Supplementary Materials - ten Hoorn S., de Back T.R., Sommeijer D.W., Vermeulen L.

Supplementary Table 1. Study characteristics of included articles (N = 23)

Supplementary Table 2. Study characteristics of included abstracts (N = 8)

Supplementary Table 3. Prediction model Risk of Bias Assessment Tool (PROBAST)

Supplementary Table 4. Distribution of CMS labels in the local versus metastatic setting

Supplementary Table 5. Sensitivity analyses to explore heterogeneity in the pairwise prognostic CMS comparisons per survival outcome in local and metastatic disease

Supplementary Table 6. Data and weight information for the meta-analyses into median overall survival of stage IV colorectal cancer per CMS

Supplementary Table 7. Sensitivity analyses to explore heterogeneity in the pooled median overall survival per CMS in metastatic colorectal cancer

Supplementary Table 8. Distribution of CMS labels in the local versus metastatic setting with studies using classification methods with only 3 classes excluded

Supplementary Table 9. CMS classification method for each study included in the prognostic metaanalyses

Supplementary Table 10. Sensitivity analyses for phenotypic (immunohistochemical) versus RNAbased CMS labeling in the prognostic meta-analyses

Supplementary Table 11. Subgroup analyses of single group versus consensus transcriptomic profiling in the prognostic meta-analyses

Supplementary Table 12. Sensitivity analyses of single group versus consensus transcriptomic profiling in the prognostic meta-analyses

Supplementary Table 13. Subgroup analyses for differences between RNA-based CMS classification methods for the meta-analyses into pairwise CMS comparison

Supplementary Table 14. Subgroup analyses for differences between RNA-based CMS classification methods for meta-analyses into mOS times per CMS

Supplementary Table 15. Sensitivity analyses for differences between RNA-based CMS classification methods when subgroup analyses were not feasible

Supplementary Figure 1. Forest plots of pooled and single hazard ratios (HRs) for different survival outcomes per consensus molecular subtype (CMS) comparison in colorectal cancer

Supplementary Figure 2. Data and weight information for the meta-analyses on the prognostic value of the consensus molecular subtypes

Supplementary Figure 3. Forest plots of hazard ratios (HRs) for the predictive value of the consensus molecular subtypes (CMSs) for first-line systemic therapy in metastatic colorectal cancer

Supplementary Figure 4. Pearson residuals from the chi-square analysis into the distribution of the consensus molecular subtype (CMS) labels per individual study, stratified by stage

Supplementary Figure 5. Funnel plots for the prognostic meta-analyses CMS4 versus CMS1 and CMS4 versus CMS2

Supplementary Figure 6. Funnel plots for the prognostic meta-analyses CMS2 versus CMS1, CMS3 versus CMS1 and CMS3 versus CMS2

Supplementary Figure 7. Funnel plots for the prognostic meta-analyses CMS3 versus CMS2, CMS4 versus CMS3 and median overall survival per CMS

						CMS classes						
						CMS1	CMS2	CMS3	CMS4	Unknown		
Study	Design	Ν	Stages	Taxonomy	CMS classifier	n (%)	n (%)	n (%)	n (%)	n (%)	Survival outcomes	Treatment regimens
Allen et al. 2018 (1)	Retrospective	820	11-111	CMS	CMS R package	143 (17.4)	281 (34.3)	115 (14.0)	144 (17.6)	137 (16.7) ^a	OS	5-FU-based adjuvant chemotherapy
Budinska et al. 2013 (2)	Retrospective	1110	11-111	Budinska	NA	C (CMS1)	B (CMS2)	A (CMS3)	D/E (CMS4)	Unknown	OS, RFS, SAR	Surgery alone NA
D . 1						129 (18.8)	236 (34.3)	66 (9.6)	178 (25.9)	79 (11.5)		
2019 (3)	Retrospective	2636	11-111	CMS	CMS R package	507 (19.2)	1062 (40.3)	337 (12.8)	551 (20.9)	179 (6.8)	RFS	NA
Dunne et al. 2016 (4)	Retrospective	460	11-111	CMS	CMS R package	80 (17.4)	193 (42.0)	50 (10.9)	99 (21.5)	38 (8.3)	RFS	FULV
Haasnoot et al. 2020 (5)	Retrospective	223	I, III	CMS	IHC	CMS1	CMS	2/3	CMS4	Unknown	LNM, recurrence	NA
						16 (7.2)	203 (9	1.0) ^a	4 (1.8)	0 (0.0)	_	
Jary et al. 2020 (6)	Retrospective	1443	1-111	CMS	CMS R package	258 (17.8)	456 (31.6)	182 (12.6)	393 (27.2)	154 (10.7)	OS	NA
Kwon et al. 2017 (7)	Retrospective	101	Ш	CMS	CMS R package	10 (9.9)	38 (37.6)	13 (12.9)	19 (18.8)	21 (20.8)	OS, RFS	NA
Li et al. 2020 (8)	Retrospective	165	Ш	CMS	IHC	CMS1	CMS	2/3	CMS4	Unknown	OS, RFS	Adjuvant chemotherapy
						30 (18.2)	119 (7	72.1)	16 (9.7)	0 (0.0)		
Piskol et al. 2019 (9) AVANT Cohort	Retrospective	1062	111	CMS	NanoString	209 (19.7)	509 (47.9)	60 (5.6)	215 (20.2)	69 (6.5)	OS, PFS, RFS, SAR	NA
Roepman et al. 2014 (10)	Retrospective	731	11-111	Roepman	NA	A-type (CMS1)	B-type (CMS2)		C-type (CMS4)	Unknown	OS, DMFS	5-FU
						182 (24.9)	434 (59.4) ^a		115 (15.7)	0 (0.0)	_	Surgery alone
Shinto et al. 2020 (11)	Retrospective	232	П	CMS	CMS R package	18 (7.8)	87 (37.5)	13 (5.6)	114 (49.1)	0 (0.0)	RFS	NA
Song et al. 2016 (12)	Retrospective	1729	11-111	Sadanandam	NA	IF (CMS1)	EC/TA (CMS2)	GL (CMS3)	SL (CMS4)	Unknown	RFS	FOLFOX
						405 (23.4)	578 (33.4)	142 (8.2)	478 (27.6)	126 (7.3)	_	FULV
Williams et al. 2018 (13)	Prospective	142	11-111	CMS	CMS R package	20 (14.1)	52 (36.6)	33 (23.2)	7 (4.9)	30 (21.1)	RFS	NA
De Sousa e Melo et al. 2013 (14)	Retrospective	90	I-IV	De Sousa e Melo	NA	CMS1	CMS	2/3	CMS4	Unknown	RFS, RR	Cetuximab monotherapy
						22 (24.4)	44 (4	8.9)	24 (26.7)	0 (0.0)	_	
Guinney et al. 2015 (15)	Retrospective	3962	I-IV	CMS	CMS R package	555 (14.0)	1466 (37.0)	515 (13.0)	911 (23.0)	515 (13.0)	OS, RFS, SAR	NA
Trinh et al. 2017 (25) LUMC Cohort	Retrospective	240	I-IV	CMS	IHC	CMS1	CMS	2/3	CMS4	Unknown	RFS	NA
						35 (14.6)	102 (4	12.5)	103 (42.9)	0 (0.0)	_	NA

Supplementary Table 1. Study characteristics of included articles (N = 23)

(continued)

· · · ·	•					CMS classes						
						CMS1	CMS2	CMS3	CMS4	Unknown	-	
Study	Design	Ν	Stages	Taxonomy	CMS classifier	n (%)	n (%)	n (%)	n (%)	n (%)	Survival outcomes	Treatment regimens
Cremolini et al. 2019 (16)	Retrospective	9	IV	CMS	NanoString	1 (11.1)	3 (33.3)	0 (0.0)	4 (44.4)	1 (11.1)	RR	Irinotecan +/- anti-EGFR
				Sadanandam							00.050	
Del Rio et al. 2017 (17)	Retrospective	143	IV	CMS	CMS R package	15 (10.5)	29 (20.3)	24 (16.8)	36 (25.2)	39 (27.3) ^a	OS, PFS, RR	FOLFOX
				De Sousa e Melo								FOLFIRI-based
				Sadanandam								FOLFIRI + bevacizumab
Kawazoe et al. 2020 (18)	Prospective	23	IV	CMS	CMS R package	5 (21.7)	6 (26.1)	3 (13.0)	6 (26.1)	3 (13.0)	irORR	Napabucasin + pembrolizumab
Lenz et al. 2019 (19)	Retrospective	663	IV	CMS	NanoString	104 (15.7)	242 (36.5)	68 (10.3)	167 (25.2)	82 (12.4)	OS, PFS	FOLFOX/FOLFIRI + cetuximab FOLFOX/FOLFIRI + bevacizumab
Lenz et al. 2020 (20)	Retrospective	231	IV	CMS	CMS R package	4 (1.7)	64 (27.7)	2 (0.9)	119 (51.5)	42 (18.2)	OS, PFS	Nintedanib
												Placebo
Mooi et al. 2018 (21)	Retrospective	237	IV	CMS	CMS R package	42 (17.7)	113 (47.7)	28 (11.8)	54 (22.8)	0 (0.0)	OS, PFS	Capecitabin
												Capecitabin, mitomycin C and
												bevacizumab
Morris et al. 2020 (22)	Retrospective	331	IV	CMS	NanoString	17 (5.1)	111 (33.5)	25 (7.6)	178 (53.8)	0 (0.0)	OS	NA
Okita et al. 2018 (23)	Retrospective	193	IV	CMS	CMS R package	21 (10.9)	53 (27.5)	69 (35.8) ^a	50 (25.9)	0 (0.0)	OS, PFS, RR, DCR	Oxaliplatin-based chemotherapy
												Irinotecan-based chemotherapy
Piskol et al. 2019 (9) Procured and Dareck Cohort	Retrospective	234	IV	CMS	NanoString	37 (15.8)	115 (49.1)	4 (1.7)	64 (27.4)	14 (6.0)	OS, PFS, RFS, SAR	NA
Schlicker et al. 2020 (24)	Retrospective	51	IV	CMS	CMS R package	1 (2.0)	16 (31.4)	2 (3.9)	32 (62.7)	0 (0.0)	OS	NA
Stintzing et al. 2019 (25)	Retrospective	514	IV	CMS	CMS R package	61 (11.9)	162 (31.5)	66 (12.8)	149 (29.0)	76 (14.8)	OS, PFS, RR	FOLFIRI + cetuximab
. ,												FOLFIRI + bevacizumab
Trinh et al. 2017 (26) CAIRO2 Cohort	Retrospective	339	IV	CMS	IHC	CMS1	CMS	2/3	CMS4	Unknown	OS, RR	CAPOX + bevacicumab
						8 (2.3)	161 (4	7.5)	170 (50.1)	0 (0.0)	-	CAPOX + bevacicumab + cetuximab
Woolston et al. 2019 (27)	Prospective	25	IV	CMS Sadanandam	CMS caller	4 (16.0)	13 (52.0)	3 (12.0)	5 (20.0)	0 (0.0)	OS, PFS, RR	Cetuximab monotherapy

