–2.26 (m, 4H), 2.10 (t, *J* = 6.8 Hz, 2H), 1.97 (q, *J* = 6.8 Hz, 2H), 1.44 (quint, *J* = 7.2 Hz, 2H), 1.25 (bs,

34H), 0.88 (t, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 76.8, 76.7, 75.8, 75.0, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.7, 69.0, 68.7, 67.6, 52.5, 41.7, 32.1, 32.1, 31.9, 29.9, 29.9, 29.8, 29.6, 29.6, 29.5, 29.4, 29.4, 29.2, 28.9, 27.7, 22.9, 18.9, 14.3; LRMS(ESI) *m/z* for C₈₁H₁₀₈NO₉ [M + H]⁺ calcd: 1238.79, found: 1238.25.

 $\label{eq:synthesis} \begin{array}{ll} \text{Synthesis} & \text{of} & \text{S24}\{n18/i17\}, & (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)octadec-4-yn-2-yl)-15-methylhexadec-5-enamide & \text{Support for the statement of the second seco$

Yield: 84%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.18 (m, 30H), 6.59 (d, *J* = 8.8 Hz, 1H), 4.88 (d, *J* = 11.2 Hz, 1H), 4.80 (t, *J* = 2.8 Hz, 1H), 4.80 (d, *J* = 2.8 Hz, 1H), 4.73–4.67 (m, 3H), 4.63–4.56 (m, 3H), 4.52–4.42 (m, 5H), 4.39–4.34 (m, 2H), 3.97 (dt, *J* = 10.0, 3.2 Hz, 1H), 3.85–3.83 (m, 3H), 3.78–3.74 (m, 3H), 3.44 (d, *J* = 6.0 Hz, 2H), 2.34–2.22 (m, 4H), 2.08 (t, *J* = 6.8 Hz, 2H), 1.96 (q, *J* = 4.34 (m, 2H), 4.50 (t, *J* = 6.8 Hz, 2H), 5.50 (t, *J* = 6.8 Hz, 2H), 5.50 (t, J) = 6.8 Hz, 4.50 (t, J) = 6.8 Hz, 5.50 (t, J) = 6

6.8 Hz, 2H), 1.53–1.39 (m, 4H), 1.23 (bs, 31H), 1.15–1.13 (m, 2H), 0.88–0.83 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.1, 79.2, 76.8, 76.7, 75.8, 75.1, 75.0, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 39.3, 32.1, 31.9, 31.2, 30.2, 29.9, 29.9, 29.8, 29.8, 29.6, 29.6, 29.4, 29.2, 28.9, 28.2, 27.7, 27.6, 22.9, 22.9, 18.9, 14.3; LRMS(ESI) *m/z* for C₈₃H₁₁₁NaNO₉ [M + Na]⁺ calcd: 1288.82, found: 1288.50.

Synthesis of S24{n18/a17}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)octadec-4-yn-2-yl)-14-methylhexadec-5-enamide

Yield: 44%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.18 (m, 30H), 6.62 (d, *J* = 8.5 Hz, 1H), 5.48–5.43 (m, 1H), 5.38–5.32 (m, 1H), 4.89 (d, *J* = 11.5 Hz, 1H), 4.82 (d, *J* = 3.0 Hz, 1H), 4.74–4.69 (m, 3H), 4.60 (t, *J* = 12.5 Hz, 2H), 4.53–4.43 (m, 5H), 4.38 (t, *J* = 12.5 Hz, 2H), 3.98 (d, *J* = 7.5 Hz, 1H), 3.85 (bs, 3H), 3.79–3.76 (m, 3H), 3.46 (d, *J* = 4.0 Hz, 2H), 2.35–2.25 (m, 4H), 2.10 (t, *J* = 6.5 Hz, 2H), 1.97 (q, *J* = 6.5 Hz,

2H), 1.45–1.42 (m, 2H), 1.24 (bs, 33H), 1.13–1.08 (m, 2H), 0.88–0.84 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) *δ* 170.9, 138.8, 138.6, 138.5, 138.4, 137.9, 137.7, 132.7, 128.3, 128.3, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 127.4, 127.3, 124.4, 98.6, 88.8, 78.9, 76.6, 76.5, 75.6, 74.7, 73.4, 73.2, 72.9, 71.4, 70.5, 69.5, 68.8, 68.5, 67.4, 52.3, 41.5, 36.6, 34.4, 31.9, 31.7, 30.0, 29.7, 29.6, 29.5, 29.4, 29.4, 29.2, 29.0, 28.7, 27.5, 27.1, 22.7, 19.2, 18.7, 14.1, 11.4; LRMS(ESI) *m/z* for C₈₃H₁₁₁NaNO₉ [M + Na]⁺ calcd: 1288.82, found: 1288.50.

Synthesis of S24{n19/n16}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)nonadec-4-yn-2-yl)hexadec-5-enamide

Yield: 76%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.18 (m, 30H), 6.62 (d, *J* = 8.4 Hz, 1H), 5.50–5.42 (m, 1H), 5.39–5.31 (m, 1H), 4.89 (d, *J* = 11.4 Hz, 1H), 4.82 (d, *J* = 3.3 Hz, 1H), 4.75–4.68 (m, 3H), 4.65–4.59 (m, 2H), 4.57–4.44 (m, 5H), 4.40–4.35 (m, 2H), 3.98 (dd, *J* = 10.2, 3.6 Hz, 1H), 3.87–3.84 (m, 3H), 3.81–3.71 (m, 3H), 3.47 (d, *J* = 6.0 Hz, 2H), 2.36–2.26 (m, 4H), 2.10 (t, *J* = 6.6 Hz, 2H), 1.97 (q, *J* = 6.6 Hz, 2H), 1.48–1.41

(m, 2H), 1.25 (bs, 38H), 0.88 (t, J = 6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 75.8, 75.1, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 32.1, 31.9, 29.9, 29.9, 29.6, 29.4, 29.2, 28.9, 27.7, 22.9, 18.9, 14.3; LRMS(ESI) *m*/z for C₈₃H₁₁₁NO₉ [M + Na]⁺ calcd: 1288.82, found: 1288.55.

Synthesis of S24{n19/n15}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)nonadec-4-yn-2-yl)pentadec-5-enamide

Yield: 78%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.17 (m, 30H), 6.62 (d, *J* = 8.8 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.32 (m, 1H), 4.89 (d, *J* = 11.2 Hz, 1H), 4.82 (d, *J* = 3.2 Hz, 1H), 4.74–4.69 (m, 3H), 4.60 (t, *J* = 11.2 Hz, 2H), 4.53–4.41 (m, 5H), 4.39–4.33 (m, 2H), 3.98 (dd, *J* = 9.6, 3.2 Hz, 1H), 3.87–3.74 (m, 3H), 3.80–3.75 (m, 3H), 3.46 (d, *J* = 6.0 Hz, 2H), 2.36–2.24 (m, 4H), 2.10 (t, *J* = 6.8 Hz, 2H), 1.97 (q, *J* = 6.8 Hz, 2H), 1.44 (quint, *J* = 7.2 Hz, 2H), 1.25 (bs, 36H), 0.88 (t,

 $J = 6.8 \text{ Hz}, 6\text{H}; {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 76.8, 76.7, 75.8, 75.0, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.7, 69.0, 68.7, 67.6, 52.5, 41.7, 32.1, 32.1, 31.9, 29.9, 29.9, 29.9, 29.8, 29.6, 29.5, 29.4, 29.4, 29.2, 28.9, 27.7, 22.9, 18.9, 14.3; LRMS(ESI)$ *m*/*z*for C₈₂H₁₀₉NaNO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.80.

