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Supplementary Methods

Patient enrollment and sample collection. Blood samples were obtained from 13 T-LGLL patients
(71/F, 61/M, 29/F, 72/F, 77/M, 43/M, 51/F, 82/M, 51/M, 27/F, 66/F, 48/F and 39/M) after written
informed consent under the protocol (www.clinicaltrials.gov NCT00345345) approved by the
Institutional Review Boards of National Heart, Lung, and Blood Institute, in accordance with the
Declaration of Helsinki. Patients consented to deidentified used of clinical and research data for
publication. Recruitment of patients, diagnostic procedures, treatment and clinical criteria for response
to treatment have been described in our alemtuzumab trial'. Patients were treated with alemtuzumab
(administered at 10 mg/day intravenously for 10 days). A primary endpoint was hematologic response at
three months after treatment. A complete response (CR) was defined as normalization of all affected
lineages, and a partial response (PR) was defined in neutropenic subjects as 100% increase in the ANC
to > 500/uL, and in those with anemia, any increase in hemoglobin of 2 g/dL. or more observed in at
least two serial measurements one week apart and sustained for one month or more without exogenous
growth factors’ support or transfusions. Clinical and laboratory characteristics of patients are shown in
Supplementary Table 1. Seven age- and sex-matched healthy donors (39/F, 71/F, 55/F, 68/M, 41/F,
60/M and 41/M) were enrolled as controls after written informed consent.

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Hypaque density gradient
centrifugation followed by lymphapheresis in patients before enrollment, 3 or 6 months after
alemtuzumab administration and in healthy donors. Isolated PBMCs were cryopreserved in liquid
nitrogen according to standard protocols until use. T cells were enriched with the EasySep Human T cell
Isolation kit (Stemcell Technologies), with purity (detected by flow cytometry staining with anti-human

CD3) after enrichment > 95% (Supplementary Fig. 1a).



Flow cytometry analysis of the TCR Vf repertoire. TCR V repertoires of patients and healthy
donors were determined using flow cytometry with the IOTest Beta Mark TCR Repertoire kit (Beckman
Coulter), coupled with CD3, CD4 and CDS8 expression. Data acquisition was performed on a Becton
Dickinson Fortessa and data were analyzed using FlowJo software (Tree Star Inc.). At least 500 events
per CD4" or CD8" cell population were acquired per TCRBV to ensure that a sufficient number of T
cells were obtained. T-LGLL clones were identified based on large clonal CD8" or CD4" TCRBV
expansion when compared to a normal range of TCRBYV values generated with healthy donors’ data.

TCRBYV clonal analysis was part of exploratory analysis.

STAT3 mutation analysis. CD8'CD57" cells of patients were isolated using the MACS CDS8 T cell
isolation kit, followed by positive selection with CD57 microbeads (Miltenyi Biotec), according to the
manufacturer’s instructions. Subsequently, DNA was extracted using the Maxwell 16 blood DNA
purification kit (Promega, Madison, Wisconsin). Sanger sequencing was utilized to analyze STAT3
mutations. PCR primers were designed to amplify all coding exons (Exons 19 — 32) of the SH2 (Src
homology 2) domain of the STAT3 gene. The extracted DNA was subjected to PCR amplification with
adequate primers using the TaKaRa LA Taq polymerase kit (Takara Bio), followed by DNA
purification. Using the purified products, a sequencing reaction was performed with adequate
sequencing primers and the BigDye Terminator v3.1 Cycle Sequencing kit. After removal of excess dye
terminators, sequencing analysis was carried out using the 3130x1 Genetic Analyzer (Applied
Biosystems). All STAT3 mutations were detected by bidirectional sequencing. The following primers
were used for both PCR amplification and Sequencing. Exons 19 and 20 (F, 5'-
AGGGAAGGGCTGGGATGGCA-3’; R, 5’-ATCTCCACCCACCAGGGGGC-3’); exon 21 (F, 5°-
GCCAGGCCACTGAACAGGGTG-3’; R, 5’-TCCCATCGGTCACCCCAACA-3’); and exon 22 (F, 5’-

TCCTGCCGAGGCAGATGGCT-3’; R’ 5°- AGAGCATCACACAAAGGGGACCA-3’).



Whole transcriptome amplification (WTA), cDNA library preparation and sequencing. Single-cell
RNA sequencing (scRNA-seq) and single-cell TCR sequencing (scTCR-seq) analyses were performed
using the 10x Genomics Single Cell Immune Profiling Solution V1.0 according to the manufacturer’s

protocols (10x Genomics V(D)J + 5 Gene Expression). In brief, enriched CD3" T cells were washed

and resuspended in PBS + 0.04% fetal bovine serum. Following reverse transcription and cell barcoding
in droplets, emulsions were broken and cDNA was purified using Dynabeads MyOne SILANE,

followed by PCR amplification. Amplified cDNA was then used for both 5' gene expression library

construction and TCR enrichment. For the gene expression library construction, the amplified cDNA
was fragmented, end-repaired and double-sided size-selected with SPRIselect beads. For TCR library
construction, TCR transcripts were enriched from the amplified cDNA by PCR. Then, the enriched PCR
product was fragmented, end-repaired and size-selected with SPRIselect beads. The scRNA libraries
were sequenced on an Illumina HiSeq 3000 system using read lengths of 26 bp read 1, 8 bp 17 index, 98
bp read 2. The scTCR libraries were sequenced on an Illumina HiSeq 3000 using read lengths of 150 bp

read 1, 8 bp 17 index, 150 bp read 2.

Preprocessing of paired scRNA-seq and scTCR-seq data. We first analyzed gene expression of all
patients’ samples individually. Sequencing data from individual samples (patients at baseline and after
treatment of 3 and 6 months, and healthy donors) were preprocessed separately using Cell Ranger 2.1.1,
available from 10x Genomics (https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-ranger), including fastq file generation, read alignment

and gene-cell expression matrix calculation. After preprocessing raw data, alignment and enumeration of
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reads, a single gene-cell expression matrix was obtained for each sample. The estimated cell number
was 800-45,000 per sample.

TCR reads were aligned to the GRCh38 reference genome and consensus TCR annotation was
performed using the cellranger vdj program (10x Genomics, version 2.1.0). TCR libraries were
sequenced at a depth of over 2000 reads per cell, with a final average of 20798 reads per cell. On
average, 81% of reads were mapped to either the TRA or TRB loci in each cell. TCR annotation was

performed using the 10x cellranger vdj pipeline as described at https://support.10xgenomics.com/single-

cell-vdj/software/pipelines/latest/using/vdj. Barcodes with a higher number of Unique Molecular Identifier

(UMI) counts more that simulated background were considered as cell barcodes. V(D) J read filtering
and assembly were implemented as a previous study?. In brief, cellranger firstly trimmed known

adaptors and primer sequences from the 5' and 3' ends of reads and then filtered away reads that lacking

at least one 15 bp exact match against at least one reference segment (TCR, TRA and TRB gene
annotations in Ensembl version 87). Next, for each barcode, cellranger performed de novo assembly by
building a De Bruijn graph of reads independently. The assembler outputs the contig sequences which
are assigned at least one UMI. Finally, each assembled contig was aligned against all of the germline

segment reference sequences of V, D, J, C and 5' UTR regions. cellranger searched a CDR3 motif (Cys-

to-FGXG/WGXG) in a frame defined by the start codon in the L+V region or all 6 frames when the
L+V region was absent. A contig was kept and considered as productive if: 1) it fully spanned the V and
J segments; 2) there was a start codon in the V region; 3) it contained a CDR3 region in-frame with the
V start codon; 4) there was no stop codons in the V-J spanning region. Most cell barcodes contained two
matching productive contigs, comprising either a TCRA or a TCRB though it is of biological possibility
that fewer productive contigs (low sensitivity) or > 2 productive contigs (some cells do contain more

than one TCRB or TCRA chains) were associated with one cell barcode’.
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Data dimensional reduction and clustering with PhenoGraph. Doublets were removed before further
analyses. Cells with UMIs (molecular tags that can be applied to detect and quantify the unique
transcripts) over 10,000 (potential doublets) and under 500 (potential fragments), or a mitochondrial
proportion higher than 10% (potential apoptotic) were excluded. Downstream analyses were performed
using the R software package Seurat (http://satijalab.org/seurat/, v2.3.4). Raw reads in each cell were
first scaled by library sizes to 10,000 and then log-transformed. To improve downstream dimensionality
reduction and clustering, regressionOut in the Seurat package was used to remove unwanted sources of
variation brought by the number of UMIs and percentages of mitochondrial genes*. Then, highly
variable genes identified with y.cutoff = 0.5 and selected genes (~1300) were used for Principal
Component Analysis (PCA) of high-dimensional data. Top 30 principal components were selected for
unsupervised clustering of cells with a Graph-based clustering approach®*.