Supplementary Table 1 (continued)

^a Aberrant number of labels based on high pearson residuals (>8, data not shown) Abbreviations: 5-FU, 5-fluorouracil; CAPOX, capecitabine and oxaliplatin; CMS, consensus molecular subtypes; DCR, disease control rate; DMFS, distant metastasis-free survival; EC/TA, enterocyte / transit-amplifying; FOLFIRI, fluorouracil, leucovorin, and irinotecan; FOLFOX, fluorouracil, leucovorin, and oxaliplatin; FULV, fluorouracil and leucovorin; GL, goblet-like; IF, inflammatory; IHC, immunohistochemistry; LNM, lymph node metastasis; NA, not applicable; OS, overall survival; PFS, progression-free survival; RR, response rate; RFS, relapse-free survival; SAR, survival after relapse; SL, stem-like.

							CMS classes						
							CMS1	CMS2	CMS3	CMS4	Unknown	Survival	
Study	Conference	Design	Ν	Stage	Taxonomy	CMS classifier	n (%)	n (%)	n (%)	n (%)	n (%)	outcomes	Treatment regimens
Marisa et al. 2017 (28)	ASCO	Retrospective	1781	Ш	CMS	NanoString	297 (16.7)	585 (32.8)	68 (3.8)	770 (43.2) ^a	61 (3.4)	OS	FOLFOX + cetuximab
Pogue-Geile et al. 2019 (29)	ASCO	Retrospective	590	Ш	Sadanandam	NA	NR	NR	NR	NR	NR	OS	5-FU +/- FOLFOX
Borelli et al. 2020 (30)	ASCO	Retrospective	426	IV	CMS	NanoString	4 (0.9) ^a	142 (33.3)	58 (13.6)	222 (52.1) ^a	0 (0.0)	OS, PFS	FOLFOX + bevacizumab
Gomez et al. 2020 (31)	EMSO	Retrospective	195	IV	CMS	IHC	CMS1	CM	S2/3	CMS4	Unknown	OS, TTP	FOLFOXIRI + bevacizumab Oxaliplatin-based +/- anti- EGFR
							8 (3.7)	109 ((49.8)	78 (35.6)	0 (0.0)	-	Irinotecan-based +/- anti- EGFR
Lam et al. 2020 (32)	ASCO	Retrospective	117	IV	CMS	NanoString	7 (6.0)	43 (36.8)	8 (6.8)	55 (47.0)	4 (3.4)	OS	NA
Lee et al. 2019 (33)	ASCO	Retrospective	68	IV	CMS	Multinomial elastic net CMS classifier	8 (11.8)	43 (63.2)	3 (4.4)	14 (20.6)	0 (0.0)	OS, PFS, TTP	NA
Sarshekeh et al. 2020 (34)	ASCO	Prospective	53	IV	CMS	NanoString	0 (0.0)	0 (0.0)	0 (0.0)	53 (100.0)	NR	OS, PFS, RR	Bintrafusp alfa (M7824) + RT
Yuki et al. 2020 (35)	ASCO	Retrospective	308	IV	CMS	CMS R package	47 (15.3)	72 (23.4)	99 (32.1) ^a	90 (29.0)	0 (0.0)	OS, PFS	mFOLFOX/CAPOX + bevacizumab S-1 + Irinotecan + bevacizumab

Supplementary Table 2. Study characteristics of included abstracts (N = 8)

^a Aberrant number of labels based on high pearson residuals (>8), data not shown)

Abbreviations: AJCC-TRG, American Joint Committee on Cancer - tumor regression grading; ASCO, American Society of Clinical Oncology; CAPOX, capecitabine and oxaliplatin; CMS, consensus molecular subtypes; DCR, disease control rate; FOLFOX, 5-fluorouracil, leucovorin, and oxaliplatin; FOLFOXIRI, 5-fluorouracil, leucovorin, oxaliplatin and irinotecan; IHC, immunohistochemistry; JCO, Journal of Clinical Oncology; mFOLFOX modified FOLFOX; NR, not reported; NA, not available; OS, overall survival; PFS, progression free survival; RR, response rate; TTP, time to progression

	ROB				Applicability			Overall	Analysis		
Study	Participants	Predictors	Outcome	Analysis	Participants	Predictors	Outcome	ROB	Applicability	Prognostic	Predictive
Allen et al. 2018 (1)	+	+	+	+	+	+	?	+	?	no	yes
Budinska et al. 2013 (2)	+	+	+	+	+	-	?	+	-	yes	no
Cremolini et al. 2019 (16)	+	+	+	-	-	-	-	-	-	no	yes
De Sousa e Melo et al. 2013 (14)	+	+	+	+	+	-	?	+	-	no	yes
Del Rio et al. 2017 (17)	+	+	+	+	+	+	+	+	+	yes	yes
Dienstmann et al. 2019 (3)	+	+	+	+	+	-	+	+	-	yes	no
Dunne et al. 2016 (4)	+	+	+	+	+	?	+	+	?	no	yes
Guinney et al. 2015 (15)	+	+	+	+	+	+	+	+	+	yes	no
Haasnoot et al. 2020 (5)	+	+	+	+	+	-	+	+	-	yes	no
Jary et al. 2020 (6)	+	+	+	+	+	+	+	+	+	yes	no
Kawazoe et al. 2020 (18)	+	+	+	-	+	+	+	-	+	no	yes
Kwon et al. 2017 (7)	+	+	+	-	+	+	?	-	?	yes	no
Lenz et al. 2019 (19)	+	+	+	+	+	-	+	+	-	yes	yes
Lenz et al. 2020 (20)	+	+	+	+	+	+	+	+	+	yes	yes
Li et al. 2020 (8)	+	+	+	+	+	-	+	+	-	yes	yes
Mooi et al. 2018 (21)	+	+	+	+	+	+	+	+	+	yes	yes
Morris et al. 2020 (22)	+	+	+	+	+	-	+	+	-	yes	no
Okita et al. 2018 (23)	+	+	+	+	-	+	+	+	-	yes	yes
Piskol et al. 2019 (9)	+	+	+	+	+	-	+	+	-	yes	no
Roepman et al. 2014 (10)	+	+	+	+	+	-	?	+	-	yes	yes
Schlicker et al. 2020 (24)	+	+	+	-	+	+	+	-	+	yes	no
Shinto et al. 2020 (11)	+	+	+	+	+	+	+	+	+	yes	no
Song et al. 2016 (12)	+	+	+	+	+	-	+	+	-	yes	yes
Stintzing et al. 2019 (25)	+	+	+	+	+	+	+	+	+	yes	yes
Trihn et al. 2017 (26)	+	+	+	+	+	-	+	+	-	no	yes
Williams et al. 2018 (13)	+	+	+	+	+	+	+	+	+	yes	no
Woolston et al. 2019 (27)	+	+	+	-	-	-	+	-	-	no	ves

Supplementary Table 3. Prediction model Risk of Bias Assessment Tool (PROBAST)

Abbreviations: PROBAST, Prediction model Risk of Bias Assessment Tool; ROB, risk of bias.

+ indicates low ROB/low applicability concern; - indicates high ROB/high applicability concern; ? Indicates unclear ROB/unclear applicability concern

Supplementary Table 4. Distribution of CMS labels in the local versus metastatic setting.

		CMS1		CMS2		CMS3		CMS4		Unknown	
	Ν	n	%	n	%	n	%	n	%	n	%
Local	16	2334	18.7	4986	39.9	1079	8.6	3205	25.6	894	7.2
Metastatic	17	386	9.9	1388	35.5	462	11.8	1415	36.1	261	6.7

Pearson's Chi-squared test: X-squared = 304.65, df = 4, P value < 0.001

Abbreviations: CMS, consensus molecular subtypes; N, Number of studies; n, number of patients

Supplementary Table 5. Sensitivity analyses to explore heterogeneity in the pairwise prognostic CMS comparisons per survival outcome in local and metastatic disease.