Synthesis of S24{n19/i17}, (*R*,*Z*)-3-(benzyloxy)-*N*-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2*H*-pyran-2-yl)oxy)nonadec-4-yn-2-yl)-15-methylhexadec-5-enamide

Yield: 78%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.18 (m, 30H), 6.59 (d, *J* = 8.8 Hz, 1H), 5.47–5.41 (m, 1H), 5.37–5.30 (m, 1H), 4.88 (d, *J* = 11.2 Hz, 1H), 4.80 (d, *J* = 2.4 Hz, 1H), 4.73–4.6 (m, 3H), 4.59 (t, *J* = 11.2 Hz, 2H), 4.52–4.42 (m, 5H), 4.39–4.34 (m, 2H), 3.97 (ddd, *J* = 9.6, 3.4, 1.2 Hz, 1H), 3.85–3.83 (m, 3H), 3.78 (bs, 1H), 3.76–3.73 (m, 2H), 3.45 (d, *J* = 6.0 Hz, 2H), 2.34–2.23 (m, 4H),

2.08 (t, J = 6.8 Hz, 2H), 1.96 (q, J = 6.8 Hz, 2H), 1.51–1.39 (4H), 1.23 (bs, 33H), 1.16–1.01 (m, 2H), 0.88–0.84 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.1, 79.2, 76.8, 76.7, 75.8, 75.1, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 39.3, 32.1, 31.9, 31.2, 30.2, 29.9, 29.9, 29.9, 29.8, 29.8, 29.6, 29.6, 29.4, 29.2, 28.9, 28.2, 27.7, 27.7, 22.9, 22.9, 18.9, 14.3; LRMS(ESI) *m/z* for C₈₄H₁₁₄NO₉ [M + H]⁺ calcd: 1280.84, found: 1280.60.

Synthesis of S24{n19/a17}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)nonadec-4-yn-2-yl)-14-methylhexadec-5-enamide

Yield: 42%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.18 (m, 30H), 6.62 (d, *J* = 8.5 Hz, 1H), 5.48–5.43 (m, 1H), 5.37–5.32 (m, 1H), 4.89 (d, *J* = 11.5 Hz, 1H), 4.82 (d, *J* = 2.5 Hz, 1H), 4.74–4.69 (m, 3H), 4.60 (t, *J* = 12.5 Hz, 2H), 4.53–4.43 (m, 5H), 4.38 (t, *J* = 12.5 Hz, 2H), 3.98 (dd, *J* = 9.5, 2.5 Hz, 1H), 3.85 (bs, 3H), 3.80–3.76 (m, 3H), 3.46 (d, *J* = 5.0 Hz, 2H), 2.35–2.26 (m, 4H), 2.09 (t, *J* = 6.5 Hz, 2H), 1.97 (q, *J*

= 6.5 Hz, 2H), 1.45–1.41 (m, 2H), 1.25 (bs, 35H), 1.14–1.10 (m, 2H), 0.89–0.84 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.1, 79.1, 76.8, 76.7, 75.8, 75.0, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 36.9, 34.6, 32.1, 31.9, 30.2, 29.9, 29.9, 29.8, 29.7, 29.6, 29.6, 29.4, 29.2, 29.9, 27.7, 27.3, 22.9, 19.4, 18.9, 14.3, 11.6; LRMS(ESI) *m/z* for C₈₄H₁₁₄NO₉ [M + H]⁺ calcd: 1280.84, found: 1280.60.

Synthesis of S24{i17/n16}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-15-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)hexadec-5-enamide

Yield: 76%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.18 (m, 30H), 6.61 (d, *J* = 8.4 Hz, 1H), 5.50–5.42 (m, 1H), 5.39–5.32 (m, 1H), 4.89 (d, *J* = 11.4 Hz, 1H), 4.82 (d, *J* = 3.3 Hz, 1H), 4.75–4.97 (m, 3H), 4.64 (d, *J* = 5.1 Hz, 2H), 4.57–4.41 (m, 5H), 4.40–4.35 (m, 2H), 3.98 (dd, *J* = 9.9, 3.6 Hz, 1H), 3.87–3.84 (m, 3H), 3.81–3.68 (m, 3H), 3.71–3.46 (d, *J* = 6.0 Hz, 2H), 2.36–2.23 (m, 4H), 2.10 (t, *J* = 6.6 Hz, 2H), 1.97 (q, *J* = 6.6 Hz, 2H), 1.55–1.40 (m, 4H), 1.25 (bs, 27H), 1.17–1.13 (m,

2H), 0.88–0.75 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 76.8, 75.8, 75.1, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 39.3, 32.1, 31.9, 30.1, 29.9, 29.9, 29.8, 29.6, 29.6, 29.4, 29.2, 28.9, 28.2, 27.6, 22.9, 18.9, 14.3; LRMS(ESI) *m/z* for C₈₁H₁₀₇NO₉ [M + Na]⁺ calcd: 1260.78, found: 1260.70.

Synthesis of S24{i17/n15}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-15-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)pentadec-5-enamide

Yield: 99%; ¹H NMR (300 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.18 (m, 30H), 6.61 (d, *J* = 8.4 Hz, 1H), 5.50–5.42 (m, 1H), 5.39–5.31 (m, 1H), 4.892 (d, *J* = 11.4 Hz, 1H), 4.82 (d, *J* = 3.3 Hz, 1H), 4.75–4.68 (m, 3H), 4.62 (d, *J* = 8.1 Hz, 2H), 4.55 (d, *J* = 8.1 Hz, 1H), 4.50–4.42 (m, 4H), 4.40–4.35 (m, 2H), 3.98 (dd, *J* = 9.9, 3.3 Hz, 1H), 3.87–3.84 (m, 3H), 3.81–3.75 (m, 3H), 3.46 (d, *J* = 6.3 Hz, 2H), 2.36–2.26 (m, 4H), 2.10 (t, *J* = 6.6 Hz, 2H), 1.97 (q, *J* = 6.6 Hz, 2H), 1.55–1.39 (m, 4H),

1.25 (bs, 27H), 1.17–1.13 (m, 2H), 0.90–0.85 (m, 9H); 13 C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.2, 75.8, 75.1, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 39.3, 32.1, 32.1, 31.9, 30.2, 29.9, 29.8, 29.6, 29.6, 29.5, 29.4, 29.2, 28.9, 28.2, 27.6, 22.9, 18.9, 14.3; LRMS(ESI) *m/z* for C₈₂H₁₁₁NaNO₉ [M + Na]⁺ calcd: 1246.77, found: 1246.35.