Dimensionally reduction and clustering were performed by PCA and visualized with t-distributed
stochastic neighbor embedding (t-SNE). With t-SNE plots of cells from all samples, cells of the same
subject tended to gather together due to subject specificity and batch effects (Supplementary Fig. 1b)>°,
and therefore 1dentification and removal of batch effects and other unwanted sources of variation were
needed. This was as expected as large-scale scRNA-seq data sets that were produced with different
libraries and at different times contained batch effects that may compromise integration of the data for
comparisons of samples. Though canonical correlation analysis (CCA) in Seurat and MNN algorithms
are widely used in scRNA-seq data analysis, they cannot handle data with millions of cells, due to huge
memory usage and computation complexity®. We applied sva/Combat for batch correction and found
that samples were well mixed after correction, by evaluation with an entropy-based approach
(Supplementary Fig. 1f, g. R-package “Rtsne” was used to run the t-SNE algorithm on the batch

corrected data using the following parameters: initial dimensions = 10 and perplexity = 31.



After batch correction, CD4"and CD8" cells were grouped together and the clustering was little
contributed by individual subject effects. After correction for batch effects and individual sample
variation, CD4"and CD8" cells formed two groups, and cells from different subjects were well mixed

and separated by cell type categories (Fig. 1b and Supplementary Fig. 1c, d).

Automated phenotypic description of cell clusters. To obtain cell clusters, PhenoGraph (a clustering
method designed for high-dimensional single-cell data by creating a graph representing phenotypic
similarities between cells and then identifying communities in this graph) was run on a batch corrected
dataset, using k = 30 nearest neighbors (a default parameter). This resulted in 125 clusters, and the
number was high for annotation. To simplify the cluster annotation, we conducted a second application
of PhenoGraph to the previously defined PhenoGraph clusters from all cells®. Expression of each cluster
was represented by its centroid computed by taking a median of genes across all cells in the cluster.
PhenoGraph was run on a cluster expression matrix with a parameter k = 15. Finally, PhenoGraph
partitioned 125 clusters into 10 metaclusters, which all had a mixed patient composition. With annotated
CD4" and CDS8" signature genes, metacluster 0, 4, 5, 6 and 8 were assigned for CD8" cells and

metacluster 1, 2, 3, 7 and 9 were assigned for CD4" cells (Supplementary Fig. 1d).

Cell clusters annotation. We downloaded raw data of GSE93777 for signature gene identification of
naive, central and effector T cell populations’. In specific, we used one-sided t test to compare gene
expression of subtypes against the rest samples to define top 250 most population specific genes as
signatures of subtypes. We used this gene set to define cell types at cell and cluster levels. CD4", CD8"
and related subtypes were assigned to each cluster based on significance in overlapping between T cells
and cluster-specific genes (a Fisher’s exact test)’. More specifically, top 250 overexpressed genes in

each T cell subtype population were obtained from GSE93777 of GEO and were considered as cell type
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specific signature genes. Subsequently, one-tailed Fisher’s exact test was utilized to assert enrichment of
T cell subset signature genes in a cluster marker gene list for each cluster, and a top associated cell type

was assigned to each cluster.

AUCell for signature assessment of individual cells. Besides assigning cell types at cluster levels, we
also used the AUCell package in Bioconductor, which computes the "Area Under the Curve" (AUC) of
gene sets for individual single cells, using the same gene sets from GSE93777 as above to annotate cell
types at cell levels’. This AUCell score reflects the possibility of each cell for a certain cell type. The
input to AUCell is a gene set, and the output is the gene set 'activity' in each cell. In brief, the scoring
method is based on a recovery analysis which considers ranking of all genes based on expression levels
(genes with the same expression values, e.g., '0', are randomly sorted). AUCell then uses AUC to
calculate whether a critical subset of the input gene set is enriched at a top of the ranking for each cell.
In this way, the AUC represents proportions of expressed genes in the signature and their relative
expression values compared to the other genes within the cell. AUCell assigns an AUCell score to each
cell which shows how a critical subset of the input gene set is enriched within the expressed genes for
each cell. In assigning cell types, results using the AUCell method (at cell levels) and the above method
on cluster levels showed good consistency (Supplementary Fig. 1d, e). Further, we computed AUCs for
gene sets associated with the signaling and immune pathways to quantify cell’s pathway activity (termed

a transcriptional phenotype in this study).

Entropy metric to evaluate batch effect correction and mixing of samples in clusters. To evaluate
combat/sva’s ability to correct batch effects across data from all healthy donors and T-LGLL patients,
we devised an entropy-based metric that quantifies mixing of the normalized data across samples. The

entropy-based metric was computed as follows: We constructed a k-NN graph (k = 30) on the
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normalized data using Euclidean distance and clustered cells with phonographs in patients and health
controls m = 1, ... 32. For each cluster j, we calculated a fraction of cells from a subject m (normalized

by the cell number in each sample), denoted as q;". Then we computed Shannon entropy H; =
— Yoe=1 4] logq]" as a measure of mixing between patients. We observed that clusters displayed

differing amounts of mixing between samples before batch correction. The mixture of samples was

highly increased after batch correction with sva (Supplementary Fig. 1f, g).

A diversity index and power law curve fitting. There are many ways of defining the diversity of a
population, clonal types in this study, with each method providing a different representation of the
number of clones (identical TCR chains), present (richness) and of their relative frequency (evenness).
Shannon entropy weighs both of these aspects of diversity equally is an intuitive measure whereby the
maximum value is determined by a total size of the repertoire. Entropy values decrease with increasing
inequality of frequency as a result of clonal expansion. The Shannon entropy in a population of N clones
with frequency p; , .y is defined by equation (1):
H(P) = — XiL, pilogzp; (1)

A Gini coefficient is a number aimed at measuring the inequality in a distribution. It is most often used
in economics to measure a country's wealth distribution and has been widely used in diversity
assessment of TCRs®. The Gini coefficient is usually defined mathematically based on the Lorenz curve
or Relative mean absolute difference’.
The Shannon entropy and Gini index for diversity analysis were calculated with the R package of tCR
(https://imminfo.github.io/tcr/).

Inferring power law exponents from empirical data are non-trivial due to severe biases incurred by
linear regression on bi-logarithmic scales, especially considering the heavy trail distribution'®. We

employed a maximum likelihood framework with an iterative numerical optimization method to fit the
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power law distributions and infer the power law exponents. A slope of fitted lines, i.e. an estimated
power law exponent was used to evaluate expansion scales of TCR clones in certain subjects. We fitted
the power law distributions with paired AB chains, or A and B chains, respectively. Since the clonal
expansion of T-LGLL mainly happens in a CD8" population, we separated CD4" and CD8" cells,

respectively, in analysis.

Other T-LGLL TCR datasets and epitope identification. Due to the small number of patients in this
study, we collected the published T-LGLL TCR datasets for integrative analysis. Top sequences of 3
chains were retrieved from two papers'"!>. The Inmunoseq dataset of the third study was downloaded
from https://clients.adaptivebiotech.com/pub/kerr-2019-bloodadvances. We used these three datasets to
validate our results of clonality and lack of common TCR clones. To identify epitopes and related
antigens, we input B-chain CDR3 sequences of T-LGLL patients into TCRmatch'?, a tool uses
comprehensive k-mer matching approach to identify similar sequences annotated in the Immune Epitope
Database (IEDB)!“. Specifically, we downloaded the docker version of TCRmatch, and all annotation of IEDB,
which collected the published TCRs and corresponding epitopes and antigens. TCRmatch calculated the
similarity of the input TCR sequence with those in IEDB, and a similar TCR and a corresponding

epitope were retrieved.

TCRP cluster analysis. CDR3f amino acid sequences were obtained through pooling top 500 most
abundant CDRs of all patients and were used to construct clone network analysis using GLIPH'?.
GLIPH clusters TCRs based on global similarity, that is, CDR3B fragments within the same cluster are
required to be different by one amino acid at most, and this difference must be at the same amino acid
location in all fragments within the cluster. Based on the presence of unique motifs in a given dataset,

GLIPH was used to calculate a probability of the occurrence of these unique motifs relative to their
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expected frequency in a naive TCR dataset. We included the HLA types, an important factor affecting
the TCR3 sequence, in GLIPH analysis. WebLogo (https://weblogo.berkeley.edu/logo.cgi) was used to
generate sequence logos, with columns of amino acids for each position in the sequence. A column
height represented conservation of the sequence at that position, while a height of the amino acid within

the column showed relative frequency.

Diffusion component analysis. A diffusion map was used as a nonlinear dimensionality reduction
technique to find major non-linear components of variation across cells to be associated with biological
processes?. Top ten diffusion components were computed using the destiny Bioconductor package,
which implements diffusion maps as described in Philipp Angerer et al'®. We selected t = 1 diffusion
steps and this approximated diffusion of information for each cell through its 20 nearest neighbors in our
data. Due to the computation complexity, we randomly chose 500 cells from each sample for a diffusion
map. We repeated the random choice and obtained the same results.

To check the pathways contributing cell transcriptional phenotypes, we used the regression analysis
between the AUC scores (calculated with signature genes of biological processes, such as differentiation
and T cell activation) against an order of cells by diffusion maps to examine their contributions on

components of diffusion maps.

