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Supplementary Material A : Complete Background
For convenience of the reader and ease of exposition, here we re-iterate the formulation of GANs and VAEs from Section 2 in the main text.

A.1. Generative Adversarial Networks

GANs (Goodfellow et al., 2014) are capable of generating realistic synthetic data, and have been successfully applied to a wide range of machine learning
tasks (Dziugaite et al., 2015; Zhu et al., 2016; Fedus et al., 2018; Engel et al., 2019) and bioinformatics (Liu et al., 2019; Marouf et al., 2020). GANs
consist of a generator network (G) and a discriminator network (D) that train adversarially, which enables them to produce high-quality fake samples.
During training, D learns the difference between real and synthetic samples, while G produces fake data to "fool" D. More specifically, G produces a
distribution of generated samples Pg , given an input z ∼ Pz , with Pz being a random noise distribution. The objective of GANs is to learn Pg , ideally
finding a close approximation to the real data distribution Pr , so that Pg ≈ Pr . To learn the approximation to Pg , GANs play a "min-max game" of

min
G

max
D

Ex∼Pr log[D(x)] + Ez∼Pz log[1−D(G(z))],

where both players (G and D) attempt to maximize their own payoff. This adversarial training is critical in GANs’ ability to generate realistic samples.
Compared to other generative models, GANs’ main advantages are (i) the ability to produce any type of probability density, (ii) no prior assumptions for
training the generator network, and (iii) no restrictions on the size of the latent space.

Despite these advantages, GANs are notoriously hard to train since it is highly non-trivial for G and D to achieve Nash equilibrium (Wang et al.,
2019). Another disadvantage of GANs are vanishing gradients where an optimalD cannot provide enough information forG to learn and make progress,
as shown by Arjovsky and Bottou (2017). Another issue with GANs is "mode collapse", that is, whenG has learned to map several noise vectors z to the
same output that D classifies as real data. In this scenario, G is over-optimized, and the generated samples lack diversity. Quantifying how well GANs
have learned the distribution of real data is often complicated, consisting of measuring the dissimilarity between Pg and Pr when Pr is not known or
assumed. Therefore, common ways of evaluating GANs involve direct evaluation of the output (Larsen et al., 2016), which can be arduous.

Although some variations of GANs have been proposed to alleviate vanishing gradients and mode collapse (e.g. Wasserstein-GANs (WGANs)
(Arjovsky et al., 2017) and Unrolled-GANs (Metz et al., 2016)), the convergence of GANs still remains a major problem. During the training progression,
the feedback of D to G becomes meaningless, and if GANs continue to train past this point, the quality of the synthetic samples can be affected and
ultimately collapse. Common variations of GANs cannot be trained as single-stream networks, and a necessary step is to define a training schedule for
G and D separately, adding another layer of complexity. Although all deep learning models are sensitive to hyperparameter choices, Lucic et al. (2018)
show all experimented GANs (including WGANs) are much more sensitive to these choices than VAEs. This can be a drawback in using GANs for
scRNAseq generation since the hyperparameters may need to be re-tuned for every new dataset.

A.2. Variational Autoencoders

VAEs (Kingma and Welling, 2013, 2019) are generative models that jointly learn deep latent-variable and inference models. Specifically, VAEs are
autoencoders that use variational inference to reconstruct the original data, having the ability to generate new data that is "similar" to those already
in a dataset x. VAEs assume that observed data and latent representation are jointly distributed as Pθ(x, z) = Pθ(x|z)P (z). In deep learning, the
log-likelihood Pθ(x|z) is modeled through non-linear transformations, thus making the posterior probability distribution, Pθ(z|x) =

Pθ(x|z)Pθ(z)
Pθ(x)

,

intractable. Due to the intractability of maximizing the expected log-likelihood of observed data over θ, Ep(x)
[
log
∫
Pθ(x, z)dz

]
, the goal is to instead

maximize the evidence lower bound (ELBO):

EQγ(x)(z)