Synthesis of S24{i17/i17}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-15-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)-15-methylhexadec-5-enamide

Yield: 78%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.38–7.17 (m, 30H), 6.61 (d, *J* = 8.5 Hz, 1H), 5.45 (m, 1H), 5.35 (m, 1H), 4.89 (d, *J* = 11.5 Hz, 1H), 4.82 (d, *J* = 3.5 Hz, 1H), 4.74–4.69 (m, 3H), 4.60 (t, *J* = 12.5 MHz, 2H), 4.53–4.43 (m, 5H), 4.38 (t, *J* = 13.0 Hz, 3H), 3.98 (dd, *J* = 10.5, 3.5 Hz, 1H), 3.87–3.82 (m, 3H), 3.80–3.75 (m, 3H), 3.48–3.44 (m, 2H), 2.35–223 (m, 4H), 2.10 (t, *J* = 7.0 Hz, 2H), 1.97 (q, *J* = 7.0 Hz, 2H), 1.54–1.47 (m, 1H), 1.45–1.41 (m, 1H), 1.24 (m, 26H),

1.14 (m, 4H), 0.86 (dd, J = 6.5, 2.0 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 173.6, 171.0, 138.9, 138.7, 138.5, 138.5, 138.0, 137.8, 132.7, 128.4, 128.3, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.4, 127.3, 124.4, 98.6, 88.9, 79.0, 75.6, 74.9, 74.8, 73.5, 73.3, 73.0, 71.5, 70.6, 69.6, 68.9, 68.5, 67.4, 52.3, 41.6, 39.1, 31.7, 30.0, 29.7, 29.6, 29.4, 29.2, 29.0, 28.7, 28.0, 27.4, 22.7, 18.7; LRMS(ESI) *m/z* for C₈₂H₁₀₉NaNO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

Synthesis of S24{i17/a17}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-15-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)-14-methylhexadec-5-enamide

Yield: 19%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.18 (m, 30H), 6.62 (d, *J* = 8.5 Hz, 1H), 5.48–5.43 (m, 1H), 5.37–5.36 (m, 1H), 4.89 (d, *J* = 11.5 Hz, 1H), 4.82 (d, *J* = 3.0 Hz, 1H), 4.74–4.69 (m, 3H), 4.60 (t, *J* = 12.5 Hz, 2H), 4.55–4.43 (m, 5H), 4.38 (t, *J* = 12.5 Hz, 2H), 3.98 (dd, *J* = 9.5, 3.0 Hz, 1H), 3.85 (bs, 3H), 3.77–3.73 (m, 3H), 3.46 (d, *J* = 5.0 Hz, 2H), 2.35–2.25 (m, 4H), 2.09 (t, *J* = 6.0 Hz, 2H), 1.99–1.95 (m, 2H), 1.53–1.41 (m, 4H), 1.25 (bs, 28H), 1.15–1.10 (m, 2H), 0.86 (d, *J* = 6.5 Hz, 12H); ¹³C

NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.2, 138.0, 132.9, 128.6, 128.5, 128.5, 128.4, 128.2, 128.2, 128.0, 127.9, 127.8, 127.6, 127.5, 124.6, 98.8, 89.1, 79.1, 75.8, 75.0, 75.0, 73.7, 73.5, 73.2, 71.7, 70.8, 69.8, 69.0, 68.7, 67.6, 52.5, 41.8, 39.3, 36.9, 34.6, 31.9, 30.2, 30.2, 29.9, 29.9, 29.7, 29.6, 29.4, 29.2, 28.9, 28.2, 27.7, 27.3, 22.9, 19.4, 18.9, 11.6; LRMS(ESI) *m/z* for C₈₂H₁₀₉NaNO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

Synthesis of S24{a17/n16}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-14-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)hexadec-5-enamide

Yield: 82%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.35–7.18 (m, 30H), 6.62 (d, *J* = 8.5 Hz, 1H), 5.48–5.43 (m, 1H), 5.37–5.32 (m, 1H), 4.89 (d, *J* = 11.5 Hz, 1H), 4.82 (d, *J* = 3.5 Hz, 1H), 4.74–4.69 (m, 3H), 4.66–4.58 (m, 2H), 4.53–4.43 (m, 5H), 4.41–4.36 (m, 2H), 3.98 (dd, *J* = 10.0, 3.5 Hz, 1H), 3.38–3.84 (m, 3H), 3.80–3.74 (m, 3H), 3.47–3.45 (m, 2H), 2.35–2.26 (m, 4H), 2.10 (t, *J* = 6.5 Hz, 2H), 1.97 (q, *J* = 6.5 Hz, 2H), 1.44 (quint, *J* = 7.0 Hz, 2H), 1.25 (bs, 29H), 1.15–1.08 (m, 2H),

0.89–0.83 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 75.8, 75.1, 75.0, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.8, 52.5, 41.7, 36.9, 34.6, 32.1, 32.1, 31.9, 20.2, 29.9, 29.7, 29.6,

29.6, 29.4, 29.2, 28.9, 27.7, 27.3, 22.9, 19.4, 18.9, 14.3, 11.6; LRMS(ESI) m/z for C₈₁H₁₀₇NO₉ [M + Na]⁺ calcd: 1260.78, found: 1260.70.

Synthesis of S24{a17/n15}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-14-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)pentadec-5-enamide

Yield: 74%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.18 (m, 30H), 6.61 (d, *J* = 8.8 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.32 (m, 1H), 4.89 (d, *J* = 11.6 Hz, 1H), 4.82 (d, *J* = 3.6 Hz, 1H), 4.74–4.69 (m, 3H), 4.66–4.55 (m, 2H), 4.53–4.44 (m, 5H), 4.01–4.35 (m, 2H), 3.98 (dd, *J* = 9.6, 3.2 Hz, 1H), 3.87–3.84 (m, 3H), 3.80–3.66 (m, 3H), 3.46 (d, *J* = 5.6 Hz, 2H), 2.36–2.26 (m, 4H), 2.10 (t, *J* = 6.4 Hz, 2H), 1.97 (q, *J* = 6.8 Hz, 2H), 1.46–1.40 (m, 2H), 1.25 (bs, 27H), 1.14–1.10 (m, 2H), 0.89–

0.83 (m, 9H); 13 C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 76.8, 76.7, 75.8, 75.0, 74.9, 73.6, 73.5, 73.5, 71.7, 70.7, 69.7, 69.0, 68.7, 67.6, 52.5, 41.7, 36.9, 34.6, 32.1, 32.1, 31.9, 30.2, 29.8, 29.8, 29.7, 29.6, 29.6, 29.5, 29.4, 29.2, 28.9, 27.7, 27.3, 22.8, 19.4, 18.9, 14.3, 11.6; LRMS(ESI) *m/z* for C₈₂H₁₁₁NaNO₉ [M + Na]⁺ calcd: 1246.77, found: 1246.35.