Differential expression of genes and heatmap generation. Differentially expressed genes were
defined with FindMarkers in Seurat, by comparing gene expression in one cell subset with that in all
others. Genes with P value < 0.05 and Log (average fold change) > 0.1 were regarded as differentially
expressed genes. Heatmaps and network visualization were generated with ggplot2 and heatmap?2 in the

R package.
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Gene ontology, pathway and network analyses. Gene ontology analysis was performed with the R
package topGO v2.26 using the algorithm elim, a minimum node size of 10 and genes that passed the
filtering threshold, and further included in the STRING network, as a background gene list'”. Set

Enrichment Analysis (GSEA; http://software.broadinstitute.org/gsea) is a widely used pathway analysis

tool that determines whether pre-defined gene sets show statistically significant, concordant differences
between two biological states. Fast GSEA (FGSEA;
https://bioconductor.org/packages/release/bioc/html/fgsea.html) was performed via the fgsea
R/Bioconductor package. An expression level change of each gene was used as a ranking metric input
with the REACTOME and KEGG pathways collected in the Molecular Signatures Database (MSigDB).
The Cytoscape plugin jActiveModulesTopo was utilized to identify expression-active connected
subnetworks in a gene association network collected in STRING'®!. A top scoring module was selected

as the most related subnetwork.

Real-time reverse transcriptase PCR (RT-PCR). A PCR array 384 well created by Qiagen (Frederick,
MD) was used to check expression of 84 genes for the JAK-STAT signaling pathway (PAHS-039ZE-4).
Total RNA was extracted from magnetic bead-sorted cells using the Qiagen RNeasy Mini kit, converted
to complementary DNA and used for the PCR Array. Data analysis was accomplished using the AACt

method (Qiagen DataAnalysis WebPortal, https://geneglobe.qiagen.com/us/analyze).
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Supplementary Results

scRNA-seq of T cells in T-LGLL patients. We had obtained large cell collections from 13 T-LGLL
patients who had participated in a clinical trial of a monoclonal antibody, alemtuzumab'; most had
refractory disease and therefore had been treated with other modalities earlier (Supplementary Table 1).
CD3" cell populations were subjected to scRNA-seq and TCR profiling using the 10x Single Cell V(D)J

+ 5" Gene Expression platform (Fig. 1a). Metrics for scRNA-seq and TCR profiling of 32 samples are

shown in Supplementary Data 1, respectively.

Cell clustering. A standard approach to assign cell types in scRNA-seq is to cluster cells by similarity
of transcripts and then to impute cell identity by comparison of highly expressed genes in each cluster to
known signature gene sets.

There are numerous algorithms of clustering, but there is no clear one which performs better than
others. However, PhenoGraph, which is originally developed to cluster Cytof data, has been adapted to
scRNA-seq and appears to have gained community appreciation with a good reputation, and it is
implemented in Seurat, cellranger and Scanpy?®. We first verified a presence of CD4" and CDS8" cell
types using PhenoGraph clustering. We used AUCell to quantify our CD4 and CD8 signature gene sets
for per single cells (AUC representing proportions of expressed genes in the signatures and their relative
expression compared to all other genes). As expected?, we observed variation in a immune cell
composition of each subject (Supplementary Fig. 2): a CD4" T cell and a T cell fractions constituted 12 -

73%, respectively. A CD8" T cell fraction was between 27% and 88% (Fig. 1d).

Integration of data across all subjects to build a T cell atlas for T-LGLL. We merged data from
CD3" cells of all samples for systematic comparison across patients and healthy donors. We observed

that cells from the same patient were often more similar than cells of the same lineage across patients
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(Supplementary Fig. 1b). Clustering of cells was likely influenced by both batch effects and sample
specificity. To remove technical effects, sva/ComBat was used to remove batch effects, and after batch
normalization, CD4" and CD8" T cells were grouped, resulting in little evidence of individual subject
effects. (Fig. 1b and Supplementary Fig. 1).

We used entropy to quantify patient specificity and found that the clusters varied widely in their
degrees of patient mixing. Compared with the entropy-based measure of permutated data, while cells
within individual samples were still more similar, batch effects were greatly corrected by sva, with
significantly improved mixing of cells across patients (P < 0.0001; Supplementary Fig. 1f, g). After
correction for batch effects and individual sample variations (see Supplementary Methods), CD4" and
CD8" T cells formed two groups (Fig. 1b). PhenoGraph, yielded a total of 125 clusters, and the numbers
were too large for interpretation. Therefore, we represented each cluster by its centroid and used second-
round PhenoGraph to group centroids into metaclusters. Finally, we obtained 10 metaclusters, in which
metacluster 0, 4, 5, 6 and 8 were for CD8" T cells and metacluster 1, 2, 3, 7 and 9 were for CD4" T cells
(Supplementary Fig. 1d).

Finally, we found that a high variation in the immune cell composition of each patient (Fig. 1f). CD8
expression, for example, was relatively uniform among cells from healthy donors, in contrast in T-
LGLL, some patient samples showed increased CD8 expression (Fig. 1¢). This was expected because
the clonal expansion of CD8" T cells in T-LGLL resulted in a higher number of CDS8 cells. There was
not difference between T-LGLL and healthy donors in CD4 expression, indicating that no extreme
clonal expansion in a CD4" T cell population. As expected, clonal expansion happened mainly in CD8"
T cells but not in CD4" T cells, consistent with results of flow cytometry.

To construct a global atlas of cells and their biological annotations, we merged data across all cells

from healthy donors and patients, revealing diverse sets of 125 clusters from PhenoGraph.
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To assign each cluster to a cell type, we utilized a Fisher test and identified subtypes of CD4" and CD8*
T cell clusters. Annotations were confirmed manually from expression of canonical markers
(Supplementary Fig. 2b). CD8" and CD4" clusters were further split into naive, central memory, effector
memory and Treg subclusters. We identified the most known major CD3" immune cell types, including
naive, memory and effector populations in CD4" and CD8" T cells (Supplementary Fig. 2). This

provides the research community a large atlas of T cells for T-LGLL research in future.

Concordance of TCRB gene expression detected in scRNA-seq and scTCR-seq. Same as other
studies, the TRAV genes had lower expression than TRBV genes do (Supplementary Fig. 3a; P = 0.04),
which leads to a low detection rate of a chain in scTCR-seq. We compared counts of cells with TCR
encoded by different TRBV genes and expression levels of corresponding TRVB genes in scRNA-seq.
There was a high correlation between counts of TCR-captured cells and scRNA-seq expression of
TRBVs, demonstrating concordance of scRNA-seq and scTCR-seq, and high quality of our datasets

(Supplementary Fig. 3b).

Loss of TCR repertoire diversity demonstrated by abnormal size distribution of CDR3.

Lengths of CDR3 regions may affect TCR structures and thus T cell functions®!. We defined normal
CDR3 size profiles by comparing CDR3 size distributions among healthy donors (Fig. 2f). In both CD4"
and CD8" T cells, CDR3 sizes were typically distributed in a Gaussian manner, with 10 - 12 different
size classes of 30 - 60 nucleotides (equivalent 10 - 20 amino acids) at 3 nucleotide intervals. In T-LGLL
patients, lengths of the most frequent p-CDR3 sequences ranged from 13 to 15 amino acids?'. Sequence
patterns in some T-LGLL resembled those in healthy donors. But in patients with T cell monoclonal or
oligoclonal expansion, CDR3 sizes showed abnormal size distribution patterns and were concentrated in

a few sizes (16 amino acids for UPN10) (Fig. 2f and Supplemental Fig. 6).

18



TCR repertoires in T-LGLL follow a power law distribution but at a larger scale. A single cell
approach allows analysis of paired aff sequences of TCR. We quantified a clone size distribution of
paired off CDR3 sequences'®?2. In both patients and healthy donors, CD8" T cells’ clone size frequency
distributions of both single and paired aff chains fitted a heavily tailed power law distribution
(Supplementary Figs. 7 and 8), characterized by a linear behavior on a bi-logarithmic scale (a negative
linear relationship between logarithmic expression of clone frequency and clone sizes; Fig. 2g).
Compared to healthy donors, there were some very large clones in patients. In a power law distribution,
a slope corresponds to an exponent in the power law and, in effects, is a measure of population diversity.
Therefore, we used a slope as a metric to quantify TCR repertoire diversity: the greater a value of the
slope, the higher diversity. We observed higher slope values in patients as compared to those in controls
(Fig. 2h), again indicating loss of diversity and clonal expansion of T cells in T-LGLL. There were
different power law distributions between CD4" and CD8" T cell. A CD8" T cell repertoire deviated
from the power law behavior at the tail. Most samples had insufficient CD4" T cells with detected CDR3
sequences to fit a power law relationship, but there was an approximate negative relationship between
clone sizes and frequency in assessed samples (Supplementary Fig. 9). These results supported a

predominance of CD8" T cell clonal expansion in T-LGLL.

Characteristics of cytomegalovirus (CMV) and S7A473 mutations in T-LGLL patients. It was
suggested that T-LGLL lymphocytosis is likely to be the result of long-term stimulation by viral
antigens?’. Chronic CMV antigen stimulation has been postulated as a potential driver for T-LGLL
lymphocytosis as its reactivation has been associated with T-LGLL lymphocytosis®*. In our study, clonal
expansion in patients who had serologic evidence of CMV infection was much higher than in
seronegative patients (P = 0.05). There was no association between S7A4 T3 mutations and clonal

expansion (P = 0.74).
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Among 13 patients, eight had ST473 mutations and eight showed serologic evidence of CMV
infection. We found a marginal negative correlation between the presence of a STAT3 mutation and
CMV infection (and T cell clonal expansion associated with this prevalent virus; P = 0.09). Patient ages

were not associated with clonal expansion (P = 0.33).