[
log

(
Pθ(x|z)P (z)

Qγ(x)(z)

)]
︸ ︷︷ ︸

ELBO(θ,γ)

≤ logPθ(x),

where Qγ(x)(z) is an auxiliary variational distribution (with parameters γ(x)) that tries to approximate the true posterior Pθ(z|x).
Note that when Qγ(x)(z) = Pθ(z|x), the lower bound approaches the expected log-likelihood, therefore aiming to infer Pθ(z|x). We find the

variational parameters γ for new inputs x using an inference network Enc(·) with parameters φ, such that Encφ(x) = γ(x). As shown by Zhao et al.
(2017), this maximization problem can be written as

argmin
θ,φ

−ELBO(θ, φ) = argmin
θ,φ

(
KL (P (x)||Pθ(x)) + EP (x)

[
KL
(
Qφ(z|x)||Pθ(z|x)

)])
,

where Qφ(z|x) denotes the variational distributions Encφ(x) and KL(·) denotes the Kullback–Leibler (KL) divergence. This yields to the objective
function L(x; θ, φ) = Ez∼Qφ(z|x) [logPθ(x|z)]− KL (Qθ(z|x)||P (z))] . ELBO is the underlying objective function for this work, modified by
Huang et al. (2018) to allow VAEs to train in an adversarial manner while maintaining key mathematical properties, as described in Section 3.

VAEs have also been criticized for generating samples that are "blurry" (adhering to an average of the data points), as opposed to sharp samples that
GANs produce because of adversarial training. One possibility for this blurriness is the effect of maximum likelihood. That is, the model may assign high
probability to other points rather than just the training data, and these points may include “blurry" samples/images. This issue has often been addressed
by defining an adversarial training between the encoder and the decoder, as done in introspective VAEs (IntroVAEs) (Huang et al., 2018), which we use
in our framework. IntroVAEs are single-stream generative models that self-evaluate the quality of the generated images. They have been used mostly in
computer vision, which have performed comparably to their GAN counterparts, in applications such as synthetic image generation (Huang et al., 2018)
and single-image super-resolution (Heydari and Mehmood, 2020).
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A.3. Reconstruction Loss in VAEs

The expected negative reconstruction error LAE is given by:

LAE = Ez∼Q(z|x) [logPθ(x|z)]

and we mention that we “choose" LAE to be the mean squared error (MSE) between the training cells and reconstructed cells (as it is a typical choice).
However, it is important to formally derive the reconstruction loss, since the true reconstruction loss is not MSE alone, as shown below. For simplicity,
we normalize the expected reconstruction error by the number of samples n as

LN =
1

n
Ez∼Q(z|x) [− logPθ(x|z)] ,

and let d(x, y) = ‖x − y‖22. Moreover, for simplicity, we assume that σ2
θ(z) = σ2

θI. Now given the Gaussian assumption on the likelihood Pθ(x|z),
we have the normalized reconstruction loss as:

LN =
1

n
Ez∼Q(z|x)

[
1

2

(
log(2πσ2

θ) +
d (x, µθ(z))

σ2
θ

)]
.

Defining MSE = 1
n
Ez∼Q(z|x)d(x, µθ(z)) and substituting in the above expression yields:

LN =
1

2

(
log(2πσ2

θ) +
MSE

σ2
θ

)
= α+ βMSE, for α, β ∈ R.

Now we can explicitly assuming that σ2
θ = 1

2
will give us:

LN =
log(π)

2
+MSE.