Synthesis of S24{a17/i17}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-14-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)-15-methylhexadec-5-enamide

Yield: 81%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.18 (m, 30H), 6.61 (d, *J* = 8.4 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.32 (m, 1H), 4.89 (d, *J* = 12.0 Hz, 1H), 4.82 (d, *J* = 3.6 Hz, 1H), 4.74–4.68 (m, 3H), 4.66–4.57 (m, 3H), 4.53–4.44 (m, 5H), 4.41–4.36 (m, 2H), 3.98 (dd, *J* = 9.6, 3.2 Hz, 1H), 3.87–3.84 (m, 3H), 3.80–3.75 (m, 3H), 3.49–3.86 (m, 2H), 2.36–2.24 (m, 4H), 2.10 (t, *J* = 6.8 Hz, 2H), 1.97 (q, *J* = 6.4 Hz, 2H), 1.54–1.40 (m, 4H), 1.25 (bs, 25H), 1.15–

1.07 (m, 4H), 0.86 (d, J = 6.4 Hz, 6H), 0.85–0.82 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.7, 138.2, 138.0, 132.9, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 128.5, 124.6, 98.8, 89.1, 79.2, 75.8, 75.1, 75.0, 73.7, 73.5, 73.2, 71.7, 70.8, 69.8, 69.1, 68.8, 67.6, 52.5, 41.8, 39.3, 36.9, 34.6, 31.9, 31.1, 30.3, 30.2, 29.9, 29.8, 29.7, 29.6, 29.4, 29.2, 28.9, 28.2, 27.7, 27.6, 27.3, 22.9, 19.4, 18.9, 11.6; LRMS(ESI) *m/z* for C₈₂H₁₀₉NaNO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

Synthesis of S24{a17/a17}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-14-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)-14-methylhexadec-5-enamide

Yield: 26%; ¹H NMR (500 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.33–7.18 (m, 30H), 6.62 (d, *J* = 8.5 Hz, 1H), 4.89 (d, *J* = 11.5 Hz, 1H), 4.85 (d, *J* = 4.0 Hz, 1H), 4.78–4.69 (m, 3H), 4.66–4.58 (m, 3H), 4.54–4.43 (m, 5H), 4.38 (t, *J* = 12.5 Hz, 2H), 3.98 (dd, *J* = 10.0, 3.5 Hz, 1H), 3.85 (bs, 3H), 3.80–3.73 (m, 3H), 3.46 (d, *J* = 6.0 Hz, 2H), 2.35–2.25 (m, 4H), 2.10 (t, *J* = 6.0 Hz, 2H), 1.97 (q, *J* = 6.5 Hz, 2H), 1.47–1.41 (m, 2H), 1.26 (bs, 28H), 1.13–1.07 (m, 2H), 0.86–0.83 (m, 12H); ¹³C NMR (75 MHz,

CDCl₃) δ 171.2 139.1, 138.9, 138.7, 138.7, 138.2, 138.0, 132.9, 128.6, 128.5, 128.5, 128.4, 128.4, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 124.6, 98.8, 89.1, 79.2, 85.8, 75.1, 75.0, 73.7, 73.5, 73.2, 71.7, 70.8, 69.8, 69.0, 68.7, 67.6, 52.5, 41.8, 36.9, 34.6, 31.9, 30.2, 30.2, 29.9, 29.9, 29.7, 29.6, 29.4, 29.2, 28.9, 27.7, 27.3, 19.4, 18.9, 11.6; LRMS(ESI) *m*/z for C₈₂H₁₀₉NaNO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

Synthesis of S24{i17/n17}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-15-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)heptadec-5-enamide

Yield: 76%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.20 (m, 30H), 6.62 (d, *J* = 8.4 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.33 (m, 1H), 4.89 (d, *J* = 11.2 Hz, 1H), 4.82 (d, *J* = 2.8 Hz, 1H), 4.74–4.68 (m, 3H), 4.65–4.57 (m, 2H), 4.53–4.44 (m, 5H), 4.41–4.36 (m, 2H), 3.98 (dd, *J* = 9.6, 3.2 Hz, 1H), 3.87–3.84 (m, 3H), 3.80–3.76 (m, 3H), 3.46 (d, *J* = 6.0 Hz, 2H), 2.37–2.26 (m, 4H), 2.09 (t, *J* = 6.4 Hz, 2H), 1.97 (q, *J* = 6.4 Hz, 2H), 1.54–1.41 (m, 3H), 1.25 (bs, 30H), 1.46 (bs, 2H),

0.88–0.85 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.2, 128.0, 127.9, 127.8, 127.7, 127.6, 127.6, 127.5, 124.6, 98.8, 89.1, 79.1, 76.8, 76.7, 75.8, 75.0, 75.0, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 52.5, 41.7, 39.3, 32.1, 31.9, 30.1, 29.9, 29.8, 29.6, 29.6, 29.4, 29.2, 28.9, 28.2, 27.7, 27.6, 22.9, 22.9, 18.9, 14.3; LRMS(ESI) *m/z* for C₈₂H₁₀₉NO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

Synthesis of S24{a17/n17}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-14-methyl-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)hexadec-4-yn-2-yl)heptadec-5-enamide

Yield: 57%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.20 (m, 30H), 6.63 (d, *J* = 8.4 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.29 (m, 1H), 4.89 (d, *J* = 11.2 Hz, 1H), 4.82 (d, *J* = 3.2 Hz, 1H), 4.74–4.69 (m, 3H), 4.66–4.57 (M, 3H), 4.53–444 (m, 4H), 4.41–4.36 (m, 2H), 3.98 (dd, *J* = 9.6, 3.2 Hz, 1H), 3.87–3.84 (m, 3H), 3.80–3.86 (m, 3H), 3.46 (d, *J* = 6.4 Hz, 2H), 2.36–2.24 (m, 4H), 2.10 (t, *J* = 6.8 Hz, 2H), 1.97 (q, *J* = 6.8 Hz, 2H), 1.44 (quint, *J* = 6.8 Hz, 3H), 1.25 (bs, 30H),

1.14–1.09 (m, 2H), 0.89–0.83 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 76.8, 76.7, 75.8, 75.1, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.8, 69.0, 68.7, 67.6, 53.6, 52.5, 41.7, 36.9, 34.6, 32.1, 31.9, 30.2, 29.9, 29.8, 29.7, 29.6, 29.6, 29.4, 29.2, 28.9, 27.7, 27.3, 22.9, 19.4, 18.9, 14.3, 11.6; LRMS(ESI) *m/z* for C₈₂H₁₀₉NO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

Synthesis of S24{n17/n17}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)heptadec-4-yn-2-yl)heptadec-5-enamide

Yield: 31%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.36–7.20 (m, 30H), 6.63 (d, *J* = 8.8 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.32 (m, 1H), 4.89 (d, *J* = 11.2 Hz, 1H), 4.82 (d, *J* = 3.2 Hz, 1H), 4.74–4.68 (m, 3H), 4.60 (t, *J* = 11.2 Hz, 2H), 4.56–4.44 (m, 5H), 4.41–4.36 (m, 2H), 3.98 (dd, *J* = 10.0, 3.2 Hz, 1H), 3.87–3.84 (m, 3H), 3.77 (s, 1H), 3.76–3.72 (m, 2H), 3.46 (d, *J* = 6.0 Hz, 2H), 2.36–2.26 (m, 4H), 2.10

(t, J = 6.8 Hz, 2H), 1.97 (q, J = 6.8 Hz, 2H), 1.44 (quint, J = 6.8 Hz, 2H), 1.26 (bs, 36H), 0.88 (t, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.2, 128.2, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 76.8, 76.7, 75.8, 75.0, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.7, 69.0, 68.7, 67.6, 60.6, 52.5, 41.7, 32.1, 31.9, 29.9, 29.9, 29.8, 29.8, 29.8, 29.6, 29.6, 29.4, 29.2, 28.9, 27.7, 22.9, 21.3, 18.9, 14.4, 14.3; LRMS(ESI) *m*/z for C₈₂H₁₀₉NO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

