
 

 

SUPPLEMENTARY MATERIALS 

 

Supplementary Methods 

Nuclei segmentation 

The deep learning model developed by Mahmood, et al.1 was employed for the task of nuclear 

segmentation. Deep learning is a type of machine learning technique that attempts to learn by 

example using neural networks with multiple layers2. Given a set of raw data, a deep-learning 

algorithm tries to discover what features are relevant. It iteratively improves upon learned 

representations of the underlying data with the goal of maximally attaining class separability3.  

More specifically, the work of Mahmood et al. uses a generative adversarial network, a deep 

learning framework that learns from a set of training data and generates new data with the same 

characteristics as the training data. According to the authors, the use of this framework facilitates to 

capture higher-order statistics from images, so the resulting networks are more context-aware.  

For our study, the model of Mahmood et al.1 was not re-trained but used without modification. 

It receives as input a 2048x2048-pixel H&E image patch, and outputs a segmentation mask indicating 

which image pixels correspond to nuclei. 

Lymphocyte detection 

The approach developed by Corredor et al.4 was utilized for detecting lymphocytes. This 

method starts by applying image color normalization to compensate staining variations of slides 

acquired form different institutions. Then, a set of visual features related to texture, shape, and color 

are extracted from each segmented nucleus considering that lymphocytes are generally distinguished 

from other cell nuclei by their smaller size, more circular shape, and darker homogeneous staining. 

These visual features are then used to train a machine learning model (a support vector machine with 

linear kernel) that classifies each nucleus as either a lymphocyte or a non-lymphocyte.  
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For our study, this lymphocyte detection method4 was not re-trained or modified. The model 

receives as input both a 2048x2048-pixel H&E image patch and its respective nuclei segmentation 

mask (obtained using the method of Mahmood et al.1), and it outputs the location of lymphocytes 

and non-lymphocytes within the image. 

Although that lymphocyte model4 was trained on lung images, lymphocytes are very similar 

appearing across different organs. Nonetheless, to ensure this model was able to identify TILs on 

HPV-associated OPSCC correctly, we ran a validation experiment: An expert pathologist visually 

examined sixty 512x512-pixel tiles, randomly extracted from datasets D1-D6 (ten per dataset). The 

pathologist checked the quality of TIL detection on each tile and assigned each tile into either an 

excellent, good, fair, or poor category. The pathologist ranked 60% of the tiles as excellent, 18.3% 

good, 15% fair, and 6.7% poor. These results suggested the performance of the segmentation model 

was sufficiently accurate for the OP-TIL classifier. 

Analysis of correlation between OP-TIL risk scores for DFS and OS  

We have computed the Pearson’s correlation coefficient for risk scores of DFS and OS in 

training. The correlation was moderate = 0.5178. Additionally, we observed that, most of the patients 

classified as “high risk” by the DFS model were also classified as “high risk” by the OS model 

(n=248). However, there were some cases (n=81) in which a patient was classified as “high risk” by 

the DFS model and “low risk” by the OS model. Similarly, some patients (n=16) classified as “low 

risk” by the DFS model were set as “high risk” by the OS model. 

We hypothesize two possible reasons for this: 1) OS information could be noisy since it 

includes deaths from any cause, i.e., we do not necessarily have disease-specific death information; 

2) A patient may have biological characteristics that make him/her more prone to recurrence than to 

death and vice versa. 

 



 

2 

References 

1.  Mahmood F, Borders D, Chen R, et al. Deep Adversarial Training for Multi-Organ Nuclei 

Segmentation in Histopathology Images. IEEE Trans Med Imag. Published online 2019. 

2.  LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. 

doi:10.1038/nature14539 

3.  Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A 

comprehensive tutorial with selected use cases. J Pathol Inform. 2016;7(1):29. 

doi:10.4103/2153-3539.186902 

4.  Corredor G, Wang X, Lu C, Velcheti V, Romero E, Madabhushi A. A watershed and feature-

based approach for automated detection of lymphocytes on lung cancer images. In: SPIE 

Medical Imaging. International Society for Optics and Photonics; 2018. 

5.  Thompson LDR, Burchette R, Iganej S, Bhattasali O. Oropharyngeal Squamous Cell 

Carcinoma in 390 Patients: Analysis of Clinical and Histological Criteria Which Significantly 

Impact Outcome. Head Neck Pathol. 2019;14(3):666-688. doi:10.1007/s12105-019-01096-0 

6.  Li W, Cerise JE, Yang Y, Han H. Application of t-SNE to human genetic data. J Bioinform 

Comput Biol. 2017;15(04):1750017. doi:10.1142/S0219720017500172 

  



 

3 

Supplementary Tables 

Supplementary Table 1. Top OP-TIL features for disease-free and overall survival.a 

Top OP-TIL features for survival measured at each tile Statistic for WSI Feature weight 