CDR3 sequence annotation with VDJdb. To characterize other potential common antigens (and
microbes), we imputed viral epitope binding from CDR3 sequences by comparison of reported virus-
specific CDR3 sequences. In both patients and healthy donors, the most prevalent virus-specific CDR3
sequences were contributed from CMV, EBV, InfluenzaA, HomoSapients, HIV-1, DENV, YFV,
MCMYV, SARS-CoV-2, M.tuberculosis, HCV, LCMV, PlasmodiumBerghei, SIV and HTLV
(Supplementary Fig. 20a), but they only constituted up to 1.26% of total T cells in patients and healthy
donors, respectively. There was a good correlation of these virus-specific CDR3 sequence frequency in
patients and in healthy donors (Supplementary Fig. 20b); only two had marginally higher frequency in
patients than in healthy controls (EBV:EBNA3A:FLRGRAYGL, with P =0.07; and
CMV:pp65:NLVPMVATV, with P = 0.09). Clonal expansion in T-LGLL therefore could not be
explained by exposure to common known viruses. (Our analysis was limited by the small number of
subjects in the VDJdb database; large-scale curated repositories would enhance antigen identification

from TCR profiling.)

MYC in T-LGLL. MYC’s effects of proliferation and apoptosis are indeed contextual. In the current
study, we focused on its pro-apoptotic function for the following reasons. First, T-LGLL cells are
resistant to activation-induced cell death, and apoptosis is considered important in T-LGLL
pathogenesis®**. MYC can control T cell death via FasL?®. Second, because MYC expression in T-

LGLL was too low for accurate measurement, we instead created a network with MYC and its
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neighboring genes in STRING (https://string-db.org/). From this network, two subnetworks were created
for genes with only apoptosis or proliferation functionality (an apoptotic network) or proliferation (a
proliferation network). Then we calculated the activities of the gene subnetworks with
AddModuleScores in Seurat for each cell. ANOVA analysis of healthy, pre- and post-treatment samples
showed significant difference in activities of the apoptotic network but not the proliferation network.
Thus integrative analysis of MYC and its neighboring genes suggested proapoptotic functions of MYC
in T-LGLL, which can be tested in vitro (as with MYC knockdown in T-LGLL cells). Function of MYC
in the context of T-LGLL could be better assessed by functional experiments, but in vitro assays with
primary samples are not easy to do (partly due to heterogeneity of samples, with or without STAT3

mutations, TCR clones and so on), and also does not necessarily reflect pathophysiology in vivo.
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Supplementary Table 1 Clinical characteristics of patients.

Response to treatment T-cell receptor gene PCR
Hematologic . . -
UPN Age Sex : Prior therapies . . CMV IgG
presentation 3 6M  STAT3 mutation 'Mmunodominant Clonesize o iorto  Samples
clone (% in T cells)
treatment

. Pred, CsA, splenectomy, growth ¢.1840A>C . "
1 51 F  Neutropenia factors CR CR (p.Ser614Arg) TRVB 13.6 Oligoclonal 87.6 Positive  Pre, 3M_CR|
4 7 M Anemia None PR Relapsed None TRVB 2 Monoclonal 76.6 Positive  Pre, 3M_PR

6 39 M Anemia MTX, CsA, CTX, ATG, predisone NR NE, off Normal TRVB 2 Monoclonal 9.5 Negative Pre
8 51 M Anemia Fludarabine, CsA CR CR None TRVB 8 Monoclonal 34.9 Positive  Pre, 6M_CR
10 61 M Neutropenia IR, G2, SRR CR CR A TRVB 7.2 Monoclonal 26,6 Positive Pre, 3M_CR
prednisone (p.Tyr640Phe)

12 82 M Anemia CsA, MTX, CTX, growh factors CR CR None TRVB 8 Monoclonal 70.3 Negative Pre, 3M_CR|

’ . c.1919A>T .
13 27 F Anemia CsA, IVIG, growth factors, rituximab PR PR (p.Tyr640Phe) TRVB 13.2 Monoclonal 14.3 Negative Pre, 6M_PR
14 66 F Neutropenia MTX, CsA, CTX NR PR None TRVB 2 Monoclonal 423 Negative Pre, 6M_PR

. MTX, Predisone, CTX, CsA, growh c.1981G>T "
15 48 F Pancytopenia factors NR NR (pAspB61Tyr) TRVB 2 Monoclonal 19.3 Positive  Pre, BM_NR|
17 43 M Anemia MTX, CsA, growth factors NR NR, off c1981G>T TRVB 14 Oligoclonal 441 Positive  Pre, 6BM_NR|

(p-Asp661Tyr)
18 72 . Qﬂs)";;ia MTX, CsA, growth factors PR  Relapsed None TRVB 8 Oligoclonal 324 Negative Pre, 3M_PR
19 29 F Anemia MTX, Prednisone, CTX PR PR None TRVB 17 Monoclonal 79 Negative Pre, 3M_PR
24 7 7 Anemia Pred, MTX, CsA, rituximab, CTX CR CR SAIEAIEET TRVB 23 Monoclonal 33.9 Positive  Pre, 3M_CR|
(p.Asp661Tyr) -

Supplementary Table 1 Clinical characteristics of patients (continued).

HLA type

10
12
13
14
15
17
18
19
24

HLA-A*33:HLA-A*101:HLA-B*18:HLA-B*51:HLA-Cw*121:HLA-Cw*402:HLA-DRB1*10011501:HLA-DRB*5*01:HLA-DQ*0501:HLA-DQ*06
HLA-A*01:HLA-A*0201:HLA-B*08:HLA-B*44:HLA-Cw*05:HLA-Cw*07:HLA-DRB_*3*01:HLA-DRB1*01:HLA-DRB1*03:HLA-DQ*02:HLA-DQ*05
HLA-A*24:HLA-A*31:HLA-B*07:HLA-B*08:HLA-Cw*07:HLA-DRB1*01:HLA-DRB1*15:HLA-DRB_*5*01:HLA-DQ*05:HLA-DQ*06
HLA-A*0201:HLA-A*01:HLA-A*02:HLA-B*08:HLA-B*1402:HLA-Cw*07:HLA-Cw*08:HLA-DRB1*03:HLA-DRB1*11:HLA-DRB_*3*01:HLA-DRB_*3*02:HLA-DQ*02:HLA-DQ*03
HLA-A*0201:HLA-A*24:HLA-B*13:HLA-B*15:HLA-Cw*03:HLA-Cw*06:HLA-DRB_*4*01:HLA-DRB1*04:HLA-DRB1*07:HLA-DQ*02:HLA-DQ*0302
HLA-A*01:HLA-A*02:HLA-A*0201:HLA-B*08:HLA-B*40:HLA-Cw*03:HLA-Cw*07:HLA-DRB1*03:HLA-DRB1*13:HLA-DRB_*3*0101:3*0301:HLA-DQ*02:HLA-DQ*06
HLA-A*01:HLA-A*68:HLA-B*49:HLA-B*57:HLA-Cw*7:HLA-DRB1*03:HLA-DRB_*3*00:HLA-DRB1*11:HLA-DQ*03:HLA-DQ*04
HLA-A*11:HLA-A*68:HLA-B*14:HLA-B*35:HLA-Cw*04:HLA-Cw*08:HLA-DRB1*01:HLA-DRB1*13:HLA-DRB_*3*0101:HLA-DQ*03:HLA-DQ*05
HLA-A*02:HLA-A*03:HLA-B*14:HLA-B*51:HLA-Cw*02:HLA-Cw*08:HLA-DRB_*3*0301:4*01:HLA-DRB1*04:HLA-DRB1*13:HLA-DQ*03:HLA-DQ*06
HLA-A*01:HLA-A*29:HLA-B*08:HLA-B*44:HLA-Cw*07:HLA-Cw*16:HLA-DRB_*3*02:HLA-DRB1*08:HLA-DRB1*14:HLA-DQ*0402:HLA-DQ*0503
HLA-A*03:HLA-A*24:HLA-B*08:HLA-B*15:HLA-Cw*07:DQB1*02:01:HLA-DRB1*05:01:DRB1*01:HLA-DRB1*03:DRB_*3*01:01
HLA-A*02:HLA-A*31:HLA-B*35:HLA-B*37:HLA-Cw*04:HLA-Cw*06:DQB1*5:DRB1*1
HLA-A*02:HLA-A*11:HLA-B*35:HLA-B*45:HLA-Cw*04:HLA-Cw*06:HLA-DRB1*11:HLA-DRB1*14:HLA-DQ*03:HLA-DQ*05

UPN, unique patient number; F, female; M, male; 3M/6M, 3 months/6 months; CMV, cytomegalovirus; CsA, cyclosporine;
MTX, methotrexate; CTX, cyclophosphamide; ATG, anti-thymocyte globulin; CR, complete response; PR, partial response;
NR, non-response; NE, not evaluable.
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Supplementary Table 2 a and 3 chains detected in single cells.