Synthesis of S24{n17/i17}, (R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)heptadec-4-yn-2-yl)-15-methylhexadec-5-

enamide

Yield: 58%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.34–7.19 (m, 30H), 6.62 (d, *J* = 8.8 Hz, 1H), 5.49–5.43 (m, 1H), 5.38–5.32 (m, 1H), 4.89 (d, *J* = 12.0 Hz, 1H), 4.82 (d, *J* = 3.6 Hz, 1H), 4.74–4.68 (m, 3H), 4.60 (t, *J* = 11.2 Hz, 2H), 4.53–4.44 (m, 5H), 4.41–4.35 (m, 2H), 3.98 (dd, *J* = 10.0, 3.6 Hz, 1H), 3.87–3.84 (m, 3H), 3.80–3.72 (m, 3H), 3.46 (dd, *J* = 6.6, 2.0 Hz, 2H), 2.36–2.26 (m, 4H), 2.01 (t, *J* = 6.4 Hz, 2H),

1.97 (q, J = 6.8 Hz, 2H), 1.54–1.40 (m, 3H), 1.24 (bs, 30H), 1.15–1.12 (m, 2H), 0.89–0.85 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.1, 79.1, 76.7, 75.8, 75.0, 74.9, 73.2, 71.7, 70.7, 69.7, 69.0, 68.7, 67.6, 52.5, 41.7, 39.3, 32.1, 31.9, 30.2, 29.9, 29.9, 29.8, 29.8, 29.6, 29.6, 29.4, 29.2, 28.9, 28.2, 27.7, 27.6, 22.9, 22.9, 18.9, 14.3; LRMS(ESI) *m/z* for C₈₂H₁₀₉NO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60

Synthesis of S24{n17/a17}, (3R,Z)-3-(benzyloxy)-N-((2S,3R)-3-(benzyloxy)-1-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)heptadec-4-yn-2-yl)-14-methylhexadec-5-enamide

Yield: 62%; ¹H NMR (400 MHz, CDCl₃, reference peak TMS at 0.00 ppm) δ 7.38–7.16 (m, 30H), 6.62 (d, *J* = 8.4 Hz, 1H), 5.49–5.42 (m, 1H), 5.38–5.31 (m, 1H), 4.89 (d, *J* = 12.0 Hz, 1H), 4.81 (d, *J* = 3.2 Hz, 1H), 4.74–4.68 (m, 3H), 4.60 (t, *J* = 11.2 Hz, 2H), 4.53–4.43 (m, 5H), 4.40–4.35 (m, 2H), 3.98 (dd, *J* = 10.0, 3.2 Hz, 1H), 3.86–3.84 (m, 3H), 3.80–3.74 (m, 3H), 3.44 (d, *J* = 5.6 Hz, 2H), 2.36–2.24 (m, 4H), 2.09 (t, *J* = 6.8 Hz, 2H), 1.97 (q, *J* = 6.8 Hz, 2H), 1.44 (quint, *J* = 7.2 Hz, 2H), 1.24 (bs, 31H), 1.15–

1.08 (m, 2H), 0.89–0.83 (m, 9H); 13 C NMR (100 MHz, CDCl₃) δ 171.2, 139.1, 138.9, 138.7, 138.6, 138.2, 138.0, 132.9, 128.6, 128.5, 128.4, 128.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.8, 127.7, 127.6, 127.5, 124.6, 98.8, 89.0, 79.1, 76.8, 76.7, 75.8, 75.0, 74.9, 73.6, 73.5, 73.2, 71.7, 70.7, 69.7, 69.0, 68.7, 67.6, 52.5, 41.7, 36.9, 34.6, 32.1, 31.9, 30.2, 29.9, 29.9, 29.8, 29.7, 29.6, 29.6, 29.4, 29.2, 28.9, 27.7, 27.3, 22.9, 19.4, 18.9, 14.3, 11.6; LRMS(ESI) *m/z* for C₈₂H₁₀₉NO₉ [M + Na]⁺ calcd: 1274.80, found: 1274.60.

General procedure of benzyl deprotection and triple bond reduction via catalytic hydrogenation

To a solution of **S24** (1.0 equiv.) in MeOH/DCM (1.5/0.5 mL) was added Pd(OH)₂/C (100 wt%) and the reaction mixture was stirred under H₂ atmosphere (1 atm) for 10 hr. After the completion of reaction monitored by TLC, catalyst was removed by filtration through 0.45 μ m PTFE syringe filter and washed with MeOH/DCM (3:1, v/v) solution. The resulting filtrate was concentrated under reduced pressure to provide desired products as white solid.

Synthesis of **SB2201**, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)octadecan-2-yl)hexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 0.00 ppm) δ 4.85 (d, *J* = 3.6 Hz, 1H), 3.99–3.97 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.64–3.61 (m, 1H), 2.40–2.28 (m, 2H), 1.55–1.41 (m, 6H), 1.35–1.27 (m, 46H), 0.90–0.86 (m, 6H); ¹³C NMR (125 MHz,

CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 49.0 ppm) δ 173.6, 100.4, 71.6, 71.5, 70.9, 70.4, 69.8, 69.3, 68.0, 62.3, 54.4, 44.4, 37.9, 34.6, 32.6, 30.3, 30.3, 30.0, 26.5, 26.2, 23.3, 14.4; LRMS(ESI) *m*/z for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of SB2202, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)octadecan-2-yl)pentadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.6 Hz, 1H), 4.00–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.63 (t, *J* = 6.9 Hz, 1H), 2.40–2.37 (m, 1H), 2.32–2.28 (m, 1H), 1.55–1.41 (m, 4H), 1.35–1.27 (m, 46H), 0.89 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference

peak CD₃OD at 49.00 ppm): δ 173.6, 100.3, 71.6, 71.4, 70.8, 70.3, 69.7, 69.2, 67.9, 62.2, 54.3, 44.3, 37.9, 34.5, 32.5, 30.3, 30.2, 29.9, 26.4, 26.2, 23.2, 14.3; LRMS(ESI) *m/z* for C₃₉H₇₇NaNO₉ [M + Na]⁺ calcd: 726.55, found: 726.60.

Synthesis of SB2203, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)octadecan-2-yl)-15-methylhexadecanamide

7.8 Hz, 1H), 1.56–1.13 (m, 5H), 1.27 (bs, 44H), 1.16 (q, J = 7.2 Hz, 2H), 0.88 (dd, J = 15.0, 6.6 Hz, 9H); ¹³C NMR

(125 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 49.0 ppm) δ 173.5, 100.2, 71.6, 70.8, 70.3, 69.7, 69.2, 67.9, 62.2, 54.3, 44.3, 39.6, 37.8, 34.5, 32.5, 30.9, 30.5, 30.2, 29.9, 28.5, 28.0, 26.4, 26.1, 23.2, 22.9, 14.3; LRMS(ESI) *m/z* for C₄₁H₈₁NaNO₉ [M + Na]⁺ calcd: 754.58, found: 754.60.

Synthesis of SB2204, (3R)-3-hydroxy-N-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)octadecan-2-yl)-14-methylhexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.0 Hz, 1H), 4.00–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.64–3.61 (m, 1H), 2.40–2.37 (m, 1H), 2.32–2.28 (m, 1H), 1.55–1.41 (m, 7H), 1.36–1.27 (m, 42H), 1.17–1.11 (m, 2H), 0.90–0.84 (m, 9H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak

CD₃OD at 49.00 ppm): δ 173.5, 100.2, 71.5, 70.3, 69.6, 69.2, 62.2, 54.3, 44.2, 37.8, 37.2, 35.0, 34.5, 32.4, 30.5, 30.2, 30.2, 30.0, 29.9, 27.6, 26.4, 26.1, 23.2, 19.4, 14.3, 11.6; LRMS(ESI) *m*/*z* for C₄₁H₈₁NaNO₉ [M + Na]⁺ calcd: 754.58, found: 754.60.