We can see that choosing MSE as the reconstruction loss is a simplification of the true reconstruction loss, which could potentially be sub-optimal in
some cases. However, it is common to take MSE as the reconstruction loss when training a VAE model with a Gaussian Likelihood function [e.g. as done
in Huang et al. (2018) and Daniel and Tamar (2021)].
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Supplementary Material B : Data Post-Processing

B.1. Post-Processing

After generating a count matrix with a generative model (e.g. ACTIVA or scGAN), we add the gene names (from the real data) and save as a Scanpy/Seurat
object. We then use Seurat to identify 3000 highly variable genes through the use of variance-stabilization transformation (VST) [Hafemeister and Satija
(2019)], which applies a negative binomial regression to identify outlier genes. The shared highly variable genes are then used for integration [Stuart et al.
(2019)], which allows for biological feature overlap between different datasets in order to perform the downstream analyses presented in this work. Next,
we perform a gene-level scaling, i.e. centering the mean of each feature to zero and scaling by the standard deviation. The feature space is then reduced
to 50 principal components, followed by Uniform Manifold Approximation and Projection (UMAP) [McInnes et al. (2018)] and t-distributed Stochastic
Neighbor Embedding (t-SNE) [van der Maaten and Hinton (2008)]. As noted by Marouf et al. (2020), analysis with lower-dimensional representations
have two main advantages: (i) most biologically relevant information is captured while noise is reduced and (ii) statistically, it is more acceptable to
use lower dimensional embeddings in classification tasks when samples and features are of the same order of magnitude, which is often the case with
scRNAseq datasets (such as the ones we used). Lastly, we use Scater [McCarthy et al. (2017)] to visualize the datasets.

Supplementary Material C : Complete Computational Environment
Development and testing were done on Accelerated Computing EC2 instances (p3.2xlarge and p3.8xlarge) of Amazon Web Services. All
requirements and dependencies are automatically installed by our package and are listed in a requirements file, but for the sake of completeness, they are
as follows: Python v3.7.6, PyTorch v1.5.1, NumPy v1.18.5, SciPy v1.4.1, Pandas v1.2.0, Scanpy v1.6.0, AnnData v0.7.5, and Scikit-learn v0.24.0. For
data pre- and post-processing, we used LoomPy v3.0.6, SeuratDisk v0.0.0.9013, Seurat v3.2.3, scater v1.16.2, , and R v4.0.3. For evaluation of dropout
rates we used M3Drop v1.18.0, ggplot2 v3.3.2. Differential state analysis was performed with muscat v1.6.0. The scGAN package was run in a Docker
container (using the provided dockerfile at https://github.com/imsb-uke/scGAN/tree/master/dockerfile). Reported training times
for ACTIVA/scGAN were averages of 5 times on a single NVIDIA-Tesla V100 GPU (Table S1). Inference times were averages of 5 measurements on (i)
V100 GPU (GPU time) and (ii) 2.3 GHz Quad-Core Intel Core i7 (on a 2020 MacBook Pro).

Supplementary Material D : GPU Training Times

Table S1. Training time (in seconds) on 68K PBMC for ACTIVA and scGAN on 1 NVIDIA Tesla V100 GPU. We trained each model 5 times under the
same conditions to find an average training time. We have not included cscGAN times since training that model took longer than scGAN. We can see that
ACTIVA trains much faster (6.3 times faster on average). scGAN and cscGAN were run in a Docker container (by Marouf et al.) using the Dockerfile located at
https://github.com/imsb-uke/scGAN/tree/master/dockerfile).

Iteration ACTIVA scGAN cscGAN
1 25968.2447 164225.5618 175978.2588
2 26218.7306 165308.7142 176041.7922
3 25935.2738 164391.8113 176318.0701
4 26091.8337 165281.5137 175941.7097
5 25915.6733 164988.1371 175792.6410

Average
26025.95

(≈7.2 hours)
164839.14

(≈45.7 hours)
176014.49

(≈48.8 hours)

Table S2. Training time (in seconds) on Brain Small for ACTIVA and scGAN on 1 NVIDIA Tesla V100 GPU. We trained each model 5 times under the same
conditions to find an average training time. ACTIVA trains approximately 17 times faster than scGAN. scGAN and cscGAN were run in a Docker container (using
the Dockerfile located at https://github.com/imsb-uke/scGAN/tree/master/dockerfile).