	Original va	lues	Adjusted values sens	itivity analyses	Excluded studies
Meta-analyses	HR (95% CI)	Heterogeneity	HR (95% CI)	Heterogeneity	Reference
CMS4 versus CMS1					
OS local	3.28 (1.27 to 8.47), P = 0.01	l ² = 83.0%, P < 0.001	4.54 (2.68 to 7.70), P < 0.001	l ² = 0.0%, P = 0.65	Jary et al. 2020 (6)
PFS metastatic	0.52 (0.38 to 0.75), P < 0.001	l ² = 57.1%, P = 0.03	0.46 (0.35 to 0.61), P < 0.001	l ² = 0.0%, P = 0.71	Lenz et al. 2019 (19)
RFS local	1.84 (1.35 to 2.51), P < 0.001	I ² = 58.6%, P = 0.047	2.18 (1.69 to 2.81), P < 0.001	I ² = 0.0%, P = 0.46	Dienstmann et al. 2019 (3)
CMS2 versus CMS1					
OS metas	0.33 (0.23 to 0.48), P < 0.001	l ² = 62.8%, P = 0.009	0.30 (0.22 to 0.41), P < 0.001	l ² = 31.8%, P = 0.19	Lenz et al. 2019 (19)
PFS metas	0.53 (0.35 to 0.81), P = 0.003	l ² = 74.7%, P < 0.001	0.72 (0.54 to 0.96), P = 0.03	l ² = 38.4%, P = 0.17	Piskol et al. 2019 (9)
CMS3 versus CMS1					
OS metastatic	0.55 (0.32 to 0.93), P = 0.03	l ² = 74.1%, P = 0.004	0.45 (0.32 to 0.62), P < 0.001	l ² = 0.0%, P = 0.72	Lenz et al. 2019 (19)
PFS metastatic	0.89 (0.60 to 1.34), P = 0.59	l ² = 55.2%, P = 0.06	1.02 (0.71 to 1.48), P = 0.91	l ² = 39.8%, P = 0.17	Okita et al. 2018 (23)
CMS4 versus CMS3					
RFS local	1.23 (0.82 to 1.84), P = 0.32	I ² = 50.3%, P = 0.09	1.30 (0.94 to 1.79), P = 0.12	l ² = 35.6%, P = 0.20	Williams et al. 2019 (13)

Abbreviations: 95% CI, 95% confidence interval; CMS, consensus molecular subtypes; HR, Hazard ratio; RFS, relapse-free survival; PFS, progression- free survival; OS, overall survival

CMS	Study	Ν	Classification method	Median OS in months (95% CI)	Weight (%)	Pooled median OS in months (95% CI)
	Okita et al, 2018 (anti-EGFR cohort) (23)	14	CMS R package	5.70 (1.10 to ND)	14.3	
	Piskol et al, 2018 (DARECK cohort) (9)	14	NanoString	5.80 (3.70 to ND)	17.7	
	Mooi et al, 2018 (21)	42	CMS R package	8.80 (6.50 to 16.00)	13.1	
	Piskol et al, 2018 (PROCURED cohort) (9)	9	NanoString	10.00 (3.00 to ND)	10.8	
1	Guinney et al, 2015 (15)	7	CMS R package	13.00 (5.10 to ND)	9.7	11.20 (7.69 to 14.71)
	Lenz et al, 2019 (19)	104	NanoString	15.00 (11.70 to 22.40)	12.6	
	Stintzing et al, 2019 (25)	61	CMS R package	15.90 (11.00 to 20.80)	13.8	
	Okita et al, 2018 (chemotherapy cohort) (23)	21	CMS R package	21.40 (13.30 to 35.50)	6.2	
	Morris et al, 2020 (22)	17	NanoString	24.80 (19.90 to 59.20)	1.8	
	Mooi et al, 2018 (21)	113	CMS R package	24.20 (19.10 to 27.40)	14.2	
	Okita et al, 2018 (anti-EGFR cohort) (23)	39	CMS R package	26.60 (13.70 to 34.80)	10.1	
	Stintzing et al, 2019 (25)	164	CMS R package	29.00 (26.70 to 31.40)	14.9	
	Guinney et al, 2015 (15)	46	CMS R package	38.90 (27.00 to ND)	9.5	
2	Lam et al, 2020 (32)	43	NanoString	40.00 (34.00 to 51.00)	11.4	36.39 (30.44 to 42.33)
	Lenz et al, 2019 (19)	242	NanoString	40.30 (36.10 to 43.10)	14.5	
	Morris et al, 2020 (22)	111	NanoString	46.00 (36.60 to 53.80)	11.5	
	Piskol et al, 2018 (PROCURED cohort) (9)	47	NanoString	46.00 (32.00 to 67.00)	6.4	
	Okita et al, 2018 (chemotherapy cohort) (23)	53	CMS R package	48.10 (34.80 to 65.60)	7.5	
	Okita et al, 2018 (anti-EGFR cohort) (23)	27	CMS R package	13.40 (5.80 to 15.40)	15.3	
	Mooi et al, 2018 (21)	28	CMS R package	17.60 (11.30 to 24.60)	14.5	
	Stintzing et al, 2019 (25)	65	CMS R package	18.60 (15.40 to 21.70)	16.8	
3	Guinney et al, 2015 (15)	10	CMS R package	20.00 (11.70 to ND)	13.2	21.89 (15.92 to 27.85)
	Morris et al, 2020 (22)		NanoString	22.30 (16.90 to 35.20)	11.9	
	Lenz et al, 2019 (19)	68	NanoString	24.30 (16.40 to 29.00)	14.6	
	Okita et al, 2018 (chemotherapy cohort) (23)	69	CMS R package	38.70 (30.60 to 45.60)	13.8	

Supplementary Table 6. Data and weight information for the meta-analyses into median overall survival of stage IV colorectal cancer per CMS

(continued)

Supplementary Table 6 (continued)

CMS	Study	Ν	Classification method	Median OS in months (95% CI)	Weight (%)	Pooled median OS in months (95% CI)
	Piskol et al, 2018 (DARECK cohort) (9)	29	NanoString	13.10 (9.00 to NA)	11.1	
	Okita et al, 2018 (anti-EGFR cohort) (23)		CMS R package	17.00 (13.20 to 24.90)	10.3	
	Mooi et al, 2018 (21)	54	CMS R package	21.40 (15.80 to 23.10)	11.1	
	Stintzing et al, 2019 (25)	148	CMS R package	24.80 (22.60 to 27.10)	11.6	
4	Piskol et al, 2018 (PROCURED cohort) (9)	25	NanoString	27.00 (19.00 to NA)	9.6	26.79 (21.07 to 32.50)
	Guinney et al, 2015 (15)	41	CMS R package	28.00 (22.00 to 52.00)	5.6	× ,
	Lam et al, 2020 (32)	55	NanoString	28.00 (21.00 to 33.00)	10.4	
	Lenz et al, 2019 (19)		NanoString	31.40 (26.30 to 36.90)	10.7	
	Morris et al, 2020 (22)	178	NanoString	37.10 (33.20 to 44.30)	10.5	
	Okita et al, 2018 (chemotherapy cohort) (23)	50	CMS R package	44.00 (33.00 to 50.50)	9.1	

Abbreviations: CMS, consensus molecular subtypes; N, number of patients included in the cohort; OS, overall survival; 95% CI, 95% confidence interval; ND, not determined

Supplementary Table 7. Sensitivity analyses to explore heterogeneity in the pooled median overall survival per CMS in metastatic colorectal cancer.

	Origina	al values	Adjusted values s	sensitivity analyses	Excluded studies
Meta-analyses	Months (95% CI)	Heterogeneity	Months (95% CI)	Heterogeneity	Reference
CMS1	11.20 (7.69 to 14.71)	I ² = 72.8%, P < 0.001	11.44 (7.61 to 15.27)	l ² = 50.4%, P = 0.06	Piskol 2019 (9); Stintzing 2019 (25)
CMS2	36.39 (30.44 to 42.33)	I ² = 87.1%, P < 0.001	37.87 (31.23 to 44.52)	l ² = 78.5%, P < 0.001	Mooi 2018 (21); Lenz 2019 (19)
CMS3	21.89 (15.92 to 27.85)	I ² = 81.4%, P < 0.001	18.77 (15.80 to 21.75)	I ² = 29.1%, P = 0.22	Okita 2018 (23)
CMS4	26.79 (21.07 to 32.50)	l ² = 89.0%, P < 0.001	28.00 (23.75 to 32.25)	l ² = 75.4%, P < 0.001	Okita 2018 (2x) (23); Piskol 2019 (9)

Abbreviations: 95% CI, 95% confidence interval; CMS, consensus molecular subtypes; HR, Hazard ratio; RFS, relapse-free survival; PFS, progression- free survival; OS, overall survival

Supplementary Table 8. Distribution of CMS labels in the local versus metastatic setting with studies using classification methods with only 3 classes excluded^a.

	1	CMS1		CMS2		CM	IS3	CM	IS4	Unknown	
	Ν	n	%	n	%	n	%	n	%	n	%
Local	11	2076	18.7	4077	36.7	1079	9.7	2968	26.8	894	8.1
Metastatic	16	378	10.6	1227	34.3	462	12.9	1245	34.8	261	7.3

Pearson's Chi-squared test: X-squared = 201.15, df = 4, P value < 0.001

Abbreviations: CMS, consensus molecular subtypes; N, Number of studies; n, number of patients

^aImmunohistochemistry, De Sousa subtypes and Roepman subtypes

Setting	CMS4 versus CM	I S1	CMS3 versu	us CMS1	CMS2 versus 0	CMS1
	Li et al., 2020 (8)	Immunohistochemistry	Jary et al., 2020 (6)	CMS R package	Budinska et al., 2013 (2)	Budinska classification
Local OS	Roepman et al., 2014 (10)	Roepman classification			Piskol et al., 2019 AVANT cohort (9)	NanoString
	Piskol et al., 2019 AVANT cohort (9)	NanoString			Jary et al., 2020 (6)	CMS R package
	Jary et al., 2020 (6)	CMS R package				
	Li et al., 2020 (8)	Immunohistochemistry	Shinto et al., 2020 (11)	CMS R package	Shinto et al., 2020 (11)	CMS R package
	Song et al., 2016 Discovery cohort (12)	Sadanandam classification	Williams et al., 2018 (13)	CMS R package	Williams et al., 2018 (13)	CMS R package
Local RFS	Song et al., 2016 Validation cohort (12)	Sadanandam classification	Dienstmann et al., 2019 (3)	CMS R package	Budinska et al., 2013 (2)	Budinska classification
	Dienstmann et al., 2019 (3)	CMS R package			Dienstmann et al., 2019 (3)	CMS R package
	Piskol et al., 2019 AVANT cohort (9)	NanoString			Piskol et al., 2019 AVANT cohort (9)	NanoString
Local SAR	Piskol et al., 2019 AVANT cohort (9)	NanoString			Budinska et al., 2013 (2)	Budinska classification
	Lenz et al., 2019 (19) Mooi et al., 2018 (21)	NanoString CMS R package	Lenz et al., 2019 (19) Mooi et al., 2018 (21)	NanoString CMS R package	Lenz et al., 2019 (19) Mooi et al., 2018 (21)	NanoString CMS R package
	Piskol et al., 2019 DARECK cohort (9)	NanoString	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	Piskol et al., 2019 (9) DARECK cohort	NanoString
	Piskol et al., 2019 PROCURED cohort (9)	NanoString	Okita et al., 2018 (23) anti- EGFR cohort	CMS R package	Piskol et al., 2019 (9) PROCURED cohort	NanoString
Metastatic OS	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	Del Rio et al., 2017 (17)	CMS R package	Okita et al., 2018 (23) chemotherapy cohort	CMS R package
	Okita et al., 2018 (23) anti-EGFR cohort	CMS R package			Okita et al., 2018 (23) anti- EGFR cohort	CMS R package
	Del Rio et al., 2017 (17)	CMS R package			Del Rio et al., 2017 (17)	CMS R package Multinomial
					Lee et al., 2019 (33)	elastic net classifier
	Lenz et al., 2019 (19)	NanoString	Lenz et al., 2019 (19)	NanoString	Lenz et al., 2019 (19)	NanoString
	Mooi et al., 2018 (21)	CMS R package	Mooi et al., 2018 (21)	CMS R package	Mooi et al., 2018 (21)	CMS R package
	Piskol et al., 2019 DARECK cohort (9)	NanoString	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	Piskol et al., 2019 (9) DARECK cohort	NanoString
Metastatic	Piskol et al., 2019 (9) PROCURED cohort	NanoString	Okita et al., 2018 (23) anti- EGFR cohort	CMS R package	Piskol et al., 2019 (9) PROCURED cohort	NanoString
гго	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	Del Rio et al., 2017 (17)	CMS R package	Okita et al., 2018 chemotherapy cohort (23)	CMS R package
	Okita et al., 2018 (23) anti-EGFR cohort	CMS R package			Okita et al., 2018 anti-EGFR cohort (23)	CMS R package
	Del Rio et al., 2017 (17)	CMS R package			Del Rio et al., 2017 (17)	CMS R package