Synthesis of SB2205, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)nonadecan-2-yl)hexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 0.00 ppm) δ 4.85 (d, *J* = 3.6 Hz, 1H), 4.01–3.97 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.64–3.61 (m, 1H), 2.40–2.28 (m, 2H), 1.56–1.40 (m, 7H), 1.35–1.27 (m, 47H), 0.90–0.85 (m, 6H); ¹³C NMR (125 MHz, CDCl₃:CD₃OD = 1:1,

reference peak CD₃OD at 49.0 ppm) δ 173.6, 100.4, 71.7, 70.9, 70.4, 69.8, 69.3, 68.0, 62.3, 54.4, 44.4, 37.9, 34.6, 32.6, 30.3, 30.3, 30.0, 26.3, 26.2, 23.3, 14.4; LRMS(ESI) *m/z* for C₄₁H₈₁NaNO₉ [M + Na]⁺ calcd: 754.58, found: 754.60.

Synthesis of **SB2206**, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)nonadecan-2-yl)pentadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.6 Hz, 1H), 4.00–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.63 (t, *J* = 6.9 Hz, 1H), 2.40–2.37 (m, 1H), 2.32–2.28 (m, 1H), 1.55–1.41 (m, 4H), 1.38–1.27 (m, 48H), 0.89 (t, *J* = 6.9 Hz, 6H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃ (1:1,

v/v), reference peak CD₃OD at 49.00 ppm): δ 173.6, 100.3, 71.5, 71.4, 70.8, 70.3, 69.7, 69.2, 67.9, 62.2, 54.3, 44.3, 37.9, 34.5, 32.5, 30.2, 30.2, 29.9, 26.4, 26.2, 23.2, 14.3; LRMS(ESI) *m*/z for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of **SB2207**, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)nonadecan-2-yl)-15-methylhexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 0.00 ppm) δ 4.85 (d, *J* = 3.6 Hz, 1H), 4.00–3.96 (m, 2H), 3.91 (dd, *J* = 2.4, 1.2 Hz, 1H), 3.86 (dd, *J* = 10.8, 3.6 Hz, 1H), 3.83 (t, *J* = 6.6 Hz, 1H), 3.80–3.76 (m, 2H), 3.75–3.72 (m, 2H), 3.69 (dd, *J* = 10.2, 5.4 Hz, 1H), 3.63 (td, *J* = 8.1, 3.0 Hz, 1H), 2.39 (dd, *J* =

14.4, 3.0 Hz, 1H), 2.30 (dd, J = 14.4, 9.0 Hz, 1H), 1.56–1.46 (m, 5H), 1.27 (bs, 46H), 1.16 (q, J = 7.2 Hz, 2H), 0.88 (dd, J = 14.4, 6.6 Hz, 9H); ¹³C NMR (125 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 49.0 ppm) δ 173.5, 100.2, 71.4, 70.7, 70.2, 69.6, 69.2, 67.8, 62.1, 54.2, 44.2, 39.6, 37.8, 34.5, 32.4, 30.9, 30.4, 30.2, 29.8, 28.4, 27.9, 26.3, 26.1, 23.1, 22.8, 14.3; LRMS(ESI) *m/z* for C₄₂H₈₃NaNO₉ [M + Na]⁺ calcd: 768.60, found: 768.65.

Synthesis of SB2208, (3R)-3-hydroxy-N-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)nonadecan-2-yl)-14-methylhexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.0 Hz, 1H), 4.00–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.64–3.61 (m, 1H), 2.40–2.37 (m, 1H), 2.32–2.28 (m, 1H), 1.55–1.43 (m, 7H), 1.36–1.27 (m, 44H), 1.17–1.11 (m, 2H), 0.90–0.84 (m, 9H); ¹³C NMR

(150 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at 49.00 ppm): δ 173.5, 100.2, 71.5, 70.7, 70.2, 69.9, 69.2, 62.1, 54.2, 44.2, 37.8, 37.1, 34.9, 34.5, 32.4, 30.5, 30.2, 30.1, 30.0, 29.8, 27.6, 26.3, 26.1, 23.1, 19.4, 14.3, 11.6;LRMS(ESI) *m*/z for C₄₂H₈₃NaNO₉ [M + Na]⁺ calcd: 768.60, found: 768.65.

Synthesis of SB2209, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-15-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)hexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.6 Hz, 1H), 4.00–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.64–3.61 (m, 1H), 2.40–2.28 (m, 2H), 1.56–1.40 (m, 7H), 1.35–1.27 (m, 38H), 1.18–1.14 (m, 2H), 0.90–0.86 (m, 9H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃ (1:1, 1.18–1.14).

v/v), reference peak CD₃OD at 49.00 ppm); δ 173.7, 100.4, 78.5, 78.3, 78.1, 71.6, 70.9, 70.4, 69.8, 69.3, 62.3, 54.4, 44.4, 39.7, 38.0, 34.6, 32.6, 30.6, 30.4, 30.3, 30.0, 28.6, 28.1, 26.5, 26.2, 23.3, 23.0, 14.4; LRMS(ESI) *m/z* for C₃₉H₇₇NaNO₉ [M + Na]⁺ calcd: 726.55, found: 726.60.

Synthesis of SB2210, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-15-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)pentadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.6 Hz, 1H), 4.00–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.63 (t, *J* = 6.9 Hz, 1H), 2.40–2.37 (m, 1H), 2.32–2.28 (m, 1H), 1.55–1.41 (m, 5H), 1.35–1.27 (m, 38H), 1.18–1.14 (m, 2H), 0.90–0.86 (m, 9H); ¹³C NMR

(150 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at 49.00 ppm): δ 173.6, 100.3, 71.5, 71.4, 70.8, 70.3, 69.7, 69.2, 67.9, 62.2, 54.3, 44.3, 39.6, 37.9, 34.5, 32.5, 30.5, 30.3, 30.2, 30.2, 30.2, 29.9, 28.5, 28.0, 26.4, 26.1, 23.2, 22.9, 14.3; LRMS(ESI) *m*/z for C₃₈H₇₅NaNO₉ [M + Na]⁺ calcd: 712.53, found: 712.60.