Iteration ACTIVA scGAN cscGAN
1 8277.4867 142371.9793 145980.3154
2 7922.1005 141103.8196 145952.2580
3 8107.3591 143008.7401 145261.1851
4 7983.4031 142532.3804 146076.8253
5 8084.2473 142173.5900 146009.3626

Average
8074.91

(≈2.2 hours)
142238.10

(≈39.5 hours)
145855.98

(≈40.5 hours)

https://github.com/imsb-uke/scGAN/tree/master/dockerfile
https://github.com/imsb-uke/scGAN/tree/master/dockerfile
https://github.com/imsb-uke/scGAN/tree/master/dockerfile
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Table S3. Training time (in seconds) on NeuroCOVID for ACTIVA and scGAN on 1 NVIDIA Tesla V100 GPU. We trained each model 5 times under the same
conditions to find an average training time. ACTIVA trains approximately 6 times faster than scGAN. scGAN and cscGAN were run in a Docker container (using
the Dockerfile located at https://github.com/imsb-uke/scGAN/tree/master/dockerfile).

Iteration ACTIVA scGAN cscGAN
1 29604.6613 184421.5509 187618.5119
2 29351.4168 183863.5722 187440.2821
3 29719.3984 184249.4072 188414.8095
4 29492.1603 183120.8326 187922.5381
5 29575.2929 183814.1538 187924.3118

Average
29548.58

(≈ 8.2 hours)
183749.10

(≈ 51.0 hours)
187864.09

(≈ 52.1 hours)

Supplementary Material E : Runtime Analysis
As mentioned in the main manuscript, ACTIVA trains much faster than the GAN-based models due to its architecture. ACTIVA’s runtime depends on a
number of factors, such as the complexity of the dataset, number of genes, sparsity and the hardware used for training −even using different GPUs will
result in training time differences. However, since ACTIVA uses a batch training (as done in almost all deep learning models), out of memory (OOM)
errors are more controlled, and the runtime scales linearly (at worst). Here, we aim to demonstrate this fact with so-called "corner" cases. Due to the
nature of scRNAseq experiments, we believe that it is unlikely that ACTIVA will be trained with 105 cells or more, but we provide the runtimes for 105,
2× 105 and 5× 105 for reference. Due to the computational costs, we did not replicate the runtime experiment for scGAN and cscGAN. However, the
runtimes can be extrapolated from our previous results and Marouf et al. (2020).

To construct the mentioned corner cases, we generated random data Xruntime ∈ Rn×d, where d is the number of genes in 68K PBMC, and n is the
number of cells (n ∈ {100000, 200000, 500000}). Next, we measured the percentage of non-zero entries in the 68K PBMC data (often referred to as
density). We found that the 68K PBMC had a density of about 3%. However, we set the density of Xruntime to be 30% to create a “worst-case" for
training. Since we were only interested in runtime of ACTIVA for Xruntime and not the data generation quality for this random data, we used all of
Xruntime for training. The training data dimensions were 100000 × 17789, 200000 × 17789 and 500000 × 17789. We repeated training on each
dataset five times, and present the runtimes in Table S4.

Table S4. Runtime analysis for ACTIVA with various number of cells. To simulate the “worst-cases", we chose the same number of genes as in 68K PBMC (17789),
and we took the density of the count matrix to be 30% (compared to about 3% for 68K PBMC). We then trained ACTIVA for various number of cells for 5 iterations,
which we present in this table. The reported times are measured in seconds.

Iteration 100K 200K 500K
1 33143.3375 61270.0890 129722.8039
2 33053.8834 61255.4751 126041.6814
3 32931.2144 61183.5369 124377.9299
4 32995.6469 61230.1366 130018.3193
5 33181.0439 61091.5801 128588.0704

Average
33061.0252

(≈ 9.1 hours)
61206.1635

(≈ 17.0 hours)
127749.7609

(≈35.48 hours)

https://github.com/imsb-uke/scGAN/tree/master/dockerfile
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Supplementary Material F : Results on NeuroCOVID Data
In this section, we present our qualitative and quantitative results on our third dataset: NeuroCOVID.