Supplementary Table 9. CMS classification method for each study included in the prognostic meta-analyses

(continued)

Supplementary Table 9 (continued)

Setting	CMS4 versus CMS	2	CMS3 versu	s CMS2	CMS4 versus CMS3		
Local OS	Budinska et al., 2013 (Subgroup D) (2) Budinska et al., 2013 (Subgroup E) (2) Piskol et al., 2019 AVANT cohort (9)	Budinska classification Budinska classification NanoString	Budinska et al., 2013 (2)	Budinska classification			
	Shinto et al., 2020 (11)	CMS R package	Shinto et al., 2020 (11)	CMS R package	Shinto et al., 2020 (11)	CMS R package	
Local RFS	Song et al., 2016 (12) Discovery cohort Song et al., 2016 (12) Validation cohort	Sadanandam classification Sadanandam	Williams et al., 2018 (13)	CMS R package	Williams et al., 2018 (13) Song et al., 2016 (12) Discovery schort	CMS R package Sadanandam	
	Williams et al. 2018 (13)	CMS R package			Song et al., 2016 (12)	Sadanandam	
	Budinska et al., 2013 (2) (Subgroup D) Budinska et al., 2013 (2) (Subgroup E) Dienstmann et al., 2019 (3) Piskol et al., 2019 (9) AVANT cohort	Budinska classification Budinska classification CMS R package NanoString	Dienstmann et al., 2019 (3)	CMS R package	Validation cohort Dienstmann et al., 2019 (3)	classification CMS R package	
Local SAR	Budinska et al., 2013 (2) (Subgroup D) Budinska et al., 2013 (2) (Subgroup E) Piskol et al., 2019 (9) AVANT cohort	Budinska classification Budinska classification NanoString	Budinska et al., 2013 (2)	Budinska classification			
Metastatic OS	Schlicker et al., 2020 (24)	CMS R package	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	
	Piskol et al., 2019 (9) DARECK cohort	NanoString	Okita et al., 2018 (23) anti-EGER cohort	CMS R package	Okita et al., 2018 (23) anti-EGER cohort	CMS R package	
	Piskol et al., 2019 (9) PROCURED cohort	NanoString	Del Rio et al., 2017 (17)	CMS R package	Del Rio et al., 2017 (17)	CMS R package	
	Okita et al., 2018 (23) chemotherapy cohort	CMS R package					
	Okita et al., 2018 (23) anti-EGFR cohort Del Rio et al., 2017 (17)	CMS R package CMS R package					
	Piskol et al., 2019 (9) DARECK cohort	NanoString	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	
	Piskol et al., 2019 (9) PROCURED cohort	NanoString	Okita et al., 2018 (23) anti-EGFR cohort	CMS R package	Okita et al., 2018 (23) anti-EGFR cohort	CMS R package	
Metastatic PFS	Okita et al., 2018 (23) chemotherapy cohort	CMS R package	Del Rio et al., 2017 (17)	CMS R package	Del Rio et al., 2017 (17)	CMS R package	
	Okita et al., 2018 (23) anti-EGFR cohort Del Rio et al., 2017 (17)	CMS R package CMS R package				 	

Abbreviations: CMS, consensus molecular subtypes; OS, overall survival; PFS, progression free survival; RFS, relapse free survival; SAR, survival after relapse

Meta-analyses	Original values	Adjusted values sensitivity analyses	Excluded study	
	HR (95% CI)	HR (95% CI)	Reference	
CMS4 versus CMS1				
OS local	3.28 (1.27 to 8.47), P = 0.01	2.72 (0.98 to 7.52), P = 0.05	Li et al., 2020 (8)	
RFS local	1.84 (1.35 to 2.51), P < 0.001	1.83 (1.30 to 2.59), P < 0.001	Li et al., 2020 (8)	

Supplementary Table 10. Sensitivity analyses for phenotypic (immunohistochemical) versus RNA-based CMS labeling in the prognostic meta-analyses

Abbreviations: CMS, consensus molecular subtypes; HR, hazard ratio; OS, overall survival; RFS, relapse free survival

Supplementary Table 11. Subgroup analyses of single group versus consensus transcriptomic profiling in the prognostic meta-analyses^a.

Subgroup analyses

Meta-analyses	Original values	Subgroups	Values subgroup analyses	Difference between subgroups
	HR (95% CI)		HR (95% CI)	P value
CMS4 versus 1	1.84 (1.35 to 2.51), P < 0.001	Sadanandam labels (n=2)	2.44 (1.82 to 3.28), P < 0.001	0.003
RFS local		CMS labels (n=3)	1.41 (1.15 to 1.72), P < 0.001	
CMS4 versus 2	1.46 (1.29 to 1.64), P < 0.001	Sadanandam labels (n=2)	1.42 (1.12 to 1.82), P = 0.005	0.76
RFS local		Budinska labels (n=2)	1.64 (1.19 to 2.26), P = 0.002	
		CMS labels (n=4)	1.44 (1.20 to 1.74), P < 0.001	
CMS4 versus 3	1.23 (0.82 to 1.84), P = 0.32	Sadanandam labels (n=2)	1.11 (0.71 to 1.75), P = 0.64	0.94
RFS local		CMS labels (n=3)	1.18 (0.33 to 4.24), P = 0.80	

^aAmong single group classifications, only Roepman, Budinska and Sadanandam labels were used as surrogates for the CMSs.

Meta-analyses	Original values	Adjusted values sensitivity analyses	Excluded classification
	HR (95% CI)	HR (95% CI)	Reference
CMS4 versus 1			
OS local	3.28 (1.27 to 8.47), P = 0.01	2.79 (0.95 to 8.20), P = 0.003	Roepman et al., 2014 (10)
CMS2 versus 1			
OS local	0.92 (0.70 to 1.21), P = 0.54	0.98 (0.73 to 1.32), P = 0.88	Budinska et al., 2013 (2)
CMS2 versus 1			
RFS local	0.97 (0.82 to 1.15), P = 0.74	0.96 (0.80 to 1.15), P = 0.68	Budinska et al., 2013 (2)
CMS3 versus 2			
RFS local	0.96 (0.77 to 1.21), P = 0.74	0.97 (0.76 to 1.24), P = 0.81	Budinska et al., 2013 (2)
CMS4 versus 2			
OS local	2.60 (1.93 to 3.50), P < 0.001	3.33 (2.00 to 5.00), P < 0.001	Budinska et al., 2013 (2)
CMS4 versus 2			
SAR local	1.97 (1.41 to 2.74), P < 0.001	2.00 (1.25 to 3.33), P = 0.009	Budinska et al., 2013 (2)

Supplementary Table 12. Sensitivity analyses of single group versus consensus transcriptomic profiling in the prognostic meta-analyses^a.

^aAmong single group classifications, only Roepman, Budinska and Sadanandam labels were used as surrogates for the CMSs.

Supplementary Table 13. Subgroup analyses for differences between RNA-based CMS classification methods for the meta-analyses into pairwise CMS comparison.

Meta-analyses	Original values	Subgroups	Values subgroup analyses	Difference between subgroups
	HR (95% CI)	Method (number of cohorts n)	HR (95% CI)	P value
CMS4 versus CMS1	0.45 (0.32 to 0.62), P < 0.001	NanoString-based labels (n=3)	0.42 (0.29 to 0.60), P < 0.001	0.69
OS metastastic		CMS R package labels (n=4)	0.48 (0.26 to 0.88), P = 0.02	
CMS4 versus CMS1	0.53 (0.38 to 0.75), P < 0.001	NanoString-based labels (n=3)	0.53 (0.38 to 0.72), P < 0.001	0.86
PFS metastatic		CMS R package labels (n=4)	0.49 (0.21 to 1.11), P = 0.09	
CMS2 versus CMS1	0.33 (0.23 to 0.48), P < 0.001	NanoString-based labels (n=3)	0.29 (0.12 to 0.74), P = 0.01	0.90
OS metastatic		CMS R package labels (n=4)	0.34 (0.23 to 0.51), P < 0.001	
		CMS elastic net labels (n=1)	0.39 (0.18 to 0.86), P = 0.02	
CMS2 versus CMS1	0.53 (0.35 to 0.81), P = 0.003	NanoString-based labels (n=3)	0.35 (0.14 to 0.88), P = 0.03	0.18
PFS metastatic		CMS R package labels (n=4)	0.71 (0.45 to 1.10), P = 0.12	
CMS4 versus CMS2	1.41 (1.07 to 1.86), P = 0.02	NanoString-based labels (n=2)	1.53 (0.97 to 2.39), P = 0.07	0.84
OS metastatic		CMS R package labels (n=4)	1.43 (0.91 to 2.23), P = 0.12	
CMS4 versus CMS2	0.96 (0.72 to 1.29), P = 0.80	NanoString-based labels (n=2)	1.25 (0.86 to 1.82), P = 0.25	0.11
PFS metastatic		CMS R package labels (n=3)	0.82 (0.58 to 1.16), P = 0.26	