Disease-free Survival    

Mode of the Compactness of TILs Standard deviation -5.7124 

Total percentage of non-TIL clusters surrounding TIL clusters 

when looking at the closest cluster 
Minimum -0.2393 

Mean of the percentage of non-TIL clusters surrounding other 

non-TIL clusters when looking at the two closest clusters 
Maximum -0.2044 

Mean of the density of non-TIL clusters Standard deviation -0.1687 

Skewness of the density of TIL clusters Skewness -0.1650 

Minimum percentage of TIL clusters surrounding other TIL 

clusters when looking at the closest cluster 
Skewness 0.0216 

Maximum percentage of non-TIL clusters surrounding TIL 

clusters when looking at the closest cluster 
Minimum -4.63e-15 

Overall Survival   

Ratio between the number of lymphocytes and the total area of 

the convex hull 

Standard deviation -303.42 

Mode of the Compactness of TILs Standard deviation -0.3757 

Skewness of 
𝑨𝑭𝟏 ∩𝑨𝑭𝟐

𝑨𝑭𝟐
, with AF1 the area of a convex hull 

containing the centroids of all the TIL clusters and AF2 the area 

of a convex hull containing the centroids of all the non-TIL 

clusters 

Skewness 0.0565 

Average edge length of the minimum spanning tree of non-TIL 

clusters. 

Kurtosis -0.0057 

Kurtosis of the area of TIL clusters  Standard deviation -0.0032 

Skewness of compactness of TIL clusters  Kurtosis -0.0021 

Minimum value of the TIL density matrix Standard deviation -0.0017 

Maximum area of TIL clusters Mean -9.41e-08 

a WSI = whole-slide image; TIL = tumor-infiltrating lymphocyte. 
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Supplementary Table 2. Univariable and multivariable survival analyses for overall survival including all 

comers (30 pack-year smoking history) in the testing sets (D2-D6).a 

Variable 
Univariable Multivariable 

HR (95% CI) Pb HR (95% CI) Pb 

Age (≥55 vs. <55 years)c 2.23 (1.11-4.50) 0.04 1.11 (1.07-1.16) <0.001 

Smoking (≥10 vs. <10 pack-year) 1.44 (0.70-2.98) 0.30 0.98 (0.94-1.01) 0.20 

T-stage (T1 vs. T2) 2.42 (1.20-4.90) 0.02 2.44 (1.10-5.89) 0.03 

N-stage (N0 vs. N1) d 0.15 5.84 (0.78-748.21) 0.10 

Treatment (Surgery + AT vs. 

others) 
1.63 (0.79-3.34) 0.17 1.63 (0.79-3.38) 0.18 

OP-TIL (Low- vs. high-risk) 2.34 (1.08-5.07) 0.02 2.58 (1.09-5.68) 0.03 
aFor univariable analysis, age and smoking were dichotomized while for multivariable they were used 

continuously. HR = hazard ratio; CI = confidence interval; AT = adjuvant therapy. 

b P values were two-sided and computed using the log rank test. 

cThe cutoff for age was set to 55 years, as suggested by Thomson, et al.5  

dHazard ratio was not computed for N-stage since none of the N0 stage patients had death events. 
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Supplementary Figures 

 
Supplementary Figure 1. Computation of some representative OP-TIL features. (A) Number of 

clusters of TILs (blue) and non-TILs (green) in a tile. (B) Density of TILs in a specific cluster 

computed as the ratio between the number of TILs (red dots) and the area of the convex hull (blue). 

(C) Area intersected between clusters of TILs and non-TILs. (D) Cluster neighborhood diversity. (E) 

Delaunay graph built for TIL clusters. (F) Node compactness of TIL clusters. The color bar represents 

the grouping measurement, in which H stands for nodes highly grouped, i.e., very close to multiple 

nodes, while L stands for lowly clustered nodes, i.e., isolated or far from other nodes. 

TIL = tumor-infiltrating lymphocyte. 
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Supplementary Figure 2. A total of 985 p16-positive OPSCC patients from six different sites were 

embedded into a two-dimensional feature space and then plotted using the t-stochastic neighbor 

algorithm6. Each point represents a patient and each color a different site. The embedding was done 

using (A) image metrics related to brightness and contrast (computed using HistoQC) and (B) OP-

TIL features. Panel A shows that patients tend to form clusters in site-specific groups due to batch 

effects. However, Panel B shows that there are no evident clusters of patients by institutional site 

(cohort). This suggests that OP-TIL features are resilient to batch effects and are reproducible across 

the multiple sites/cohorts. OPSCC = oropharyngeal squamous cell carcinoma 
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Supplementary Figure 3. Kaplan–Meier plots for the OS OP-TIL classifier applied to patients in 

the validation set (D2-D6) with overall stage I (AJCC 8th ed.) and with less than 30 pack-year of 

smoking history. Patients with less than 30 pack-year classified by OP-TIL as “high risk” (dashed 

line) are approximately 2 times more likely to die.  P values were two-sided and computed using the 

log rank test. OS = overall survival; AJCC = American Joint Committee on Cancer; HR = hazard 

ratio; CI = confidence interval; LG = low-risk group; HG = high-risk group. 

 