Synthesis of SB2211, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-15-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)-15-methylhexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 0.00 ppm) δ 4.85 (d, *J* = 3.0 Hz, 1H), 4.00–3.96 (m, 2H), 3.92 (d, *J* = 3.0 Hz, 1H), 3.86 (dd, *J* = 10.2, 2.4 Hz, 1H), 3.83 (t, *J* = 6.0 Hz, H), 3.80–3.76 (m, 2H), 3.75–3.72 (m, 2H), 3.71–3.68 (m, 1H), 3.62 (td, *J* = 7.8, 2.4 Hz, 1H), 2.38 (dd, *J* = 14.4, 3.6 Hz, 1H), 2.30 (dd, *J* = 14.4, 8.4 Hz, 1H), 1.56–1.46 (m, 6H),

1.28 (bs, 36H), 1.16 (q, J = 6.6 Hz, 4H), 0.87 (d, J = 6.6 Hz, 12H); ¹³C NMR (125 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 49.0 ppm) δ 173.6, 100.3, 71.6, 71.4, 70.8, 70.3, 69.7, 69.2, 67.9, 62.2, 54.3, 44.3, 39.7, 37.9, 32.5, 30.5, 30.3, 30.3, 30.2, 30.2, 28.5, 28.0, 26.4, 26.2, 22.9; LRMS(ESI) m/z for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of SB2212, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-15-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)-14-methylhexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 0.00 ppm) δ 4.85 (d, *J* = 3.0 Hz, 1H), 4.00–3.96 (m, 2H), 3.92 (dd, *J* = 2.7, 1.8 Hz, 1H), 3.86 (dd, *J* = 10.2, 3.0 Hz, 1H), 3.83 (t, *J* = 6.0 Hz, 1H), 3.80–3.76 (m, 2H), 3.75–3.72 (m, 2H), 3.71–3.68 (m, 1H), 3.63 (td, *J* = 7.8, 2.4 Hz, 1H), 2.38 (dd, *J* = 13.8, 3.6 Hz, 1H), 2.30 (dd, *J* = 14.4, 8.4 Hz, 1H), 1.56–1.44 (m, 6H), 1.27 (bs, 36H), 1.16

(q, J = 7.2 Hz, 4H), 0.90–0.84 (m, 12H); ¹³C NMR (150 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 49.0 ppm) δ 173.5, 100.2, 71.5, 70.7, 70.2, 69.6, 69.2, 62.2, 54.3, 44.2, 39.6, 37.8, 37.2, 35.0, 34.5, 30.5, 30.4, 30.2, 30.2, 30.0, 28.5, 27.9, 27.6, 26.4, 26.1, 23.1, 22.8, 19.4, 11.6; LRMS(ESI) *m*/*z* for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of SB2213, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-14-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)hexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85–4.83 (m, 1H), 3.99–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 6H), 3.62 (m, 1H), 2.40–2.28 (m, 2H), 1.55–1.41 (m, 6H), 1.37–1.27 (m, 38H), 1.15–1.14 (m, 2H), 0.90–0.84 (m, 9H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference

peak CD₃OD at 49.00 ppm); δ 173.7, 100.4, 71.6, 70.9, 70.4, 69.8, 69.3, 62.3, 54.4, 44.4, 38.0, 37.3, 35.1, 34.6, 32.6, 30.7, 30.4, 30.3, 30.3, 30.1, 30.0, 27.8, 26.5, 26.2, 23.3, 19.6, 14.4, 11.7; LRMS(ESI) *m*/z for C₃₉H₇₇NaNO₉ [M + Na]⁺ calcd: 726.55, found: 726.60.

Synthesis of SB2214, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-14-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)pentadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.6 Hz, 1H), 4.00–3.96 (m, 2H), 3.93–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.63 (t, *J* = 6.9 Hz, 1H), 2.40–2.37 (m, 1H), 2.32–2.28 (m, 1H), 1.55–1.43 (m, 7H), 1.36–1.28 (m, 36H), 1.15–1.08 (m, 2H), 0.93–0.84 (m, 9H); ¹³C NMR (150 MHz,

CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at 49.00 ppm): δ 173.6, 100.3, 71.6, 71.4, 70.8, 70.3, 69.7, 69.2, 67.9, 62.2, 54.3, 44.3, 37.9, 37.2, 35.0, 34.5, 32.5, 30.6, 30.3, 30.3, 30.2, 30.2, 30.0, 29.9, 27.7, 26.4, 26.2, 23.2, 19.5, 14.3, 11.6; LRMS(ESI) *m*/z for C₃₈H₇₅NaNO₉ [M + Na]⁺ calcd: 712.53, found: 712.60.

Synthesis of SB2215, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-14-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)-15-methylhexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 0.00 ppm) δ 4.85 (d, *J* = 3.0 Hz, 1H), 4.01–3.96 (m, 2H), 3.93 (d, *J* = 1.8 Hz, 1H), 3.86 (dd, *J* = 10.2, 2.4 Hz, 1H), 3.83 (t, *J* = 6.0 Hz, 1H), 3.78–3.72 (m, 4H), 3.71–3.68 (m, 1H), 3.63 (td, *J* = 8.1, 2.4 Hz, 1H), 2.39 (dd, *J* = 14.4, 3.6 Hz, 1H), 2.30 (dd, *J* = 14.4, 9.0 Hz, 1H),

1.56–1.43 (m, 6H), 1.28 (bs, 36H), 1.18–1.11 (m, 4H), 1.88–1.84 (m, 12H); 13 C NMR (125 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 49.0 ppm) δ 173.5, 100.2, 71.5, 70.7, 70.2, 69.6, 69.2, 62.1, 54.2, 39.6, 37.8, 37.2, 34.9, 37.8, 37.2, 34.9, 30.5, 30.4, 30.2, 30.1, 30.0, 28.5, 27.9, 27.6, 26.4, 26.1, 22.8, 19.4, 11.6; LRMS(ESI) *m/z* for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of SB2216, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-14-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)-14-methylhexadecanamide

Yield: quantitative; ¹H NMR (600 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 0.00 ppm) δ 4.85 (d, *J* = 3.0 Hz, 1H), 4.00–3.96 (m, 2H), 3.92 (dd, *J* = 3.0, 1.2 Hz, 1H), 3.86 (dd, *J* = 10.2, 3.0 Hz, 1H), 3.83 (t, *J* = 6.0 Hz, 1H), 3.80–3.76 (m, 2H), 3.75–3.72 (m, 2H), 3.71–3.68 (m, 1H), 3.63 (td, *J* = 7.8, 2.4 Hz, 1H), 2.38 (dd, *J* = 13.8, 3.6 Hz, 1H), 2.30 (dd, *J* = 14.4, 9.0 Hz,

1H), 1.55–1.51 (m, 2H), 1.50–1.44 (m, 4H), 1.27 (bs, 36H), 1.17–1.08 (m, 4H), 0.90–0.84 (m, 12H); ¹³C NMR (150 MHz, CDCl₃:CD₃OD = 1:1, reference peak CD₃OD at 49.0 ppm) δ 173.5, 100.2, 71.5, 70.7, 70.2, 69.6, 69.2, 62.1, 54.3, 44.2, 37.8, 37.2, 34.9, 34.5, 32.4, 30.5, 30.2, 30.2, 30.1, 27.6, 26.4, 26.1, 23.1, 19.4, 11.6; LRMS(ESI) *m/z* for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.
Synthesis of SB2217, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-15-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)heptadecanamide

Yield: 98%; ¹H NMR (400 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.2 Hz, 1H), 4.00–3.95 (m, 2H), 3.93–3.92 (m, 1H), 3.88–3.67 (m, 7H), 3.64–3.60 (m, 1H), 2.41–2.36 (m, 1H), 2.32–2.26 (m, 1H), 1.57–1.41 (m, 5H), 1.33–1.27 (m, 42H), 1.18–1.13 (m, 2H), 0.90–0.86 (m, 9H); ¹³C NMR (100 MHz, CD₃OD/CDCl₃ (1:1,

v/v), reference peak CD₃OD at 49.00 ppm): δ 173.5, 100.3, 71.5, 71.4, 70.8, 70.3, 69.7, 69.2, 67.9, 62.2, 54.3, 44.3, 39.6, 37.9, 34.5, 32.5, 30.5, 30.2, 30.2, 29.9, 28.5, 28.0, 26.4, 26.1, 23.2, 22.9, 14.3; LRMS(ESI) *m/z* for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of SB2218, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-14-methyl-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hexadecan-2-yl)heptadecanamide