Abbreviations: CMS, consensus molecular subtype; HR, hazard ratio; OS, overall survival; PFS, progression-free survival

Meta-analyses	Original values	Subgroups	Values subgroup analyses	Difference between subgroups
	Months (95% CI)	Method (number of cohorts n)	HR (95% CI)	P value
CMS1	11.20 (7.69 to 14.71)	NanoString-based labels (n=4)	10.51 (4.81 to 16.20)	0.71
mOS metastatic		CMS R package labels (n=5)	11.91 (6.99 to 16.83)	
CMS1	36.39 (30.44 to 42.33)	NanoString-based labels (n=4)	41.14 (38.09 to 44.19)	0.01
mOS metastatic		CMS R package labels (n=5)	31.20 (24.15 to 38.26)	
CMS1	21.89 (15.92 to 27.85)	NanoString-based labels (n=2)	23.70 (18.27 to 29.13)	0.66
mOS metastatic		CMS R package labels (n=5)	21.44 (13.03 to 29.85)	
CMS1	26.79 (21.07 to 32.50)	NanoString-based labels (n=5)	27.18 (19.09 to 35.28)	0.91
mOS metastatic		CMS R package labels (n=5)	26.47 (17.34 to 35.61)	

Supplementary Table 14. Subgroup analyses for differences between RNA-based CMS classification methods for meta-analyses into mOS times per CMS.

Abbreviations: CMS, consensus molecular subtype; HR, hazard ratio; mOS, medium overall survival

Meta-analyses	Original values	Adjusted values sensitivity analyses	Excluded study
	HR (95% CI)	HR (95% CI)	Reference (classifier)
CMS4 versus CMS1	3.28 (1.27 to 8.47), P = 0.01	3.27 (0.84 to 12.69), P = 0.09	Piskol et al., 2019 (9) (NanoString classifier)
OS local			
CMS4 versus CMS1	1.84 (1.35 to 2.51), P < 0.001	1.96 (1.34 to 2.85), P < 0.001	Piskol et al., 2019 (9) (NanoString classifier)
RFS local			
CMS3 versus CMS1	0.55 (0.32 to 0.93), P = 0.03	0.45 (0.32 to 0.62), P < 0.001	Lenz et al., 2019 (19) (NanoString classifier)
OS metastastic			
CMS3 versus CMS1	0.89 (0.60 to 1.34), P = 0.59	0.75 (0.51 to 1.09), P = 0.14	Lenz et al., 2019 (19) (NanoString classifier)
PFS metastatic			
CMS2 versus CMS1	0.92 (0.70 to 1.21), P = 0.54	0.89 (0.66 to 1.19), P = 0.43	Piskol et al., 2019 (9) (NanoString classifier)
OS local			
CMS2 versus CMS1	0.33 (0.23 to 0.48), P < 0.001	0.32 (0.22 to 0.48), P < 0.001	Lee et al., 2020 (33) (CMS elastic net classifier)
OS metastatic			
CMS2 versus CMS1	0.97 (0.82 to 1.15), P = 0.74	0.98 (0.82 to 1.18), P = 0.85	Piskol et al., 2019 (9) (NanoString classifier)
RFS local			
CMS4 versus CMS2	2.60 (1.93 to 3.50), P < 0.001	2.17 (1.47 to 3.21), P < 0.001	Piskol et al., 2019 (9) (NanoString classifier)
OS local			
CMS4 versus CMS2	1.46 (1.29 to 1.64), P < 0.001	1.46 (1.29 to 1.67), P < 0.001	Piskol et al., 2019 (9) (NanoString classifier)
RFS local			
CMS4 versus CMS2	1.97 (1.41 to 2.74), P < 0.001	1.95 (1.27 to 3.00), P = 0.002	Piskol et al., 2019 (9) (NanoString classifier)
SAR local			

Supplementary Table 15. Sensitivity analyses for differences between RNA-based CMS classification methods when subgroup analyses were not feasible.

Abbreviations: CMS, consensus molecular subtype; HR, hazard ratio; OS, overall survival; PFS, progression-free survival; RFS, relapse-free survival; SAR, survival after relapse

Supplementary Figure 1. Forest plots of pooled and single hazard ratios (HRs) for different survival outcomes per consensus molecular subtype (CMS) comparison in colorectal cancer. (A) CMS3 versus CMS1, (B) CMS3 versus CMS2 and (C) CMS4 versus CMS3. Number of cohorts (n) and total number of included patients (N) per meta-analysis indicated with n/N, with overall adjP for the random-effect model. As several studies described more cohorts, the number of cohorts n does not reflect the number of studies. Heterogeneity depicted as I² index and Cochran's Q-test P value.

Abbreviations: 95% CI, 95% confidence interval; HR, hazard ratio; adjP, adjusted *P* value; NA, not applicable. ^aEstimate

Supplementary Figure 2. Data and weight information for the meta-analyses on the prognostic value of the consensus molecular subtypes. As several studies described more cohorts, the number of cohorts k does not reflect the number of studies. Heterogeneity depicted as I² index and Cochran's Q-test.

CMS4 vs CMS1 Overall Survival Stage I-II Roepman et al., 2014 Piskol et al., 2019 Jary et al., 2020 Li et al., 2020 Number of cohorts combined: k = 4 HR 95%-CI Pandom effects model 3.28 (1.27 to 8.47).2	II HR 95%-CI %W 5.71 (1.82 to 17.90) 22.4 3.85 (2.02 to 7.33) 28.7 1.18 (0.82 to 1.71) 31.5 7.86 (1.63 to 37.90) 17.3 z P value	CMS4 vs CMS1 Overall Survival Stage IV HR 95%-CI %W Lenz et al., 2019 0.73 (0.54 to 0.99) 24.3 Mooi et al., 2018 0.59 (0.35 to 0.99) 17.6 Piskol et al., 2019 DARECK 0.33 (0.15 to 0.72) 11.2 Piskol et al., 2019 PROCURED 0.34 (0.14 to 0.82) 9.5 Okita et al., 2018 chemotherapy group 0.42 (0.23 to 0.77) 15.1 Okita et al., 2018 anti-EGFR 0.22 (0.09 to 0.56) 8.9 Del Rio et al., 2017 (biocolon, regp, cosival) 0.36 (0.18 to 0.71) 13.4 Number of cohorts combined: k = 7 HR 95%-Cl z P value Pandom effects model 0.45 (0.32 to 0.62) 4.77 < 0.001 0.01
Quantifying heterogeneity: I ² = 83.0% (56.6% to 93.3%); H = 2.43 (1.5)	2 to 3.88)	Quantifying heterogeneity: $I^2 = 49.7\%$ (0.0% to 78.7%); H = 1.41 (1.00 to 2.17)
Test of heterogeneity: Q d.f. P value 17.66 3 < 0.001		Test of heterogeneity: Q d.f. P value 11.92 6 0.06
CMS4 vs CMS1 Progression-Free Surviv	val Stage IV HR 95%-CI %W	CMS4 vs CMS1 Relapse-Free Survival Stage II-III HR 95%-CI %W
Lenz et al., 2019 Mooi et al., 2018 Piskol et al., 2019 DARECK Piskol et al., 2019 PROCURED Okita et al., 2018 chemotherapy group Okita et al., 2018 anti-EGFR Del Rio et al., 2017 (biocolon, regp, cosival)	111 353-51 0.92 (0.68 to 1.24) 22.4 0.53 (0.25 to 1.12) 11.9 0.33 (0.16 to 0.66) 12.8 0.31 (0.13 to 0.74) 9.9 0.59 (0.35 to 1.00) 16.3 0.42 (0.21 to 0.84) 12.9) 0.54 (0.28 to 1.03) 13.9	Song et al., 2016 (Discovery cohort) 2.44 (1.58 to 3.76) 21.7 Song et al., 2016 (Validation cohort) 2.44 (1.62 to 3.66) 22.8 Dienstmann et al., 2019 1.38 (1.11 to 1.72) 31.6 Piskol et al., 2019 (AVANT cohort) 1.43 (0.80 to 2.56) 6.1 Li et al., 2020 2.05 (0.77 to 5.46) 7.9
Number of cohorts combined: k = 7		Number of cohorts combined: $k = 5$
HR 95%-Cl Random effects model 0.53 (0.38 to 0.75) ∹	z P value 3.62 < 0.001	HR 95%-CI z P value Random effects model 1.84 (1.35 to 2.51) 3.88 < 0.001
Quantifying heterogeneity: l² = 57.1% (0.5% to 81.5%); H = 1.53 (1.00	to 2.32)	Quantifying heterogeneity: I² = 58.6% (0.0% to 84.6%); H = 1.55 (1.00 to 2.55)
Test of heterogeneity: Q d.f. P value 13.98 6 0.03		Test of heterogeneity: Q d.f. P value 9.65 4 0.047
CMS4 vs CMS2 Overall Survival Stage I-II	II HR 95%-CI %W	CMS4 vs CMS2 Overall Survival Stage IV
Budinska et al., 2013 (subgroup) Budinska et al., 2013 (subgroup) Piskol et al., 2019 (AVANT)	2.16 (1.36 to 3.43) 41.3 2.20 (1.06 to 4.58) 16.5 3.33 (2.11 to 5.27) 42.2	Schlicker et al., 2020 5.20 (1.65 to 16.35) 5.3 Piskol et al., 2019 (DARECK) 1.67 (0.83 to 3.35) 12.5 Piskol et al., 2019 (PROCURED) 1.43 (0.79 to 2.58) 16.0 Okita et al., 2018 (chemotherapy group) 1.32 (1.03 to 1.70) 39.2 Okita et al., 2018 (anti-EGFR group) 1.36 (0.66 to 2.78) 11.9 Del Rio et al., 2017 (biocolon, regp, cosival) 0.94 (0.51 to 1.73) 15.1
Number of cohorts combined: k = 3		Number of cohorts combined: k = 6
HR 95%-CI Random effects model 2.60 (1.93 to 3.50) 6.	z P value .30 < 0.001	HR 95%-CI z P value Random effects model 1.41 (1.07 to 1.86) 2.44 0.01
Quantifying heterogeneity: $I^2 = 0.0\%$ (0.0% to 89.2%); H = 1.00 (1.00 to	o 3.05)	Quantifying heterogeneity: I²= 29.3% (0.0% to 71.1%); H = 1.19 (1.00 to 1.86)
Test of heterogeneity: Q d.f. P value 1.93 2 0.38		Test of heterogeneity: Q d.f. P value 7.08 5 0.22