Fig. S1: UMAP plot of ACTIVA generated cells compared with test set and scGAN generated cells, colored by clusters for NeuroCOVID. ACTIVA’s
cell-type conditioning encourages the model to generate more cells per cluster, meaning that ACTIVA will generate more cells from the rare populations
as shown in the above visualization.

Fig. S2: We performed the correlation analysis described in Section 5.3, where we looked at the correlation of top genes 5 genes from each cluster, and
measured the pair-wise correlation of those genes in each dataset (test set, ACTIVA and scGAN). As presented in this figure, ACTIVA resembles closer
relationship to the real data than scGAN, achieving correlation discrepancy (CD) score of 4.19 in comparison to scGAN’s 7.31 (lower CD is better).
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Fig. S3: Random Forest identification of synthetic data (generated from ACTIVA and scGAN) against the real data (test set). As described in the main
manuscript, AUC’s closer to 0.5 indicate better performance for the generative model, since that means that the classifier could not properly distinguish
the difference between real cells and generated cells.

Fig. S4: Mean F1 scores of Random Forest (RF) classifier for NeuroCOVID training data (with no augmentation), shown in blue, and training data
augmented with ACTIVA (shown in red) and scGAN (shown in purple), respectively. Error bars indicate the range for five different random seeds for
sub-sampling cluster 7 cells in NeuroCOVID data.
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Supplementary Material G : Choosing Adversarial Constant m
Ensuring the numerical balance between the KL divergence regularization of real and fake samples is crucial to ACTIVA’s sample quality. Therefore an
m that is extremely large or small could result affect the quality of the generated cells. The adversarial training in IntroVAE is similar to Energy-based
GANs [Zhao et al. (2016)]. The following are two strategies we followed for choosing an appropriate value of m, based on Zhao et al. (2016):

1. An effective strategy is to train the model as VAE for n epochs and track the minimized KL divergence. This will provide an estimate of the capacity
of Gen’s reconstruction of single cells without a critic’s input. Then, set m to be a value close to minimized KL divergence after n epochs. This
feature is already implemented in our package, with a default VAE-only training of 10 epochs. In practice, we found that values of m roughly close
to this minimized divergence performed well.

2. Another strategy for choosing m can be a rough grid-search starting from large values of m (which could be the upper bound of KL values) and
gradually going to 0.

Supplementary Material H : Network Architecture
In this section, we present the architecture of our model with the input x ∈ RM . Latent vectors of our model live in a 128-dimensional space, but for
the sake of generality, we assume z ∈ RD . In the encoder and generator networks, Adam (Kingma and Ba, 2015) optimizer is used with a learning
rate lr = 0.0002, and moving averages decay rates β1 = 0.9, β2 = 0.999. Gradients are calculated on mini-batches of size 128 with the adversarial
constant m = 110. We describe each component in more detail in H.1..

H.1. Training and Inference Procedure

Unlike GANs, our model does not require a training schedule. The cell-type classifier in ACTIVA can be pre-trained or trained simultaneously withEnc
and Gen. To start the adversarial training and pick an appropriate m, we first train the model as a VAE for 10 epochs while training ACTINN in parallel
(these options are readily available and adjustable in our package). After the initial warm-up, we train the IntroVAE component for 600 epochs with
α1 = 1 and α2 = 0.5 (from Eq. (4)-(5)). We also provide an option for dynamic weight-balancing using SoftAdapt that would be useful in the case of a
posterior collapse (which did not occur in our experiments).

For inference, we input a random noise tensor sampled from a multi-variate Gaussian to the trained generator. For cell-specific generation, outputs are
automatically filtered through the trained classifier to produce the desired sub-populations on demand. Tutorials and notebooks on training and inference
are available via link provided in abstract.

H.2. Encoder Network

Fig. S5: The encoder network of ACTIVA.

