1 Supplementary Figure Legends

- 2
- 3
- 4 The preclinical efficacy of the novel hypomethylating agent NTX-
- 5 **301** as a monotherapy and in combination with venetoclax in acute
- 6 myeloid leukemia

7 Running title: NTX-301 in acute myeloid leukemia

- 8 Byungho Lim^{1,*}, Dabin Yoo¹, Younghwa Chun², Areum Go², Kyung-Jin Cho¹, Daeun
- 9 Choi¹, Myoung Eun Jung¹, Ha Young Lee², Rebecca J. Boohaker³, Jin Soo Lee²,
- 10 DooYoung Jung², and Gildon Choi^{1,*}
- ¹Research Center for Drug Discovery Technology, Korea Research Institute of
- 12 Chemical Technology, Daejeon, Republic of Korea
- 13 ²Pinotbio, Inc, Suwon, Republic of Korea
- ¹⁴ ³Southern Research, Division of Drug Discovery, Birmingham, AL, United States
- 15
- 16
- 17
- 18
- 19
- 20
- 20
- 21

22 Supplementary Figure S1. Summary of treatment schedules for assessing the efficacy and survival benefits of NTX-301 in four preclinical models of AML. A 23 Schematic outline of the 3-cycle NTX-301 treatment schedule for monitoring survival 24 and hematologic profiles in the systemic MV4-11 model. **B-E** Tables summarizing the 25 treatment schedules for monitoring survival and hematologic profiles in the systemic 26 MV4-11 model (B), for comparing the antitumor efficacy of NTX-301 with that of AZA 27 in the systemic model bearing luciferase-labeled MV4-11 tumors (**C**), for comparing 28 29 the antitumor efficacy of NTX-301 administered by different methods in the systemic model bearing luciferase-labeled MV4-11 tumors (D) and for evaluating the antitumor 30 efficacy of NTX-301 in a dose-dependent manner in the subcutaneous model 31 bearing MOLM-13 tumors (E). CP, cyclophosphamide; AZA, azacitidine; DAC, 32 decitabine; NTX, NTX-301; p.o., oral administration; i.p., intraperitoneal 33 administration; q.d., once a day. 34

35

36 Supplementary Figure S2. In vivo assessment of tolerability upon treatment with

NTX-301, DAC, or AZA. A-B Line plots showing changes in hematologic profiles (A)
and body weights (B) of female NOD/SCID mice bearing MV4-11 tumors (n=8 per
group) upon treatment with NTX-301 [(1.5, 2.0, or 2.5 mg/kg (p.o.)], DAC (2.5 mg/kg
(i.p.)], or AZA [5.0 mg/kg (i.p.)]. AZA, azacitidine; DAC, decitabine; NTX, NTX-301;
SEM, standard error of the mean; p.o., oral administration; i.p., intraperitoneal
administration.

43

44 Supplementary Figure S3. Flow cytometric analyses for the detection of

2

residual human CD45⁺ MV4-11 cells in cells isolated from bone marrow. The
inner boxes indicate human CD45⁺ MV4-11 cells, and the percentages of these cells
are shown on the right.

48

Supplementary Figure S4. Comparison of the in vivo efficacies of NTX-301 and 49 **AZA.** In NOD/SCID mouse models transplanted with luciferase-labeled MV4-11 cells 50 (n=8 per group), tumor growth was measured by the quantification of bioluminescence 51 emission (photons/sec) upon treatment with NTX-301 (2.0 mg/kg p.o.) or AZA (5.0 52 mg/kg i.p.). This Supplementary Figure presents single individual values from Fig. 1C 53 to avoid misleading by large standard deviations. P-values (vs. vehicle) are specified 54 and marked as follows: *, *p*<0.05; **, *p*<0.001; NS, not significant. AZA, azacitidine; 55 p.o., oral administration; i.p., intraperitoneal administration. 56

57

Supplementary Figure S5. Transcriptome-wide alterations induced by NTX-301 58 59 revealed MoAs of NTX-301. A GSEA plots displaying significant enrichment of a normal myeloid-like signature (left) and a leukemic stem cell signature (right) among 60 transcriptome changes induced by NTX-301 or DAC for 48 hours in MV4-11 and HL-61 62 60 cells. **B** Heatmaps showing genesets upregulated more strongly by NTX-301 than by DAC and bar plots showing the biological pathways associated with each gene 63 set in MV4-11, MOLM-13, and HL-60 cells. DAC, decitabine; GSEA, gene set 64 enrichment analysis; MoA, mechanism of action; NTX, NTX-301. 65

66

3

67 Supplementary Figure S6. Transcriptome analyses implied that NTX-301 activates a p53 transcriptional program. A Heatmap showing the expression levels 68 of p53 target genes (n=116) induced by NTX-301 or DAC for 48 hours in MV4-11 cells. 69 Genes with marked transcriptional changes are listed. **B** Ingenuity pathway analysis 70 (IPA) highlighting the activation of p53 as an upstream regulator of genes upregulated 71 by DAC or NTX-301. Z-scores and p-values are shown. C GSEA plots showing 72 significant enrichment of a p53 signature among transcriptome changes induced by 73 74 NTX-301 or DAC for 48 hours in p53-proficient AML cells, MV4-11 and MOLM-13. DAC, decitabine; GSEA, gene set enrichment analysis; NTX, NTX-301. 75