Cells Cell Ce:lls Ce.lls Ce:lls Ce:lls C(-flls Ce:IIs Cellls Cells with
D UPN/ samples Allcells witha with with with with with with with with one a and
HD . . both onea twoa threea onef twof threef one B
chain chain . . . . h f X .
chanins chain chains chains chain chains chains chains
Sample 1 | UPN24 Pre 7572 5237 7247 4912 4955 275 7 6761 462 23 4337
Sample 2 | UPN24 3M_CR 11210 4907 10934 4631 4760 142 5 9602 1226 95 3780
Sample 3 | UPN10 Pre 7995 5106 7726 4837 4923 179 4 7346 364 15 4412
Sample4 | UPN10 3M_CR 25761 15140 25136 14515 14279 802 53 20471 4104 508 10589
Sample 5 | UPN19 Pre 18918 14897 18081 14060 13223 1495 166 15484 2305 274 10905
Sample 6 | UPN19 3M_PR 20316 14873 19345 13902 13433 1299 129 16179 2788 336 10485
Sample 7 HD1 HD1 14888 9542 14324 8978 9064 446 30 12440 1729 141 7242
Sample 8 HD2 HD2 19192 9318 17158 7284 9265 50 3 16624 488 45 6944
Sample 9 | UPN18 Pre 22489 10214 21519 9244 10017 193 4 17604 3380 482 7023
Sample 10 | UPN18 3M_PR 32121 21336 30132 19347 18888 2106 310 21097 6988 1707 11444
Sample 11 | UPN4 Pre 62055 46906 59706 44557 44914 1886 99 46241 11615 1686 32492
Sample 12| UPN4 3M_PR 23699 20216 23167 19684 19079 1046 87 21245 1812 106 17398
Sample 13 | UPN17 Pre 32083 23805 29773 21495 20890 2502 359 22625 5850 1138 14041
Sample 14 | UPN17 6M_NR 928 428 873 378 398 30 0 863 10 0 347
Sample 15 HD3 HD3 10147 5783 9722 5358 5596 182 5 8807 859 51 4673
Sample 16 HD4 HD4 9055 5933 8673 5551 5663 262 8 8027 605 40 4887
Sample 17 | UPN1 Pre 8013 6265 7311 5563 5873 367 25 6865 419 27 4924
Sample 18 | UPN1 3M_CR 11748 9737 11298 9287 8658 1018 54 10265 962 69 7693
Sample 19 | UPN12 Pre 8474 5842 7721 5089 5394 430 18 7236 456 29 4398
Sample 20 | UPN12 3M_CR 10783 9638 10434 9289 8042 1452 133 9474 897 61 7285
Sample 21| UPNS8 Pre 4402 1985 3993 1576 1962 23 0 3886 106 1 1501
Sample 22 | UPN13 Pre 7091 3924 6415 3248 3849 75 0 6109 292 14 3019
Sample 23 HD5 HD5 46781 35816 44590 33625 31080 4000 636 28239 11857 3602 18063
Sample 24 HD6 HD6 2374 1125 2118 873 1092 33 0 2067 51 0 828
Sample 25| UPN8 6M_CR 2404 835 2282 713 828 7 0 2224 57 1 692
Sample 26 | UPN13 6M_PR 2720 1177 2549 1006 1170 7 0 2481 68 0 976
Sample 27 | UPN14 Pre 3700 2088 3392 1781 2056 32 0 3309 81 2 1711
Sample 28 | UPN14 6M_NR 3599 2359 3261 2024 2313 46 0 3158 99 4 1930
Sample 29 | UPN15 Pre 5783 2461 5546 2224 2455 6 0 5367 176 3 2150
Sample 30 | UPN15 6M_NR 6837 3995 6561 3719 3982 13 0 6517 44 0 3685
Sample 31| UPNG6 Pre 1146 309 906 70 309 0 0 904 2 0 69
Sample 32 HD7 HD7 2600 1121 2395 916 1115 5 1 2320 73 2 892

UPN, unique patient number; HD, healthy donor; Pre, pre-treatment; 3M/6M, 3 months/6 months; CR, complete response;
PR, partial response.
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Supplementary Table 3 TCR specificity groups defined by GLIPH analysis.

Rank Convergence group (CRG) CRG contains clones Frequency in all cells
1|CRG-CASSPGTNYGYTF _size 21 21 9053
2|CRG-CASIVGSYNEQFF_size 238 238 2633
3|CRG-CASRAGETEAFF_size 237 237 1750
4|CRG-CASSFEETQYF_size 242 242 1699
5|CRG-CASSLVGGSYEQYF_size 61 61 560
6| CRG-CASRARGGNQPQHF_size 37 37 465
7|CRG-CASSLTSTDTQYF_size 43 43 334
8|CRG-CASSPGFSYEQYF_size_46 46 263
9|CRG-CASSLGHNTDTQYF_size 43 43 201

10| CRG-CASSLDWETQYF_size 35 35 173
11|CRG-CASSLAGNTGELFF_size 33 33 171
12| CRG-CASSLAGYAYNEQFF_size_42 42 150
13|CRG-CASSIQGNQPQHF_size 26 26 119
14| CRG-CATDTGDSNQPQHF_size_10 10 103
15|CRG-CASSLYNQPQHF_size 19 19 93
16| CRG-CASSPDNYGYTF_size 18 18 92
17|CRG-CASSPTGWETQYF_size_15 15 90
18| CRG-CASSENYSNQPQHF _size 6 6 79
19| CRG-CASSLGTVNTGELFF_size_13 13 72
20|CRG-CASSLTAGSSYEQYF _size 9 9 72
21|CRG-CASSDYEQYF_size_10 10 68
22|CRG-CASSLLSSYNEQFF _size 14 14 68
23|CRG-CASSLGLQETQYF_size 16 16 67
24|CRG-CAISESGSSYEQYF _size 9 9 64
25|CRG-CASRRDSSYEQYF_size 14 14 54
26|CRG-CASSFAGMNTEAFF_size 12 12 51
27|CRG-CASSPPSGVTDTQYF_size 6 6 49
28|CRG-CASRTGSTGELFF_size 11 11 43
29|CRG-CASSPLGSSYNEQFF_size 12 12 39
30|CRG-CASAPGLAGGEQFF_size 6 6 38
31|CRG-CASSIGTAYNEQFF_size_6 6 38
32|CRG-CASSLGGYSNQPQHF_size 7 7 38
33|CRG-CASSPPQGNTEAFF_size 9 9 38
34|CRG-CASSRDSNYGYTF_size 9 9 38
35|CRG-CASSSDSGGTDTQYF_size_6 6 38
36/CRG-CASSSQAGGYNEQFF_size 7 7 37
37|CRG-CASSLGLAGYNEQFF_size_8 8 34
38|CRG-CSGGRLNTEAFF_size 16 16 34
39|CRG-CSASFNEQFF_size 6 6 33
40(CRG-CSVDGSSYEQYF_size_10 10 33
41|CRG-CAISEGGEQETQYF_size 6 6 32
42|CRG-CASTYSGANVLTF_size 8 8 25
43|CRG-CASSLAQGSETQYF_size 6 6 24
44|CRG-CASRGDGYEQYF_size 7 7 23
45|CRG-CASSLDTSPLHF_size 6 6 21
46| CRG-CASGPNTIYF_size 6 6 20
47|CRG-CASSSGLAGTDTQYF _size 6 6 18
48| CRG-CASRRGGEQYF_size 8 8 15
49|CRG-CASRGGGETQYF _size 6 6 7

GLIPH, Grouping of Lymphocyte Interactions by Paratope Hotspots.
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Supplementary Fig. 1 Data merging and removal of batch effects. a Cryopreserved PBMCs were
used to enrich T cells using the EasySep Human T cell Isolation kit, with purity (detected by flow
cytometry staining with anti-human CD3) after enrichment > 90%. b t-SNE plots by expression data
before batch correction (colored by samples). ¢ t-SNE plots by expression data after batch correction
(colored by samples). d Expression of CD8 signature genes of metaclusters identified by PhonoGraph
algorithm. e The same t-SNE plot shown in Fig. 1¢, colored by CD8A and CD4 expression. f A
histogram plot of entropy scores of sample distribution on permutation data, with entropy scores on x-
axis and frequency on y-axis. g Entropy scores of sample distribution (y-axis) of clusters (x-axis) and
before (left) and after (right) batch corrections.
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Supplementary Fig. 2 Characterization of T cell subsets. a The same t-SNE plot shown in Fig. 1b,
colored by T cell subtypes defined by calculating the area under the curve (AUC) scores with
GSE93777 for each cell. b A heatmap showing expression of signature genes of each T cell subtypes.
¢ The same t-SNE plot shown in Fig. 1b, colored by patients and healthy donors; patients pre- and
post-treatments; individual patients’ samples pre- and post-treatments, respectively.
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Supplementary Fig. 3 Expression of TRAV and TRBV genes in scRNA-seq. a Shown are 25% to
75% response ranges (top and bottom lines of boxes), and minima and maxima (bars). A two-sided
unpaired t-test. P value was indicated in the figure. b A high correlation between counts of captured
unique CDRs by scTCR-seq and expression levels of TRVB genes that encoded corresponding CDRs
of TCR in scRNA-seq. TCR counts in Log on x-axis and expression of corresponding TRVB genes in
Log on y-axis.
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VB/Va and matching JB/Ja