Supplementary Figure 2 (continued)

CMS4 vs CMS2 Progression-Free Surviva	al Stage	e IV		CMS4 vs CMS2 Relapse-Free Survival St	age II-II	l	
Piskol et al., 2019 (DARECK) Piskol et al., 2019 (PROCURED) Okita et al., 2018 (chemotherapy group) Okita et al., 2018 (anti-EGFR group) Del Rio et al., 2017 (biocolon, regp, cosival)	HR 1.43 1.11 0.75 1.20 0.64	95%-C1 (0.82 to 2.48) (0.66 to 1.86) (0.49 to 1.15) (0.70 to 2.05) (0.38 to 1.07)	%W 18.0 19.5 24.1 18.7 19.5	Song et al., 2016 (Discovery) Song et al., 2016 (Validation) Williams et al., 2018 Budinska et al., 2013 Budinska et al., 2013 Dienstmann et al., 2019 Piskol et al., 2019 (AVANT cohort) Shinto et al., 2020	HR 1.41 1.43 0.31 1.69 1.51 1.41 1.43 2.13	95%-C1 (0.99 to 2.01) (1.02 to 2.00) (0.04 to 2.53) (1.17 to 2.44) (0.79 to 2.86) (1.18 to 1.69) (1.06 to 1.94) (1.11 to 4.10)	%W 11.4 12.7 0.3 10.4 3.5 43.2 15.3 3.3
Number of cohorts combined: k = 5				Number of cohorts combined: k = 8			
HR 95%-CI Random effects model 0.96 (0.72 to 1.29) -(z P).25 0.8	value 30		HR 95%-Cl Random effects model 1.46 (1.29 to 1.64) 6	z P 21 < 0.0	value 001	
Quantifying heterogeneity: I² = 39.3% (0.0% to 77.5%); H = 1.28 (1.00	to 2.11)			Quantifying heterogeneity: $l^2 = 0.0\%$ (0.0% to 45.7%); H = 1.00 (1.00 to	1.36)		
Test of heterogeneity: Q d.f. P value 6.59 4 0.16				Test of heterogeneity: Q d.f. P value 4.18 7 0.76			
CMS4 vs CMS2 Survival After Relapse St	age II-I	II 95%-CI	%\\/	CMS2 vs CMS1 Overall Survival Stage I-I	II HR	95%-01	%\\/
Budinska et al., 2013 (subgroup) Budinska et al., 2013 (subgroup) Piskol et al., 2019 (AVANT)	1.91 2.05 2.00	(1.14 to 3.19) (0.93 to 4.50) (1.19 to 3.36)	41.6 17.7 40.7	Budinska et al., 2013 Piskol et al., 2019 (AVANT cohort) Jary et al., 2020	0.64 1.11 0.95	(0.32 to 1.30) (0.56 to 2.21) (0.68 to 1.32)	14.9 15.8 69.3
Number of cohorts combined: k = 3				Number of cohorts combined: k = 3			
HR 95%-CI Random effects model 1.97 (1.41 to 2.74) 4	z P .00 < 0.	value 001		HR 95%-CI : Random effects model 0.92 (0.70 to 1.21) -0	z Pv).61 0.5	alue 54	
Quantifying heterogeneity: $I^2 = 0.0\%$ (0.0% to 0.0%); H = 1.00 (1.00 to	1.00)			Quantifying heterogeneity: I ² = 0.0% (0.0% to 84.2%); H = 1.00 (1.00 to	2.51)		
Test of heterogeneity: Q d.f. P value 0.03 2 0.99				Test of heterogeneity: Q d.f. P value 1.31 2 0.52			
CMS2 vs CMS1 Overall Survival Stage IV	HR	95%-CI	%W/	CMS2 vs CMS1 Progression-Free Surviva	al Stage	• IV	0/ \\\/
Lenz et al., 2019 Mooi et al., 2018 Piskol et al., 2019 (DARECK) Piskol et al., 2019 (PROCURED) Okita et al., 2018 (chemotherapy group) Okita et al., 2018 (anti-EGFR group) Del Rio et al., 2017 (biocolon, regp, cosival) Lee et al., 2019	0.61 0.46 0.20 0.17 0.32 0.16 0.38 0.39	(0.45 to 0.83) (0.29 to 0.72) (0.09 to 0.43) (0.07 to 0.41) (0.07 to 0.38) (0.19 to 0.78) (0.18 to 0.86)	18.6 16.1 0.9 9.6 12.9 9.6 11.7 10.6	Lenz et al., 2019 Mooi et al., 2018 Piskol et al., 2019 (DARECK) Piskol et al., 2019 (PROCURED) Okita et al., 2018 (chemotherapy group) Okita et al., 2018 (anti-EGFR group) Del Rio et al., 2017 (biocolon, regp, cosival)	0.73 1.03 0.22 0.23 0.79 0.35 0.85	(0.55 to 0.97) (0.54 to 1.95) (0.11 to 0.43) (0.10 to 0.51) (0.47 to 1.34) (0.18 to 0.66) (0.46 to 1.58)	18.5 13.7 13.3 11.6 15.3 13.7 14.0
Number of cohorts combined: k = 8				Number of cohorts combined: k = 7			
HR 95%-CI Random effects model 0.33 (0.23 to 0.48) -{	z P 5.95 < 0	value .001		HR 95%-CI : Random effects model 0.53 (0.35 to 0.81) -2	z P 2.94 0.0	value 003	
Quantifying heterogeneity: I² = 62.8% (20.1% to 82.7%); H = 1.64 (1.12	to 2.4	1)		Quantifying heterogeneity: l² = 74.7% (46.2% to 88.1%); H = 1.99 (1.36	to 2.90)	
Test of heterogeneity: Q d.f. P value 18.84 7 0.009				Test of heterogeneity: Q d.f. P value 23.73 6 < 0.001			

Supplementary Figure 2 (continued)

CMS2 vs CMS1 Relapse-Free Survival Sta		05% CI	9/11/	CMS3 vs C
Williams et al., 2018 Budinska et al., 2013 Dienstmann et al., 2019 Piskol et al., 2019 (AVANT cohort)	0.31 1.06 0.98 0.91	(0.02 to 4.78) (0.58 to 1.94) (0.58 to 1.19) (0.58 to 1.42)	0.4 8.1 76.5 15.0	Lenz et al., Mooi et al., Okita et al. Okita et al. Del Rio et a
Number of cohorts combined: k = 4				Number of
HR 95%-CI Random effects model 0.97 (0.82 to 1.15) -0	z PN 0.34 0.7	value ′4		Random ef
Quantifying heterogeneity: I² = 0.0% (0.0% to 45.4%); H = 1.00 (1.00 to	o 1.35)			Quantifying I ² = 74.1%
Test of heterogeneity: Q d.f. P value 0.84 3 0.84				Test of hete Q d.f. 15.44 4
CMS3 vs CMS1 Progression-Free Surviva	I Stage HR	IV 95%-CI	%W	CMS3 vs C
Lenz et al., 2019 Mooi et al., 2018 Okita et al., 2018 (chemotherapy group) Okita et al., 2018 (anti-EGFR group) Del Rio et al., 2017 (biocolon, regp, cosival)	1.33 1.53 0.78 0.50 0.68	(0.92 to 1.91) (0.61 to 3.85) (0.46 to 1.31) (0.25 to 1.01) (0.34 to 1.37)	28.9 12.6 23.2 17.6 17.7	Williams et Dienstman
Number of cohorts combined: k = 5				Number of
HR 95%-Cl Random effects model 0.89 (0.60 to 1.34) -0	z PN 0.55 0.5	value 59		Random ef
Quantifying heterogeneity: I² = 55.2% (0.0% to 83.4%); H = 1.49 (1.00 t	o 2.46)			Quantifying I ² = 0.0%; I
Test of heterogeneity: Q d.f. P value 8.93 4 0.06				Test of hete Q d.f. 0.12 1 0
CMS3 vs CMS2 Overall Survival Stage IV	HR	95%-CI	%W	CMS3 vs C
Okita et al., 2018 (chemotherapy group) Okita et al., 2018 (anti-EGFR group) Del Rio et al., 2017 (biocolon, regp, cosival)	1.47 2.27 0.88	(0.88 to 2.47) (1.12 to 4.59) (0.45 to 1.73)	40.4 29.1 30.5	Okita et al. Okita et al. Del Rio et a
Number of cohorts combined: k = 3				Number of
HR 95%-CI Random effects model 1.43 (0.88 to 2.33) 1.	z Pva 430.18	alue 5		Random ef
Quantifying heterogeneity: I² = 44.9% (0.0% to 83.6%); H = 1.35 (1.00 t	o 2.47)			Quantifying I^2 = 12.3%
Test of heterogeneity: Q d.f. P value 3.63 2 0.16				Test of hete Q d.f. I 2.28 2 0

CMS1 Overall Survival Stage IV

-	HR	95%-CI	%W
Lenz et al., 2019	1.19	(0.81 to 1.75)	24.3
Mooi et al., 2018	0.55	(0.31 to 0.97)	21.1
Okita et al., 2018 (chemotherapy group)	0.47	(0.26 to 0.84)	20.9
Okita et al., 2018 (anti-EGFR group)	0.37	(0.15 to 0.89)	15.9
Del Rio et al., 2017 (biocolon, regp, cosival)	0.33	(0.16 to 0.70)	17.8

cohorts combined: k = 5

HR 95%-CI z P value ffects model 0.55 (0.32 to 0.93) -2.21 0.03

g heterogeneity: (35.7% to 89.6%); H = 1.96 (1.25 to 3.10)

erogeneity: P value 0.004

CMS1 Relapse-Free Survival Stage II-III

	ago ii iii		
	HR	95%-CI	%W
Villiams et al., 2018	0.57	(0.04 to 8.58)	1.1
Dienstmann et al., 2019	0.93	(0.70 to 1.24)	98.9