Enc consists of fully connected layers, with Rectified Linear Units (ReLU ) [Nair and Hinton (2010)] as the activation between two layer, where we
also perform batch normalization operation in [Ioffe and Szegedy (2015)] (denoted as BN ) after ReLU . The input to the network is x ∈ RM , which
goes through the network with layers {1024, 512, 256, 128}, as shown in Fig. S5. Adam [Kingma and Ba (2015)] optimizer is used with a learning rate
lr = 0.0002, and moving average decay rates β1 = 0.9, β2 = 0.999. Gradients are calculated on mini-batches of size 128, with the adversarial constant
m = 110.
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H.3. Generator Network

Fig. S6: Architecture of ACTIVA’s generator network.

The generator network mirrors the encoder network, consisting of an input latent vector z ∈ RD going through the layers {256, 512, 1024,M} as
shown in Fig. S6. Note that in the last layer of the generator (mapping from 1024 to M ), we use ReLU without BN . This is because we want to ensure
that all generated values are non-negative. Similar to the encoder, we optimize the network using Adam with a learning rate lr = 0.0002, β1 = 0.9,
β2 = 0.999. Gradients are calculated on 128-cell mini-batches.

H.4. Automated Cell Type Network (ACTINN)

Fig. S7: Automatic cell-type identification network of ACTIVA, which is ACTINN.

Ma and Pellegrini (2019) use a fully connected neural network architecture for supervised classification of cell-types. scRNAseq data is usually high
dimensional and often sparse, making neural network a promising method for analyzing such data. We implemented ACTINN in PyTorch, and used it
for identifying cell-types and conditioning ACTIVA. Our implementation has same architecture as in Ma and Pellegrini (2019) which was implemented
in TensorFlow (S7). Cross entropy is used to measure the loss between the predicted classes and the actual cell types. Optimization is done with Adam
and an exponential "staircase" decay is used, with initial learning rate being lr = 0.0001 and a decay rate of 0.95 applied after every 1000 optimization
steps. Our implementation of ACTINN in PyTorch differs from the original implementation in two ways: (1) we do not use a SoftMax layer between the
last hidden layer and the output layer (due to the implementation of cross-entropy in PyTorch), and (2) we train for fewer number of epochs (between
5-10 as opposed to 50 epochs in the original implementation). Although we train for fewer epochs that Ma and Pellegrini (2019), we did not notice a drop
in the accuracy of our model; that is, our results on 68K PBMC closely match the results found by Abdelaal et al. (2019) (results are shown in Tables
S6-S7). Gradients are calculated on mini-batches of size 128.
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Supplementary Material I : Downsampling and Data Augmentation

Fig. S8: Downsampling process for evaluating the impact of data augmentation with ACTIVA (Test splits shown in red frames and Training splits are
in blue frames, with ACTIVA generated in purple frame). We first separate the test set from the training set, and subsequently label cluster 2 cells to
differentiate them from all other clusters. Cells from all other clusters (besides cluster 2) are used in all training and testing modes. For cluster 2 cells,
we randomly subsample a fraction of the cells (10%, 5%, 1% or 0.5%) and use this subset in addition to all other cells to train ACTIVA. In other words,
ACTIVA and the RF will include (i) training data from all other clusters and (ii) one of the downsampled version of cluster 2 cells (highlighted in light
blue). For the performance evaluation of RF without data augmentation ("no-augmentation"), we only use the desired cluster 2 subset and all other training
cells to train the classifier. For training mode ACTIVA augmentation, we generate 1500 cells for data augmentation, and add to the training cells we used
in "no-augmentation" mode. So for training the RF in augmentation mode, we use (i) training data from all other clusters, (ii) one of the downsampled
version of cluster 2 cells (highlighted in light blue) and (iii) 1500 ACTIVA generated cells [trained on the same donwsampled data in (ii)].
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Supplementary Material J : Additional Results