Polyclonal, HD1 Polyclonal, HD2 Polyclonal, HD3 Polyclonal, HD4

UPN12_pre

UPN10_pre L UPN10_post

Supplementary Fig. 4 Skyscraper plots showing VB/Va and matching JB/Ja in healthy donors
and patients. Skyscraper plots show VB/Va and matching JB/Ja in healthy donors (HD1 - HD7) and
patients (UPNs 1, 4, 6, 8, 10 and 12,) pre- and post-alemtuzumab treatments. A UPNG6 post-treatment
sample was not available.
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VB/Va and matching JB/Ja

UPN13_pre UPN13_post UPN14_pre UPN14_post
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Supplementary Fig. 5 Skyscraper plots showing VB/Va and matching JB/Ja in patients.
Skyscraper plots show V/Va and matching JB/Ja in patients (UPNs 13, 14, 15, 17, 18, 19 and 24) pre-
and post-alemtuzumab treatments.
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Distribution of CDR3 length
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Supplementary Fig. 6 Distribution of CDR3 lengths in healthy donors and patients. Red and blue
curves indicate CD8* and CD4* T cells, respectively. x-axis, CDR3 length in amino acid (aa); y-axis,

CDRS3 size in cell counts.
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Supplementary Fig. 7 Clone sizes in CD8* T cells of healthy donors and patients. Clone sizes
were plotted in CD8* T cells of healthy donors (HD1 — HD7) and patients (UPNs 1, 4, 6, 8, 10, 12, 13,
14, 15, 17, 18, 19 and 24) pre-treatment with clone sizes in Log on x-axis and Log of cumulative
frequency on y-axis.
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Supplementary Fig. 8 Clone sizes in CD8* T cells of patients. Clone sizes were plotted in CD8* T
cells of patients (UPNs 1, 4, 8, 10, 12, 13, 14, 15, 17, 18, 19 and 24) post-alemtuzumab treatment with
clone sizes in Log on x-axis and Log of cumulative frequency on y-axis. A UPN6 post-treatment sample
was not available.
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Supplementary Fig. 9 Clone sizes in CD4* T cells of healthy donors and patients. Clone sizes
were plotted in CD4* T cells of healthy donors (HD1 — HD7) and patients (UPNs 1, 4, 6, 8, 10, 12, 13,
14, 15, 17, 18, 19 and 24) pre- and post-alemtuzumab treatments with clone sizes on Log on x-axis and
Log of cumulative frequency on y-axis. A UPNG6 post-treatment sample was not available.
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top 500 TCR clones
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Supplementary Fig. 10 Lack of common T cell clonotypes was seen in T-LGLL patients in our

study: top 500 TCR clones. A heatmap plot showing sharing among top 500 TCR clones of patients

and healthy donors. On both x

axes, there were samples of patients and healthy donors, and

and y-

paired samples of the same patients were adjacent. Numbers indicate counts of identical TCR clones
shared among samples. A color scheme (dark orange to dark blue) indicates the number of shared

CDR sequences from high to low. Although by increasing the number of clones examined and

increasing resolution, there were more clones shared among samples, majority of clones were only

shared in the same patient before and after treatments,

patients and in healthy donors.

and only found at basal levels similarly in other
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top 1000 TCR clones

Homology assessment
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Supplementary Fig. 11 Lack of common T cell clonotypes was also seen in T-LGLL patients in
our study: top 1000 TCR clones. A heatmap plot showing sharing among top 1000 TCR clones of
patients and healthy donors. On both x- and y-axes, there were samples of patients and healthy

donors, and paired samples of the same patients were adjacent. Numbers indicate counts of identical

TCR clones shared among samples. A color scheme (dark orange to dark blue) indicates the number of
shared CDR sequences from high to low. Although by increasing the number of clones examined and

increasing resolution, there were more clones shared among samples, maijority of clones were only

shared in the same patient before and after treatments

patients and in healthy donors.

and only found at basal levels similarly in other
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d Homology assessment: overlapping with clones in two references

TCR in our data Sample Cells No. Cells (%) TCR in literature Literature

CASSQGRGSGGNTIYF UPN24_post 6 0.06555944 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGANTGELFF  UPN10_post 2 0.007705644 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGDSDNEQFF  UPN18_pre 2 0.02385781 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGLGSPLHF UPN18_post 6 0.0254205 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGQGAGETQYF UPN4_pre 2 0.003275574  CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGSQETQYF UPN4_pre 2 0.003275574  CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGQGAGETQYF UPN4_post 1 0.003867624 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGDEQFF UPN17_pre 3 0.0153335 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGPSQPQHF UPN12_post 2 0.0232369 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGGQPQHF UPN8_pre 1 0.0243843 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGSQNTEAFF  UPN8_pre 1 0.0243843 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGLSYEQYF UPN13_post 1 0.03821169 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGSSTDTQYF  UPN14_pre 1 0.03644315 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGSGEQYF UPN14_post 1 0.02969121 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGGPYNEQFF  UPN15_pre 2 0.0349162 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGPGYEQYF UPN15_pre 1 0.0174581 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGRVRNEQFF  HD1 4 0.1255887 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGVNYGYTF HD5 19 0.1346945 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGGSTYEQYF HD5 3 0.02126755 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGTEAFF HD5 3 0.02126755 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGDEQFF HD6 1 0.0461042 CASSQGRG Clemente MJ, et al. Blood.2013
CASSQGRGLETQYF HD6 1 0.0461042 CASSQGRG Clemente MJ, et al. Blood.2013
CASSLGGQPQHF UPN18 post 8 0.033894 ASSLGGQPQH Clemente MJ, et al. Blood. 2011

b Share TCR usage in the Blood Advances paper

Sample 5

Sample 7

Supplementary Fig. 12 Lack of common T cell clonotypes in T-LGLL patients of three
independent studies. a T cell clonotypes reported in two other T-LGLLL cohorts were defined in our
patients, and also in healthy donors (Clemente MJ, et al. Blood 122, 4077-4085 (2013); Clemente MJ,
et al. Blood 118, 4384-4393 (2011)). b Circos plots where segments in circles represent sharing of
identical CDR3 sequences among six patients in a Blood Advances study (Kerr, C. M. et al. Blood Adv.
3, 917-921 (2019)). Black lines indicate arcs connecting patients sharing identically rearranged CDR3
sequences among individuals. Red and blue curves are proportional to clone sizes.
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Homology assessment: top 500 TCR clones
Patients in Blood Advances paper HD Our patients (UPN)
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Supplementary Fig. 13 Lack of common T cell clonotypes in T-LGLL patients in ours and an
independent study. A heatmap plot showing sharing among top 500 TCR clones of serial samples of
13 patients and seven healthy donors in our cohort, and 20 patients in a Blood Advances study (Kerr,
C. M. et al. Blood Adv. 3, 917-921 (2019)). On both x- and y-axes, there were samples of patients and
healthy donors, and paired samples of the same patient were adjacent. Numbers indicate counts of
identical TCR clones shared among samples. A color scheme (dark orange to dark blue) represents the
number of shared CDR sequences from high to low. HD, healthy donor; UPN, unique patient number.
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Sequences and corresponding weblogs of top TCR specificity groups
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Supplementary Fig. 14 Sequences and corresponding weblogs of top TCR specificity groups
with more than five different clones. In numbers A;B following CRG sequences, the A indicates the
number of clones contained in this CRG; the B indicates frequency of this CRG in all cells.
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Sequences and corresponding weblogs of top TCR specificity groups
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Supplementary Fig. 15 Sequences and corresponding weblogs of top TCR specificity groups
with more than five different clones (continued from Supplementary Fig. 14). In numbers A;B
following CRG sequences, the A indicates the number of clones contained in this CRG; the B indicates
frequency of this CRG in all cells.
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a A positive correlation of the distances on t-SNE and TCR
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Supplementary Fig. 16 TCR usage shapes T cell phenotypes. a Calculation of correlation of
distances on a t-SNE plot (based on transcriptome) and distances on a TCR plot (based on clonality)
for single T cells. A distance on t-SNE (transcriptome) was in a positive correlation with a distance on
TCR (clonality) with a P value < 0.01. A Pearson correlation test. b A bar chart showing percentages of
clonally expanded T cells in T cell subsets. Only a small proportion of T cells was defined to be clonally
expanded based on identical CDR3 sequences, but there were more in effector memory T cells and
CD45RO*CD8* T cells. ¢ T cell subsets were assessed in clonally expanded T cells, and the majority of
expanded T cells were phenotypically effector memory T cells and CD45RO*CD8* T cells.
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Supplementary Fig. 17 Clonally expanded T cells are mostly effector memory T cells. a The same
t-SNE plot in Fig. 4a, colored with CD8A and CD8B expression. b Expression levels (defined by AUC
scores) of TCR subtype signature genes (naive, central memory and effector memory) in expanded

and non-expanded CD4* and CD8* T cells.
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Top signature genes of top 49 convergence groups
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Supplementary Fig. 18 Transcriptome analysis of GLIPH-clustered TCRs. a A heatmap showing
top signature genes of top 49 CRGs defined by Grouping of Lymphocyte Interactions by Paratope
Hotspots (GLIPH) analysis. Differentially expressed genes were defined by comparing gene expression
of T cells in a specific GLIPH CRG with all other cells. b GO terms of defined CRG specific genes were
analyzed and -log10 (P value) of representative GO terms involved in immune activation and cell
proliferation were plotted. A Fisher’'s exact test.
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prevalent viruses in T-LGLL patients rather than in healthy donors, imputed from reported virus-specific

four CRGs enriched in T-LGLL patients rather than in healthy donors. b A table of top four most
CDR3 sequences in TCRmatch. A Fisher’s exact test. P values are shown in the figure.