Number of cohorts combined: k = 2	
-----------------------------------	--

HR 95%-CI z P value effects model 0.93 (0.70 to 1.23) -0.54 0.59

g heterogeneity: H = 1.00

terogeneity: P value 0.72

CMS2 Progression-Free Survival Stage IV HR 95%-Cl %W 0.99 (0.54 to 1.81) 29.9 1.46 (0.86 to 2.47) 38.1 2018 (chemotherapy group) 2018 (anti-EGFR group) al., 2017 (biocolon, regp, cosival) 0.81 (0.45 to 1.45) 32.0

cohorts combined: k = 3

z P value HR 95%-CI ffects model 1.08 (0.76 to 1.53) 0.41 0.68

g heterogeneity: % (0.0% to 90.9%); H = 1.07 (1.00 to 3.31)

erogeneity: P value).32

Supplementary Figure 2 (continued)

CMS3 vs CMS2 Relapse-Free Survival St	CMS4 vs CMS3 Overall Survival Stage IV				
-	HR 95%-C	I %W	_	HR	95%-CI %W
Williams et al., 2018 Budinska et al., 2013 Dienstmann et al., 2019 Shinto et al., 2020	1.87(0.55 to 6.0.91(0.48 to 1.0.95(0.74 to 1.0.61(0.08 to 4.	32) 3.5 71) 13.0 22) 82.2 65) 1.3	Okita et al., 2018 (chemotherapy group) Okita et al., 2018 (anti-EGFR group) Del Rio et al., 2017 (biocolon, regp, cosival)	0.90 0.60 1.08	(0.57 to 1.43) 51.2 (0.29 to 1.24) 20.7 (0.58 to 2.02) 28.1
Number of cohorts combined: k = 4			Number of cohorts combined: k = 3		
HR 95%-CI z P value Random effects model 0.96 (0.77 to 1.21) -0.34 0.74			HR 95%-CI z P value Random effects model 0.87 (0.62 to 1.21) -0.82 0.41		
Quantifying heterogeneity: I ² = 0.0% (0.0% to 66.7%); H = 1.00 (1.00 to 1.73)			Quantifying heterogeneity: I² = 0.0% (0.0% to 85.9%); H = 1.00 (1.00 to 2.66)		
Test of heterogeneity: Q d.f. P value 1.38 3 0.71			Test of heterogeneity: Q d.f. P value 1.47 2 0.48		
CMS4 vs CMS3 Progression-Free Survival Stage IV HR 95%-CI %W			CMS4 vs CMS3 Relapse-Free Survival Stage II-III HR 95%-CI %W		
Okita et al., 2018 (chemotherapy group) Okita et al., 2018 (anti-EGFR group) Del Rio et al., 2017 (biocolon, regp, cosiva	0.76 (0.52 to 1. 0.82 (0.44 to 1.) 0.79 (0.45 to 1.	12) 53.6 52) 21.4 39) 25.0	Williams et al., 2018 Song et al., 2016 (Discovery) Song et al., 2016 (Validation) Dienstmann et al., 2019 Shinto et al., 2020	0.16 1.45 0.91 1.48 3.72	(0.02 to 1.46) 3.1 (0.85 to 2.49) 25.7 (0.59 to 1.40) 31.0 (1.06 to 2.06) 36.0 (0.58 to 23.79) 4.3
Number of cohorts combined: k = 3			Number of cohorts combined: k = 5		
HR 95%-CI z P value Random effects model 0.78 (0.58 to 1.04) -1.71 0.09			HR 95%-CI z P value Random effects model 1.23 (0.82 to 1.84) 1.00 0.32		
Quantifying heterogeneity: I² = 0.0% (0.0% to 0.0%); H = 1.00 (1.00 to 1.00)			Quantifying heterogeneity: I² = 50.3% (0.0% to 81.8%); H = 1.42 (1.00 to 2.34)		
Test of heterogeneity: Q d.f. P value 0.04 2 0.98			Test of heterogeneity: Q d.f. P value 8.05 4 0.09		

Supplementary Figure 3. Forest plots of hazard ratios (HRs) for the predictive value of the consensus molecular subtypes (CMSs) for first-line systemic therapy in metastatic colorectal cancer. (A) Overall survival for an irinotecan backbone versus control. (B) Progression-free survival for the addition of bevacizumab versus control. (C) Progression-free survival for the addition of bevacizumab.

Abbreviations: Bev, bevacizumab; Cap, capecitabine; CAPOX, capecitabine and oxaliplatin; Cet, cetuximab; CM, classification method; FOLFIRI, 5-fluorouracil, leucovorin, and irinotecan; FOLFOX, 5-fluorouracil, leucovorin, and oxaliplatin; FOLFOXIRI, 5-fluorouracil, leucovorin, oxaliplatin and irinotecan; IRI, irinotecan; Mit, mitomycin; N, number of patients.

^aKRAS wildtype population ^b75.2% FOLFOX / 24.8% FOLFIRI

^oImmunohistochemistry classification CMS2/3 depicted as CMS2

Color key Т Т Т CMS1 CMS2 CMS3 CMS4 Unknown -10 -5 0 5 10 -4.26 8.34 1.35 -2.32 6.55 12.09 4.57 3.89 1.27 0.05 -0.15 -0.60 1.64 0.21 Song2016 -7.23 -2.54 4.25 -3.44 NA NA 0.86 NA NA -5.29 0.19 0.12 -4.05 Roepman2014 DeSousa2013 Budinska2013 Li2020 -3.99 -3.73 -3.97 -7.03 Haasnoot2020 -4.71 3.54 NA 3.96 Gomez2020 0.76 -1.95 -3.31 -6.92 Local 4.15 3.47 -0.80 Piskol2019 -4.71 14.66 -5.88 Marisa2017 6.23 -4.07 5.12 5.00 -1.27 -3.85 -2.04 -0.70 -0.64 -4.87 7.07 -0.62 5.92 Williams2018 -1.57 1.45 5.14 1.63 -0.58 -0.36 -4.99 0.70 Shinto2020 -1.36 1.19 -1.75 Kwon2017 Jary2020 0.89 Dunne2016 0.66 0.32 7.25 5.25 -4.81 -4.57 -0.70 10.23 Dienstmann2019 Allen2018 -1.34 -2.14 4.28 -2.24 5.33 -4.70 1.95 0.41 1.39 3.84 3.71 3.51 -0.59 0.03 -1.78 NA 0.98 0.50 -4.40 -1.29 -2.13 -4.76 Woolston2019 Lee2019 Trihn2017 -4.50 2.90 -0.41 Piskol2019 -4.70 5.68 -1.36 0.52 -2.74 4.77 Morris2020 -1.16 -1.57 -1.03 0.44 Lenz2019 0.23 Metastatic -1.34 0.12 Lam2020 Cremolini2019 -0.74 -3.57 -1.51 -0.49 -1.87 5.47 -2.03 -2.71 3.16 -2.37 -3.43 -5.33 -4.53 7.12 -1.84 Borelli2020 -<u>5.87</u> 3.01 1.08 Single group labels^a Yuki2020 10.38

3.15 -1.98 -0.76

-3.05

0.68

-1.64 9.68

0.00

4.84

0.17 1.73

3.88

-0.80 -2.19

Stintzing2019

Schlicker2020

Kawazoe2020

Okita2018

Mooi2018

Lenz2020

DelRio2017

-3.59

6.77

1.18

9.54

Supplementary Figure 4. Pearson residuals from the chi-square analysis into the distribution of the consensus molecular subtype (CMS) labels per individual study, stratified by stage.

Abbreviations: IHC, immunohistochemistry; NA, no CMS3 labels available within the classification method used. ^aSingle group transcriptomic labels (Budinska, De Sousa, Roepman and Sadanandam).

1.44 -1.80

0.45

3.85 -3.94

1.81 0.24

IHC

NanoString

CMSCaller

CMS R Package

Multinominal Elastic Net

Supplementary Figure 5. Funnel plots, including Egger's test p-values, for CMS4 versus CMS1 OS local (A), OS metastatic (B), PFS metastatic (C), RFS local (D); CMS4 versus CMS2 OS local (E), OS metastatic (F), PFS metastatic (G), RFS local (H), SAR local (I). Dashed vertical line indicates pooled effect size of each meta-analysis.

Supplementary Figure 6. Funnel plots, including Egger's test p-values, for CMS2 versus CMS1 OS local (A), OS metastatic (B), PFS metastatic (C), RFS local (D); CMS3 versus CMS1 OS metastatic (E), PFS metastatic (F), RFS local (G); CMS3 versus CMS2 OS metastatic (H), PFS metastatic (I). Dashed vertical line indicates pooled effect size of each meta-analysis.

Abbreviations: NA, not available.

*Egger's test P value not available since only two studies included.

Supplementary Figure 7. Funnel plots, including Egger's test p-values, for CMS3 versus CMS2 RFS local (A); CMS4 versus CMS3 OS metastatic (B), PFS metastatic (C), RFS local (D); CMS1 mOS metastatic (E), CMS2 mOS metastatic (F), CMS3 mOS metastatic (G), CMS4 mOS metastatic (H). Dashed vertical line indicates pooled effect size of each meta-analysis.