Yield: quantitative; ¹H NMR (500 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85–4.84 (m, 1H), 3.99–3.60 (m, 12H), 2.40–2.27 (m, 2H), 1.55–1.39 (m, 6H), 1.36–1.23 (m, 37H), 1.17–1.07 (m, 3H), 0.94–0.80 (m, 9H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at 49.00 ppm); δ 173.5, 100.2, 71.5, 71.3, 70.7, 70.2,

69.6, 69.2, 67.8, 62.1, 54.3, 44.2, 37.8, 37.2, 35.0, 34.5, 32.4, 30.5, 30.2, 30.2, 30.2, 30.0, 29.9, 27.6, 26.4, 26.1, 23.1, 19.4, 14.3, 11.6; LRMS(ESI) *m/z* for $C_{40}H_{79}NaNO_9$ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of **SB2219**, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)heptadecan-2-yl)heptadecanamide

Yield: quantitative; ¹H NMR (500 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.6 Hz, 1H), 3.99–3.97 (m, 2H), 3.96–3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.63–3.61 (m, 1H), 2.40–2.27 (m, 2H), 1.55–1.39 (m, 7H), 1.35–1.27 (m, 49H), 0.90–0.85 (m, 6H); ¹³C NMR (100 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at 49.00 ppm);

δ 173.5, 100.2, 71.5, 71.3, 70.7, 70.2, 69.6, 69.2, 67.8, 62.1, 54.3, 44.2, 37.8, 34.5, 32.4, 32.4, 30.2, 30.2, 29.9, 26.3, 26.1, 23.1, 14.3; LRMS(ESI) *m*/*z* for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of **SB2220**, (R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)heptadecan-2-yl)-15-methylhexadecanamide

Yield: quantitative; ¹H NMR (400 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.87 (d, *J* = 3.6 Hz, 1H), 3.97 (m, 2H), 3.92 (m, 1H), 3.87–3.67 (m, 7H), 3.64–3.60 (m, 1H), 2.40–2.26 (m, 2H), 1.63–1.40 (m, 4H), 1.27 (m, 43H), 1.16–1.13 (m, 2H), 0.94–0.86 (m, 9H); ¹³C NMR (100 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at

49.00 ppm); δ 173.5, 100.2, 71.5, 71.3, 70.7, 70.2, 69.6, 69.2, 62.1, 54.3, 44.2, 39.6, 37.8, 34.5, 30.4, 30.2, 30.2, 29.9, 28.5, 27.9, 26.3, 26.1, 23.2, 22.9, 14.3; LRMS(ESI) *m/z* for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of **SB2221**, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)heptadecan-2-yl)-14-methylhexadecanamide

Yield: quantitative; ¹H NMR (400 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.87–4.83 (m, 1H), 3.97 (m, 2H), 3.92 (m, 1H), 3.87–3.68 (m, 7H), 3.64–3.60 (m, 1H), 2.40–2.20 (m, 2H), 1.61–1.40 (m, 5H), 1.27 (m, 38H), 1.18–1.09 (m, 2H), 0.90–0.84 (m, 9H); ¹³C NMR (100 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at 49.00

ppm); δ 172.8, 99.5, 70.8, 70.6, 70.0, 69.5, 68.9, 68.4, 61.4, 53.5, 43.5, 37.1, 36.4, 34.2, 33.7, 31.7, 29.8, 29.5, 29.4, 29.3, 29.1, 26.9, 25.6, 25.4, 22.4, 18.7, 13.5, 10.9; LRMS(ESI) *m/z* for C₄₀H₇₉NaNO₉ [M + Na]⁺ calcd: 740.56, found: 740.60.

Synthesis of **SB2222**, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)heptadecan-2-yl)-14-methylhexadecanamide

Yield: 74%; ¹H NMR (500 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.87 (d, *J* = 3.75 Hz, 1H), 3.97–3.90 (m, 2H), 3.82–3.70 (m, 7H), 3.63–3.59 (m, 1H), 2.23 (t, *J* = 7.55 Hz, 2H), 1.63–1.48 (m, 5H), 1.43–1.27 (m, 44H), 1.18–1.14 (m, 2H), 0.90–0.86 (m, 9H); ¹³C NMR (150 MHz, CD₃OD/CDCl₃ (1:1, 1.4)).

v/v), reference peak CD₃OD at 49.00 ppm); δ 175.43, 100.52, 71.49, 71.36, 70.82, 70.34, 69.66, 68.20, 62.26, 54.48, 39.63, 36.96, 34.51, 32.47, 30.49, 30.27, 30.26, 30.23, 30.20, 30.19, 30.14, 29.99, 29.89, 28.51, 27.97, 26.54, 26.29, 23.18, 22.90, 14.31; LRMS(ESI) *m/z* for C₄₀H₇₉NaNO₈ [M + Na]⁺ calcd: 724.57, found: 724.45.

Synthesis of SB2223, (3R)-3-hydroxy-*N*-((2S,3R)-3-hydroxy-1-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)heptadecan-2-yl)-14-methylhexadecanamide

Yield: 83%; ¹H NMR (500 MHz, CD₃OD/CDCl₃ (1:1, v/v), reference peak TMS at 0.00 ppm): δ 4.85 (d, *J* = 3.5 Hz, 1H), 3.99–3.95 (m, 2H), 3.92 (m, 1H), 3.87–3.67 (m, 7H), 3.64–3.61 (m, 1H), 2.40–2.36 (m, 1H), 2.32–2.27 (m, 1H), 1.55–1.41 (m, 6H), 1.32–1.27 (m, 44H), 0.89 (t, *J* = 7.0 Hz, 6H); ¹³C NMR (150 MHz,

CD₃OD/CDCl₃ (1:1, v/v), reference peak CD₃OD at 49.00 ppm); δ 173.53, 100.26, 71.54, 71.43, 70.79, 70.26, 69.68, 69.20, 67.91, 62.18, 54.29, 44.26, 37.84, 34.51, 32.47, 30.24, 30.22, 30.19, 29.89, 26.40, 26.13, 23.18, 14.30; LRMS(ESI) *m*/z for C₃₉H₇₇NaNO₉ [M + Na]⁺ calcd: 726.55, found: 726.45.

2. ¹H and ¹³C NMR spectra

SHB_14_64_CDC13_13C_20160404_300MHz_exp4

SHB_13_100_CDC13_13C_20160129_300MHz_exp5

SHB_14_5_CDC13_13C_20160205_300MHz_exp3

SHB_14_6_CDC13_13C_20160210_300MHz_exp2

SHB_14_75C_CDC13_13C_20160420_300MHz_exp5

SHB_14_75D_CDC13_13C_20160421_300MHz_exp2

S67

S68

SHB_13_97_CDC13_13C_20160129_300MHz_exp3

SHB_14_66A_CDC13_13C_20160502_300MHz_exp1

C.

SHB_14_66B_CDC13_13C_overnight_20160504_300MHz_exp1

S89

S101