Supplementary Fig. 19 T-LGLL specific CRGs and imputed potential common antigens. a Top



a The most prevalent viruses in patients and healthy donors

Antigen species

Sum in pre Sum in HD Patient_pre total HD total % inpre % in HD

CMmV 428 198 33994 15695 1.26 1.26
EBV 1589 57 33994 15695 0.47 0.36
Influenza A 109 44 33994 15695 0.32 0.28
Homo sapiens” 64 24 33994 15695 0.19 0.15
HIV-1 47 15 33994 15695 0.14 0.10
DENV 13 8 33994 15695 0.04 0.05
YFV 12 6 33994 15695 0.04 0.04
MCMV 7 3 33994 15695 0.02 0.02
SARS-CoV-2 5 3 33994 15695 0.01 0.02
M. tuberculosis 4 0 33994 15695 0.01 0.00
HCV 3 4 33994 15695 0.01 0.03
LCMV 2 3 33994 15695 0.01 0.02
Plasmodium berghei 1 0 33994 15695 0.00 0.00
SIV 0 2 33994 15695 0.00 0.01
HTLV 0 1 33994 15695 0.00 0.01

*Homo sapiens (virus types as antigen species), with annotation “Parent species of the antigen, to the best
clade resolution possible (e.g. HIV-1, HIV1*HXB2)?, as stated at https://github.com/antigenomics/vdjdb-

db/blob/master/README.md.

b Alinear correlation of virus-
specific CDR3 sequences

Frequency in healthy

200+

Y =0.4865*X — 0.3768
Pearson R = 0.9869
P <0.0001

I
200

]
100
Frequency in patients

1
300

Supplementary Fig. 20 Lack of specific common antigens in T-LGLL. a A table of the most
prevalent viruses in patients and healthy donors, imputed from reported virus-specific CDR3 sequences
in VDJdb. b Frequency of virus-specific CDR3 sequences in T-LGLL patients and healthy donors were
in a linear correlation. A Pearson correlation test. P value is shown in the figure.
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Dynamic changes
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Supplementary Fig. 21 Gene modules work synergistically in shaping T cell phenotypes. Curves
indicate dynamic changes of CD8* T cell activation (a), the cytolytics effector pathway (b), pro-
inflammatory genes (c) and T cell terminal differentiation (d) on dimension 1 (x-axis) revealed on
diffusion maps in Figure 4d. Imputed expression of above four components were plotted on y-axis. A
red line indicates 5 — 95% interval, illustrated by shaded area; a blue line indicates a medium. Gene
lists of CD8* T cell activation, the cytolytics effector pathway, pro-inflammatory and T cell terminal
differentiation components are shown on the right. e A diffusion map of CD8* T cells on dimension 1
and dimension 2, which are colored (red) with cell identity as naive, central memory or effector memory
T cell subsets, and all other cells are colored as grey background. f Dynamic changes of AUC scores of
naive (pink), central memory (blue) and effector memory (purple) signature genes on dimension 1 and
dimension 2, respectively.

45



d HALLMARK_APOPTOSIS

0.2— NES = -1.21
01—
0.0 —

-0.17]
-0.2—
-0.3

ALRE 000

Patients Healthy

b Enrichment of GO terms
Immune response

|signal transduction I.

regulation of cellular process |

\
\regulation of multicellular organismal process |
limmune responseh C) 4

'innate immune respohse |

| adaptive immune rt;'sponse| - — -
) 7 |regulation of immune system process |

cell k}@t

o o -

-

-

| biological regulation |
cytokine production]

e ————

-

limmune system process|

\ | Iey!(_pc_yte prollferatlon| L

> f\!ymphocyte activation | 1 ;’- e e S = Q

o \ -; il b

Q | e

g :\ ( i ; | biologlcal adhesion | [cell adhe5|on|

m 4 s 2 “"b

3] \\\ » = . l response to stimulus . “‘;

-~ i 1

c 1

T leukocyte mediated cytotoxicity | ,’

£ = -

> = Cell activation & cytotox1c1ty
/
f_\ ){ cell communlcation| s

Semantic space X TS e v
1901

Supplementary Fig. 22 Dysregulated gene programs in T-LGLL. a A GSEA plot of a
HALLMARK _Apoptosis gene set with expressed genes in T-LGLL patients compared to those in
healthy donors. GESA based on a Kolmogorov Smirnov test. b A REVIGO plot showing enrichment of

GO terms (generated using differentially expressed genes in T-LGLL patients) in cell activation,
cytotoxicity and immune response.
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Gene-ontology semantic similarity matrices of differentially expressed genes
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Supplementary Fig. 23 Dysregulated pathways in T-LGLL. a A gene-ontology semantic similarity
matrix of differentially expressed genes in T-LGLL. Gene ontology terms involved in similar functional
matrices were adjacent and formed a block with Pearson R values ranging from -1 to 1. Terms noted
on the right side depict common biological processes of the block of Gene-ontology terms. b A KEGG

graph of the cell apoptosis pathway. Red, genes upregulated in T-LGLL; green, genes downregulated
in T-LGLL.
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a JAK-STAT pathway genes b A linear correlation of gene expression
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Supplementary Fig. 24 Consistency of gene expression detected using scRNA-seq and qPCR. a
A heatmap of JAK-STAT pathway genes generated using scRNA-seq data, showing consistent
upregulation of these genes in T-LGLL. b A linear correlation of gene expression alteration (log fold
changes) using scRNA-seq and gPCR. A Pearson correlation test. P value is shown in the figure. ¢
Fold changes of these genes using scRNA-seq and gPCR were largely to the same directions.
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Supplementary Fig. 25 Changes of T cell subsets after treatment. a Pie charts showing
percentages of T cell subsets in individual patients after treatment and healthy donors. A color scheme
is the same in Fig. 1e, f. b Plots of changes of T cell subsets in patients after treatment, compared to
those before treatment and healthy controls. A two-sided paired t-test between patients’ samples before
and after treatments (n = 12); a two-sided unpaired t-test between patients (n = 13) and healthy donors
(n =7). Pvalues are shown in the figure.
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Rearranged TCR sequences

|

UPr_ﬁl?!:post UPN10_post

Supplementary Fig. 26 Immunosuppressive treatment modulates clonality in T-LGLL. Circos
plots where segments in circles represent individual cells yielding rearranged TCR sequences among
patients or between two visits of patients. Black lines indicate arcs connecting cells sharing identically
rearranged CDR3 sequences. Plots on the left and right show sharing of identical CDR3 sequences
among UPNs 4, 17 and 18, and UPNs 10, 19 and 24, respectively. Red and blue curves indicate
sample before and after treatments, respectively; both are proportional to clone sizes.
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a HALLMARK genes in patients post-treatment
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Supplementary Fig. 27 Pathway analysis of differentially expressed genes in patients post-
treatment vs. pre-treatment. a GSEA plots of HALLMARK genes in T-LGLL patients after treatment,
compared to those before treatment. GESA based on a Kolmogorov Smirnov test. b A bar chart
showing top GO terms enriched in upregulated genes in T-LGLL patients after treatment, as compared
to those before treatment. A Fisher’s exact test.