76

Supplementary Figure S7. NTX-301 elicited the induction of the DDR and the p53 77 pathway. A Western blots showing the expression levels of proteins involved in the 78 DDR-p53 pathway in MV4-11 cells treated with NTX-301 or DAC (60, 200, and 500 79 nM) for 24 hours (up). Western blot showing the protein levels of DNMT1 in MV4-11, 80 MOLM-13, and HL-60 cells treated with NTX-301 or DAC (60, 200, and 500 nM) for 81 24 hours (bottom). **B** Bar plots showing the mRNA expression levels (log₂) of *TP53*, 82 MDM2, and CDKN1A upon treatment with NTX-301 or DAC (60 nM) for 48 and 96 83 hours in the MV4-11 cell line. **C** Western blots showing the expression levels of p53 in 84 parental (Con) and TP53-knockdown (shTP53) MV4-11 cells. DAC, decitabine; DDR, 85 DNA damage response; NTX, NTX-301. 86

87

Supplementary Figure S8. Summary of the treatment schedules for assessing
 the efficacy of NTX-301 as a monotherapy and in combination with VCX using

90	two preclinical models of AML. A-B Tables summarizing the treatment schedules
91	for comparing the combinatorial efficacies of NTX-301+VCX and AZA+VCX in the
92	subcutaneous MV4-11 model ($\bf A$) and for comparing the survival benefits of NTX-
93	301+VCX and AZA+VCX in the systemic MV4-11 model (B). AZA, azacitidine; NTX,
94	NTX-301; VCX, venetoclax; p.o., oral administration; i.p., intraperitoneal
95	administration; q.d., once a day; biw, twice weekly.
96	
97	
98	Supplementary Figure S9. Assessment of mouse body weights upon treatment
99	with NTX-301 or AZA as a monotherapy and in combination with VCX using
100	two preclinical models of AML. A-B Line plots showing changes in the body
101	weights of the mice described in Supplementary Fig. S8A ($f A$) and Supplementary
102	Fig. S8B (B). AZA, azacitidine; NTX, NTX-301; VCX, venetoclax.
103	

В

Group	Mice	Agent	mg/kg	Route	Schedule
1	n=8	Vehicle		ро	qd x 5 then 2 days off, 5 days on, 9 days off for 3 cycles
2	n=8	NTX-301	1.5	ро	qd x 5 then 2 days off, 5 days on, 9 days off for 3 cycles
3	n=8	NTX-301	2.0	ро	qd x 5 then 2 days off, 5 days on, 9 days off for 3 cycles
4	n=8	NTX-301	2.5	ро	qd x 5 then 2 days off, 5 days on, 9 days off for 3 cycles
5	n=8	DAC	2.5	ip	Three times a week for two weeks
6	n=8	AZA	5.0	ip	Twice a week for three weeks

С

Group	Mice	Agent	mg/kg	Route	Schedule
1	n=8	Vehicle		ро	Daily on Days 21-25 and 28-32
2	n=8	NTX-301	2.0	ро	Daily on Days 21-25 and 28-32
3	n=8	AZA	5.0	ip	Twice a week on days 21, 25, 28, 32, 35, and 39

D

Group	Mice	Agent	Single dose (mg/kg)	Daily dose (mg/kg)	Route	Schedule
1	n=6	Vehicle			ро	Daily on Days 18-22, 25-29, and 39-43
2	n=6	NTX-301	2.0	2.0	ро	Daily on Days 18-22, 25-29, 39-43, and 46-48
3	n=6	NTX-301	1.0	2.0	ро	2X daily on Days 18-22, 25-29, 39-43, and 46-47 and once on Day 48
4	n=6	NTX-301	1.0	1.0	ро	Daily on Days 18-22, 25-29, 32-36, 39-43, and 46-489

Ε

Group	Mice	Agent	mg/kg	Route	Schedule
1	n=6	Vehicle		ip	1x daily on days 8-12 and 15-19
2	n=6	NTX-301	0.2	ip	1x daily on days 8-12 and 15-19
3	n=6	NTX-301	0.4	ip	1x daily on days 8-12 and 15-19
4	n=6	NTX-301	0.8	ip	1x daily on days 8-12 and 15-19
5	n=6	NTX-301	1.5	ip	1x daily on days 8-12 and 15-19

% Human CD45+ MV4-11 cells determined by FACS analysis

С

Δ	
	•

Group	Mice	Drug	Dose (mg/kg)	Route	Regimen
1	5	Vehicle	-	ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
2	5	NTX-301	2	ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
2	Б			ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
3	5	NTX+VCX	0.5 + 50	ро	(qd×5, 2 off) ×3wks
1	5	NTX+VCX	1 + 50	ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
4				ро	(qd×5, 2 off) ×3wks
	5		2 ± 50	ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
5		NI A+VCA	2 + 50	ро	(qd×5, 2 off) ×3wks
6	5			ip	biw×3wks
0		AZA+VUX	2.5 + 50	ро	(qd×5, 2 off) ×3wks
7	5	Azacitidine	5	ip	biw×3wks
8	5	Venetoclax	50	ро	(qd×5, 2 off) ×3wks

В

Group	Mice	Drug	Dose (mg/kg)	Route	Regimen
1	8	Vehicle	-	ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
2	8	NTX-301	2	ро	qd×5, 2 off, qd×5, 9 off for 3 cycles
2	8	NTX+VCX	0.5 + 100	ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
				ро	(qd×5, 2 off) × 9
4	8	8 NTX+VCX	1 + 100	ро	qd \times 5, 2 off, qd \times 5, 9 off for 3 cycles
				ро	(qd×5, 2 off) × 9
5	8		2.5 + 100	ip	Biw × 9
				ро	(qd×5, 2 off) × 9
6	8	VCX	100	ро	(qd×5, 2 off) × 9