J.1. Dropout Rate

A common feature in scRNAseq data is technical zero counts (referred to as “dropouts") which can arise from low RNA capture. To analyze the dropout
rates as a function of mean gene expression for our generated data, we use functions from M3Drop (Andrews and Hemberg, 2018) to extract the observed
dropout rates for ACTIVA and scGAN and compare those with the raw data for 68K PBMC, Brain Small and NeuroCOVID. Our analysis showed that our
model produced a lower dropout rate for higher mean expressions, which can we attribute to the assumption on the prior distribution. Our dropouts were
very close to scGAN’s for 68K PBMC, while for NeuroCOVID, our data resembled the real data more closely. In the Brain Small dataset, we observed a
steeper dropout rate for ACTIVA in relation to the real dataset. We hypothesize that the steeper dropout rate is due to fewer samples in the training data,
which was about 4 times fewer than 68K PBMC and NeuroCOVID.

Fig. S9: Observed dropout rates as a function of log10(Gene Expression) for all three datasets. The dropout rate for ACTIVA is shown in Black (two-
dashed line), Real in green (dot-dashed line), scGAN in Orange(dotted line) with the 95% confidence interval for each line shown in grey. Data was fit
using a binomial generalized linear model.

J.2. Differential States in Clusters

As another evaluation metric for ACTIVA’s generative quality, we perform a differential state (DS) analysis using muscat (Crowell et al., 2020). DS
accounts for for sample-to-sample as well as cell-to-cell variability, allowing us to draw conclusions extrapolate to the samples rather than cells (Crowell
et al., 2019). In our case, we measure the sample-to-sample variability to be between generated cells and the real cells (test data). The idea is that if
the generative models generate realistic samples, then there should be fewer DS genes in relation to the real data. To perform the differential state (DS)
analysis, we sample each data (ACTIVA, real test set and scGAN) without replacement to create 5 pseudo-replicates for each dataset, which formed
the “pseudobulk data". From this pseudobulk, ACTIVA was directly compared with the real (referred to as ACTIVA-Real in Fig. S10) and scGAN was
compared with the real (scGAN-REAL). For all three datasets, we find that the generated-real cluster pairs contains only a few DS genes in comparison to
the real data, indicating a high quality of synthetic data. However, ACTIVA has fewer DS genes for NeruoCOVID and Brain Small compared to scGAN,
while scGAN having fewer DS genes in the 68K PBMC clusters.

Fig. S10: Barplots displaying the percent of genes with no differential state per cluster for all three datasets. Values closer to 100% indicate a better match
with the real data. In orange, ACTIVA is compared with the real data (test set), and in blue, scGAN is compared with the real data (test set). Our results
show a high null differential state per clusters for all three datasets. The statistical analyses were performed in cluster with sufficient number of cells
(clusters with too few cells are not shown here).



12

J.3. Accuracy of the Classifier on Each Dataset

As mentioned in the main manuscript, the sub-population cell generation depends on correctly classifying the cell-types. Here, we show that ACTIVA’s
classifier, ACTINN, can classify rare-cell population, with training cells as few as 71 cells (see Table S7). We did observe that in some cases, if the number
of training samples for a specific cluster is extremely low, then ACTIVA does not learn that cell-type (as it is expected from any machine learning model);
for example, the classifier does not learn the 10th cell-types of the PBMC data, since there were only 19 training cells available (out of 61K training cells).
However, for cluster 2 cell population, having 50 cells resulted in an F1 score of 0.74. This was useful for studying the impact of data augmentation with
ACTIVA, as described in Section 5 of the main manuscript.

Table S5. Accuracy of ACTIVA’s classifier network (ACTINN) on the test sets of Brain Small, 68K PBMC and NeuroCOVID. Three metrics were used: (1)
Accuracy-number of correct predictions over all predictions; (2) F1 Score (Non-Weighted): unweighted mean of per-label accuracy (not counting for cell-type
imbalance); and (3) Weighted F1 Score: per-type accuracy but weighted by the number of cells for each cell-type.