51



Four patterns of clonal kinetics of patients pre- and post-treatments
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Supplementary Fig. 28 Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern I). Each panel includes a diagram illustrating a pattern of clonal kinetics. a bar charts of clone
sizes (%) and pie charts of percentages of top ten TCR clonotypes from pre- and post-treatment
samples at different time points. In bar charts, paired samples of the same patient were plotted
adjacent. Orange colors (ranging from dark to light orange) indicate top ten clones pre-treatment; blue
colors indicate top ten clones post-treatment, but were not among top ten pre-treatment; grey colors
show all the other clones.
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Four patterns of clonal kinetics of patients pre- and post-treatments
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Supplementary Fig. 29 Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern Il). Each panel includes a diagram illustrating a pattern of clonal kinetics. a bar charts of clone
sizes (%) and pie charts of percentages of top ten TCR clonotypes from pre- and post-treatment
samples at different time points. In bar charts, paired samples of the same patient were plotted
adjacent. Orange colors (ranging from dark to light orange) indicate top ten clones pre-treatment; blue
colors indicate top ten clones post-treatment, but were not among top ten pre-treatment; grey colors
show all the other clones.
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Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern Il continued)
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Supplementary Fig. 30 Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern Il, continued). Each panel includes a diagram illustrating a pattern of clonal kinetics. a bar
charts of clone sizes (%) and pie charts of percentages of top ten TCR clonotypes from pre- and post-
treatment samples at different time points. In bar charts, paired samples of the same patient were
plotted adjacent. Orange colors (ranging from dark to light orange) indicate top ten clones pre-

treatment; blue colors indicate top ten clones post-treatment, but were not among top ten pre-
treatment; grey colors show all the other clones.
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Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern IlI)
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Supplementary Fig. 31 Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern lll). Each panel includes a diagram illustrating a pattern of clonal kinetics. a bar charts of clone
sizes (%) and pie charts of percentages of top ten TCR clonotypes from pre- and post-treatment
samples at different time points. In bar charts, paired samples of the same patient were plotted
adjacent. Orange colors (ranging from dark to light orange) indicate top ten clones pre-treatment; blue

colors indicate top ten clones post-treatment, but were not among top ten pre-treatment; grey colors
show all the other clones.
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Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern 1V)
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Supplementary Fig. 32 Four patterns of clonal kinetics of patients pre- and post-treatments
(Pattern IV). Each panel includes a diagram illustrating a pattern of clonal kinetics. a bar charts of clone
sizes (%) and pie charts of percentages of top ten TCR clonotypes from pre- and post-treatment
samples at different time points. In bar charts, paired samples of the same patient were plotted
adjacent. Orange colors (ranging from dark to light orange) indicate top ten clones pre-treatment; blue

colors indicate top ten clones post-treatment, but were not among top ten pre-treatment; grey colors
show all the other clones.
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Uprequlated GO terms in dynamically changed clones

Immune response

Cell activation

Immune system process

Cell-cell adhesion

Leukocyte activation

Regulation of immune response

Cell surface receptor signaling pathway

Cell adhesion

Biological adhesion

Signaling

Regulation of immune system process

Secretion by cell

Positive regulation of imm une response

Cell comm unication

Secretion

Export from cell

Phagocy tosis

Im mune response-regulating cell surface receptor signaling pathway
Im mune response-regulating signaling pathway
Positive regulation of immune system process
Leukocyte cell-cell adhesion

Signal transduction

Regulated exocytosis

Actin filament-based process

Regulation of ion transport

Exocytosis

Im mune response-activating cell surface receptor signaling pathway
Im mune response-activating signal transduction

Im mune effector process

Regulation of cellular component size

Iron ion homeostasis

Wound healing involved in inflam matory response
Nuclear-transcribed m RNA catabolic process

Negative regulation of inorganic anion transmembrane transport
Inflamm atory response to wounding

Anion transm embrane transport

Cellular response to nutrient levels

rRNA modification

Amino acid transmem brane transport

Response to nutrient levels

Lamellipodium organization

rRNA m ethylation

Luteolysis

Branched-chain amino acid transport

Regulation of inorganic anion transmem brane transport
Positive regulation of feeding behavior

L-alpha-amino acid transm embrane trans port

Cellular response to extracellular stimulus
Lamellipodium assembly

Tetrapyrrole metabolic process

Heme m etabolic process

Inorganic anion transmem brane transport

Response to extracellular stimulus

Cell-matrix adhesion

Po: ive regulation of focal adhesion assembly

Positive regulation of cell-substrate junction organization
Focal adhesion assembly

Drug transmembrane transport

Cellular response to starvation

Organic acid transmembrane transport

Negative regulation of isotype switching

Negative regulation of B cell m ediated imm unity
Negative regulation of imm unoglobulin mediated im mune response
Negative regulation of imm unoglobulin production
Monocy te extravasation

Lipid metabolic process

Carbohydrate derivative catabolic process

Ceramide catabolic process

Positive regulation of glycoprotein biosynthetic process
Xenobiotic transport

Positive regulation of glycoprotein metabolic process
Establishment of natural Killer cell polarity
Immunoglobulin transcytosis in epithelial cells

IgG imm unoglobulin transcytosis in epithelial cells mediated by FcRn imn
CMP-N-acety Ineuraminate biosy nthefic process
Phytosphingosine m etabolic process

Egg activation

Purine deoxyribonucleoside diphosphate catabolic process
Deoxyribonucleoside diphos phate catabolic process
Skeletal m uscle satellite cell maintenance involved in skeletal muscle reg
Triterpencid biosynthetic process

CD24 biosynthetic process

Hepatocyte hom eostasis

dADP catabolic process

dGDP catabolic process

CMP-N-acety Ineuraminate m etabolic process

GDP catabolic process

Negative regulation of isotype switching to IgE isoty pes
Sensory perception of touch

Activation of meiosis involved in egg activation

Colorkey

° o T
23 59 28
L c 2 o 2
22 20 £o 0 4 8
g o ga g [} -Log10 (P value)
= o

=]

Supplementary Fig. 33 Upregulated GO terms in dynamically changed clones. A heatmap shows
expression levels of upregulated GO terms in increased, unchanged and decreased clones in T-LGLL
patients post- versus pre-treatment. GO terms related with immune response and cell activation were
predominantly upregulated in increased clones, but not in unchanged or decreased clones. Fisher's
exact test.
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Downrequlated GO terms in dynamically changed clones
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Supplementary Fig. 34 Downregulated GO terms in dynamically changed clones. A heatmap
shows expression levels of downregulated GO terms in increased, unchanged and decreased clones in
T-LGLL patients post-treatment vs. pre-treatment. GO terms related with immune response and protein
translation were decreased in unchanged or decreased clones, but not in increased clones. A Fisher’s
exact test.
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Cytokine levels in healthy donors, and patients pre- and post-treatments

Patients Patients
Healthy donors Ere-treatment post-treatment P values
| [
NGF NS NS NS
CD40L * * NS
EGF * * NS
FGF basic NS NS NS
. G-CSF NS NS NS
- GM-CSF * * NS
GRO alpha * * NS
~ HGF * * NS
IFN B * * NS
IFN a * * NS
IFN y * * NS
IL10 * NS NS
IL12p40 * * NS
IL12p70 * * NS
IL13 * NS NS
IL15 * * NS
L7 NS NS NS
~ IL1a * * NS
IL1b * * NS
IL1Ra * * NS
L2 * * NS
IL4 * * NS
L5 * * NS
IL6 * * NS
IL7 * * NS
IL8 * * NS
L9 * * NS
IL10 * % NS
MCSF * * NS
MCP1 * * NS
MCP3 NS NS NS
MIG NS % NS
MIP1a NS * NS
MIP1b * * NS
TGFa NS NS NS
TGFB * * NS
TNFa * * NS
TRAIL * * NS
VEGFa * * NS
Granzyme B * * NS
.21 NS NS NS
L22 * * NS
IL23p19 NS NS NS
L27 NS * NS
IL2Ra * * NS
L3 NS NS NS
LIF * * NS
MPO NS NS NS
SCF * * NS
SDF-1 * * NS
sFas * * NS
sFas ligand * * NS
RANKL NS NS NS
SURVIVIN NS NS NS
TPO NS * NS
PDGF-AA  * * NS
FLT3 ligand * * NS
Color key NN~ AV NS @
z 2 “ “e 46'
-10 0 10 NS 8 400
Expression level ?° ?05‘ °

Supplementary Fig. 35 Cytokine levels in healthy donors and T-LGLL patients pre- and post-
treatments. A heatmap shows cytokine levels in T-LGLL patients before and after treatments, and in
healthy donors. These cytokines were measured in T-LGLL patients (n = 17) enrolled in our original
clinical trial, included but not limited to the current cohort, with an independent group of healthy donors
(n =12). Three columns on the right indicate P values by comparing pre-treatment vs. healthy, post-
treatment vs. healthy, and post-treatment vs. pre-treatment. A two-sided paired t-test between patients’
samples before and after treatments (available paired samples, n = 8); a two-sided unpaired t-test
between patients and healthy donors. *P value < 0.05; NS, not significant.
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Top four cytokine genes significantly higher in T-LGLL patients
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6
[ == [ ==
9 4 o
0 0
n n
o o
o o
X 9 >
w w

Healthy Pre Healthy Pre
IFNG CCL3
P <0.0001 NS P <0.0001 NS

5 6 '

4
S 4 5
A n
4 n
g o
o o

2

il i

1

] ]

Healthy Pre Post Healthy Pre Post

Supplementary Fig. 36 Top four cytokine genes significantly higher in T-LGLL patients.
Expression levels of genes of these cytokines in the current single-cell sequencing study were
evaluated (13 patients and seven healthy donors), and most of them were not detectable or were
expressed only in small percentages of cells. Top four cytokine genes that were most significantly
higher in T-LGLL patients were CCL4, GZMB, IFNG and CCL3. A two-sided paired t-test between
patients’ samples before and after treatments (n = 12); a two-sided unpaired t-test between patients (n
= 13) and healthy donors (n = 7). P < 0.0001: as software generated P < 0.0001, due to a very small P
value, an exact P value was unavailable; NS, not significant.
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