References

- 1. Allen WL, Dunne PD, McDade S, Scanlon E, Loughrey M, Coleman H, *et al.* Transcriptional subtyping and CD8 immunohistochemistry identifies poor prognosis stage II/III colorectal cancer patients who benefit from adjuvant chemotherapy. JCO Precis Oncol **2018**;13:13.
- Budinska E, Popovici V, Tejpar S, D'Ario G, Lapique N, Sikora KO, et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol 2013;231(1):63-76.
- 3. Dienstmann R, Villacampa G, Sveen A, Mason MJ, Niedzwiecki D, Nesbakken A, *et al.* Relative contribution of clinicopathological variables, genomic markers, transcriptomic subtyping and microenvironment features for outcome prediction in stage II/III colorectal cancer. Annals of oncology : official journal of the European Society for Medical Oncology **2019**;30(10):1622-9.
- 4. Dunne PD, O'Reilly PG, Coleman HG, Gray RT, Longley DB, Johnston PG, *et al.* Stratified analysis reveals chemokine-like factor (CKLF) as a potential prognostic marker in the MSI-immune consensus molecular subtype CMS1 of colorectal cancer. Oncotarget **2016**;7(24):36632-44.
- 5. Haasnoot KJC, Backes Y, Moons LMG, Kranenburg O, Trinh A, Vermeulen L, *et al.* Associations of non-pedunculated T1 colorectal adenocarcinoma outcome with consensus molecular subtypes, immunoscore, and microsatellite status: a multicenter case-cohort study. Mod Pathol **2020** doi 10.1038/s41379-020-0598-9.
- 6. Jary M, Hasanova R, Vienot A, Asgarov K, Loyon R, Tirole C*, et al.* Molecular description of ANGPT2 associated colorectal carcinoma. Int J Cancer **2020**;29:29.
- 7. Kwon Y, Park M, Jang M, Yun S, Kim WK, Kim S, *et al.* Prognosis of stage III colorectal carcinomas with FOLFOX adjuvant chemotherapy can be predicted by molecular subtype. Oncotarget **2017**;8(24):39367-81.
- 8. Li Y, Yao Q, Zhang L, Mo S, Cai S, Huang D, *et al.* Immunohistochemistry-Based Consensus Molecular Subtypes as a Prognostic and Predictive Biomarker for Adjuvant Chemotherapy in Patients with Stage II Colorectal Cancer. Oncologist **2020**;14:14.
- 9. Piskol R, Huw L, Sergin I, Kljin C, Modrusan Z, Kim D, *et al.* A Clinically Applicable Gene-Expression Classifier Reveals Intrinsic and Extrinsic Contributions to Consensus Molecular Subtypes in Primary and Metastatic Colon Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research **2019**;25(14):4431-42.
- 10. Roepman P, Schlicker A, Tabernero J, Majewski I, Tian S, Moreno V, *et al.* Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int J Cancer **2014**;134(3):552-62.
- 11. Shinto E, Oki E, Shimokawa M, Yamaguchi S, Ishiguro M, Morita M, *et al.* A Validation Study for Recurrence Risk Stratification of Stage II Colon Cancer Using the 55-Gene Classifier. Oncology **2020**:1-8.
- 12. Song N, Pogue-Geile KL, Gavin PG, Yothers G, Kim SR, Johnson NL, *et al.* Clinical Outcome From Oxaliplatin Treatment in Stage II/III Colon Cancer According to Intrinsic Subtypes: Secondary Analysis of NSABP C-07/NRG Oncology Randomized Clinical Trial. JAMA Oncology **2016**;2(9):1162-9.
- 13. Williams DS, Mouradov D, Jorissen RN, Newman MR, Amini E, Nickless DK, *et al.* Lymphocytic response to tumour and deficient DNA mismatch repair identify subtypes of stage II/III colorectal cancer associated with patient outcomes. Gut **2018**.
- 14. De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, *et al.* Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nature Medicine **2013**;19(5):614-8.
- 15. Guinney J, Dienstmann R, Wang X, de Reynies A, Schlicker A, Soneson C, *et al.* The consensus molecular subtypes of colorectal cancer. Nature Medicine **2015**;21(11):1350-6.
- 16. Cremolini C, Benelli M, Fontana E, Pagani F, Rossini D, Fuca G, *et al.* Benefit from anti-EGFRs in RAS and BRAF wild-type metastatic transverse colon cancer: a clinical and molecular proof of concept study. ESMO Open **2019**;4(2):e000489.
- 17. Del Rio M, Mollevi C, Bibeau F, Vie N, Selves J, Emile JF, *et al.* Molecular subtypes of metastatic colorectal cancer are associated with patient response to irinotecan-based therapies. Eur J Cancer **2017**;76:68-75.
- 18. Kawazoe A, Kuboki Y, Shinozaki E, Hara H, Nishina T, Komatsu Y, *et al.* Multicenter Phase I/II Trial of Napabucasin and Pembrolizumab in Patients with Metastatic Colorectal Cancer (EPOC1503/SCOOP Trial). Clin Cancer Res **2020**;26(22):5887-94.

- Lenz H-J, Ou F-S, Venook AP, Hochster HS, Niedzwiecki D, Goldberg RM, *et al.* Impact of Consensus Molecular Subtype on Survival in Patients With Metastatic Colorectal Cancer: Results From CALGB/SWOG 80405 (Alliance). Journal of clinical oncology : official journal of the American Society of Clinical Oncology **2019**;37(22):1876-85.
- 20. Lenz HJ, Argiles G, Yoshino T, Tejpar S, Ciardiello F, Braunger J, *et al.* Association of Consensus Molecular Subtypes and Molecular Markers With Clinical Outcomes in Patients With Metastatic Colorectal Cancer: Biomarker Analyses From LUME-Colon 1. Clin Colorectal Cance **2020**;15:15.
- 21. Mooi JK, Wirapati P, Asher R, Lee CK, Savas P, Price TJ, *et al.* The prognostic impact of consensus molecular subtypes (CMS) and its predictive effects for bevacizumab benefit in metastatic colorectal cancer: molecular analysis of the AGITG MAX clinical trial. Annals of oncology : official journal of the European Society for Medical Oncology **2018**;29(11):2240-6.
- 22. Morris JS, Luthra R, Liu Y, Duose DY, Lee W, Reddy NG, *et al.* Development and Validation of a Gene Signature Classifier for Consensus Molecular Subtyping of Colorectal Carcinoma in a CLIA-Certified Setting. Clin Cancer Res **2020**;27:27.
- 23. Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, *et al.* Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Oncotarget **2018**;9(27):18698-711.
- 24. Schlicker A, Ellappalayam A, Beumer IJ, Snel MHJ, Mittempergher L, Diosdado B, *et al.* Investigating the concordance in molecular subtypes of primary colorectal tumors and their matched synchronous liver metastasis. Int J Cancer **2020** doi 10.1002/ijc.33003.
- 25. Stintzing S, Wirapati P, Lenz HJ, Neureiter D, Fischer von Weikersthal L, Decker T, *et al.* Consensus molecular subgroups (CMS) of colorectal cancer (CRC) and first-line efficacy of FOLFIRI plus cetuximab or bevacizumab in the FIRE3 (AIO KRK-0306) trial. Ann Oncol **2019**;30(11):1796-803 doi 10.1093/annonc/mdz387.
- 26. Trinh A, Trumpi K, De Sousa EMF, Wang X, de Jong JH, Fessler E, *et al.* Practical and Robust Identification of Molecular Subtypes in Colorectal Cancer by Immunohistochemistry. Clin Cancer Res **2017**;23(2):387-98.
- 27. Woolston A, Khan K, Spain G, Barber LJ, Griffiths B, Gonzalez-Exposito R, *et al.* Genomic and Transcriptomic Determinants of Therapy Resistance and Immune Landscape Evolution during Anti-EGFR Treatment in Colorectal Cancer. Cancer Cell **2019**;36(1):35-50.e9.
- 28. Marisa L, Ayadi M, Balogoun R, Pilati C, Malicot KL, Lepage C, *et al.* Clinical utility of colon cancer molecular subtypes: Validation of two main colorectal molecular classifications on the PETACC-8 phase III trial cohort. J Clin Oncol **2017**;35(15_suppl):3509- doi 10.1200/JCO.2017.35.15_suppl.3509.
- 29. Pogue-Geile KL, Andre T, Song N, Lipchik C, Wang Y, Kim RS, *et al.* Association of colon cancer (CC) molecular signatures with prognosis and oxaliplatin prediction-benefit in the MOSAIC Trial (Multicenter International Study of Oxaliplatin/5-FU-LV in the Adjuvant Treatment of Colon Cancer). Journal of Clinical Oncology Conference **2019**;37.
- Borelli B, Fontana E, Giordano M, Antoniotti C, Bergamo F, Murgioni S, *et al.* Consensus molecular subtypes and CRCassigner classifications in metastatic colorectal cancer (mCRC): Prognostic and predictive impact in the TRIBE2 study. J Clin Oncol **2020**;38(15_suppl):4016doi 10.1200/JCO.2020.38.15_suppl.4016.
- 31. Gomez OH, Soto VH, Machado I, Mendez MC, Cuatrecasas M, Horndler C, et al. Prognostic and predictive role of Consensus Molecular Subtypes (CMS) determined by immunohistochemistry in metastatic colorectal cancer (mCRC). Ann Oncol **2020**;31:S442-S3.
- Lam M, Marie PK, Sarshekeh AM, Morris VK, Duose DY, Zhang B, *et al.* Consensus molecular subtypes (CMS) as a marker for treatment and disease biology in metastatic colorectal cancer (CRC). J Clin Oncol **2020**;38(15_suppl):4089- doi 10.1200/JCO.2020.38.15_suppl.4089.
- 33. Lee MS, Selitsky SR, Parker JS, Auman JT, Wu Y, Hammond K, et al. Association of consensus molecular subtypes (CMS) with time to progression (TTP), progression free survival (PFS), and overall survival (OS) with second-line FOLFIRI +/- regorafenib in metastatic colorectal cancer (mCRC). Journal of Clinical Oncology Conference 2019;37.
- 34. Sarshekeh AM, Lam M, Zorrilla IR, Holliday EB, Das P, Kee BK, *et al.* Consensus molecular subtype (CMS) as a novel integral biomarker in colorectal cancer: A phase II trial of bintrafusp alfa in CMS4 metastatic CRC. J Clin Oncol **2020**;38(15_suppl):4084- doi 10.1200/JCO.2020.38.15_suppl.4084.
- 35. Yuki S, Gamoh M, Denda T, Takashima A, Takahashi S, Nakamura M, *et al.* Analysis of consensus molecular subtypes (CMS) classification in the TRICOLORE trial: A randomized

phase III trial of S-1 and irinotecan (IRI) plus bevacizumab (Bmab) versus mFOLFOX6 or CapeOX plus Bmab as first-line treatment for metastatic colorectal cancer (mCRC). Journal of Clinical Oncology Conference **2020**;38(4).