Test Set Accuracy F1 Score (Non-Weighted) Weighted F1 Score
Brain Small 0.9649 0.9674 0.9654
68K PBMC 0.9223 0.7448 0.9216

NeuroCOVID 0.9790 0.9697 0.9790

Table S6. Here we present the accuracy of ACTIVA’s classifier network on the test and training set for Brain Small dataset (see main text Section 4.3 and Fig. 3).

Cluster Testing Cells Test Precision Test Recall Test F1-Score Training Cells Train Precision Train Recall Train F1-Score
0 978 0.97 0.97 0.97 8808 0.99 1.00 0.99
1 304 0.98 0.99 0.98 2738 0.99 1.00 0.99
2 271 0.90 0.93 0.92 2439 0.98 0.99 0.98
3 182 0.99 0.96 0.97 1646 1.00 0.98 0.99
4 141 0.99 0.94 0.97 1271 1.00 0.99 0.99
5 59 0.98 0.98 0.98 535 1.00 0.99 1.00
6 35 1.00 0.94 0.97 323 1.00 0.97 0.98
7 27 1.00 0.93 0.96 243 0.99 0.99 0.99

Table S7. Here we present the accuracy of ACTIVA’s classifier network on the test and training set for 68K PBMC dataset(see main text Section 4.3 and Fig. 3).

Cluster Testing Cells Test Precision Test Recall Test F1-Score Training Cells Train Precision Train Recall Train F1-Score
0 1791 0.89 0.90 0.90 15768 0.99 1.00 1.00
1 1545 0.88 0.87 0.88 13608 1.00 0.99 1.00
2 1515 0.93 0.96 0.95 13344 1.00 1.00 1.00
3 697 0.91 0.87 0.89 6145 1.00 0.99 1.00
4 483 0.99 0.98 0.99 4258 1.00 0.99 1.00
5 466 0.97 0.97 0.97 4105 1.00 1.00 1.00
6 413 1.00 1.00 1.00 3644 1.00 1.00 1.00
7 71 0.98 0.82 0.89 626 1.00 0.95 0.97
8 8 0.00 0.00 0.00 71 1.00 0.68 0.81
9 2 0.00 0.00 0.00 19 0.00 0.00 0.00



13

J.4. Gene Expressions

Fig. S11: UMAP of Synthetic Cells (generated by ACTIVA and scGAN with a subset of real data as training data) compared to real data (not used in
training) colored by gene expression. Column (A) . Column A: here we present results from 68K PBMC data with a UMAP of 6991 cells generated by
ACTIVA and scGAN, respectively, along with the test set, colored by the gene expression of two markers genes. Column B: we show the results on Brain
Small test set and 1997 ACTIVA and scGAN generated cells, colored by the gene expression of two marker genes. For both datasets, we see that cells
generated by ACTIVA resemble the real data well while more diversity is present among the generated cells.

Fig. S12: Logarithmic expression of the top marker genes. First 5 are for cluster 1 and last 5 for cluster 2 in 68K PBMC test set (in blue) and ACTIVA
generated cells (in red). The similarity between the distributions indicates that ACTIVA has learned the underlying marker gene expression.
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J.5. Manifold Analysis

Fig. S13: UMAP of cells generated by ACTIVA compared to real test cells (not used in training) from 20K Brain Small. The histograms on top and right
of the UMAP plot display the counts of cells on the horizontal and vertical axis, respectively. This figure shows that ACTIVA has learned the underlying
distribution of the real data while having some diversity in the generated samples (which is desired for generative models).

Fig. S14: t-SNE of all the cells in the test set (in grey), real cluster 2 cells (in blue), and ACTIVA generated cells when trained with only 0.5% of cluster
2 cells (in red). This figure illustrates that ACTIVA learns to generate a sub-population even when it is trained on 239 cells (out of 7915 training cells).
This qualitative evaluation, combined with the results shown in the manuscript, show promising application of ACTIVA for improving downstream
classification of rare populations.
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