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Text A.  Model identifiability results 
Without a priori knowledge of the underlying process, it is difficult to assess the utility of 

model calibration, which indirectly quantifies parameters such as resistant fraction.  Here we 
approach this problem by generating simulated data sets based on six sets of assumptions about 
that underlying process. This model family includes three sets of assumptions concerning the form 
of k, which are described as models 1, 2, and 3; independently, tr can be zero or non-zero.  We test 
the ability of the modeling framework to correctly characterize the process and to accurately 
extract parameter values in these cases where we know the underlying ground truth and can 
quantitatively assess the modeling framework’s accuracy. 

 
Data set Proliferation Delay Death Delay 

A tr ≥ 0 Exponential (Model 1) 
B tr ≥ 0 Linear (Model 2) 
C tr ≥ 0 None (Model 3) 
D tr = 0 Exponential (Model 1) 
E tr = 0 Linear (Model 2) 
F tr = 0 None (Model 3) 

Table A. Model assumptions used to generate simulated data sets.  Simulated data sets were 
generated representing the six possible combinations of assumptions about delays on cell 
proliferation and cell death following drug exposure. 

Each data set consists of 1000 randomly generated parameter sets and 1000 cell number 
curves generated using the parameter sets described in Tables A and B.  The parameters were 
generated from distributions based on reasonable physiological assumptions:  fr was selected from 
a uniform distribution (0≤fr≤1) in order to fully explore the possible range, while other parameters 
were selected from normal distributions.  Each parameter was bounded at 0. 
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Data set A (𝜇, 𝜎) B (𝜇, 𝜎) C (𝜇, 𝜎) D (𝜇, 𝜎) E (𝜇, 𝜎) F (𝜇, 𝜎) 
tr 200, 100 200, 100 200, 100 - - - 
gr 0.025, 

0.005 
0.025, 
0.005 

0.025, 
0.005 

0.025, 
0.005 

0.025, 
0.005 

0.025, 
0.005 

kd 0.005, 
0.0015 

0.005, 
0.0015 

0.005, 
0.0015 

0.005, 
0.0015 

0.005, 
0.0015 

0.005, 
0.0015 

td 0.02, 0.005 72, 24 - 0.02, 0.005 72, 24 - 
N0 5000, 1000 5000, 1000 5000, 1000 5000, 1000 5000, 1000 5000, 1000 
Nmax 60000, 

5000 
60000, 
5000 

60000, 
5000 

60000, 
5000 

60000, 
5000 

60000, 
5000 

g0 0.025, 
0.002 

0.025, 
0.002 

- 0.025, 
0.002 

0.025, 
0.002 

- 

Table B.  Parameter distributions for simulated data sets.  Simulated data set parameter 
distributions were used to generate data sets A-F.  Values are given as mean, standard deviation 
for each parameter; “-“ indicates that the parameter is not present in the model in question 

Each of the 6000 total cell number curves was used to calibrate each of the 18 models 
described on Table A. The 18 models stem from these 6 sets of assumptions about the underlying 
ground truth, along with two additional tests regarding the effectiveness of calibrating the model 
parameters tr and Nmax. Testing whether tr should be calibrated adds 3 models rather than doubling 
the number because models 7, 8, and 9 (and corresponding data sets D, E, and F) already assume 
tr = 0 and therefore do not require further testing.  Testing whether Nmax can be fixed rather than 
calibrated then doubles the number of models which must be tested to 18. 
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Figure A.  Model performance on data with no proliferation delay.  Model performance 
when tr = 0 is tested for models 1-9 by calibrating data generated from parameter sets D, E, and F 
where tr=0.  Each point represents the resistant fraction parameter value extracted from one cell 
number curve; the closer to the x = y diagonal, the more accurate the extracted parameter value. 

When data generated from parameter sets D, E, and F (where tr=0) is used to calibrate 
models 1-9 (Fig A), models 4, 5, and 6 are unable to extract accurate parameter values. Models 1 
and 7, models 2 and 8, and models 3 and 9 are equivalent to each other under these circumstances 
and perform identically.  In each case, the model was used to extract parameter values from a 
matching data set in the handling of the sensitive cell death delay.  
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Figure B.  Model performance on data with a proliferation delay.  Model performance when 
tr ≥ 0 is tested for models 1-9 by calibrating data generated from parameter sets A, B, and C 
where tr≥0.  Each point represents the resistant fraction parameter value extracted from one cell 
number curve; the closer to the x = y diagonal, the more accurate the extracted parameter value. 

When data generated from parameter sets A, B, and C (where tr≥0) is used to calibrate 
models 1-9 (Fig B), models 4-9 are not capable of extracting accurate parameter values.  Once 
again, in each case the data displayed is for a model used to extract parameter values from the data 
set with matching handling of sensitive cell death.  Combined with Fig A, these results prompt the 
conclusion that models 4-6 never perform acceptably, models 7-9 extract parameter values 
reasonably well when used on data where tr=0 but do not perform well when used on data where 
tr≥0, and models 1-3 perform suitably under both conditions.  Because models 4-6 were unable to 
accurately calibrate values of tr even when used with simulated data generated based on identical 
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assumptions, we conclude that it is not possible to extract accurate values of tr from the cell number 
curve alone through computational analysis with our framework; tr must instead be measured 
manually.  If tr were found to be zero when manually quantified, models 1-3 and 7-9 would be 
equivalent in terms of analysis, but models 7-9 would be preferred for presentation due to their 
lower complexity; if tr were found to be non-zero (as is indeed the case), models 7-9 would be 
insufficient and models 1-3 preferred. 
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Figure C.  Model performance with fixed vs. calibrated carrying capacity.  The necessity of 
calibrating Nmax, the carrying capacity for logistic growth, is tested by calibrating models 1-3 and 
10-12 with their respective matching data sets.  Each point represents the resistant fraction 
parameter value extracted from one cell number curve; the closer to the x = y diagonal, the more 
accurate the extracted parameter value is. 

To test whether the carrying capacity, Nmax, must be calibrated or whether it could be fixed, 
we compared the performance of models 1-3 and their matching models 10-12, which are identical 
other than in the handling of Nmax.  Models 1-3 calibrate Nmax as a parameter, while models 10-12 
use a fixed value.  We are testing these models on simulated data for which we know the actual 
mean carrying capacity and we use the mean of that distribution as the fixed value for models 10-
12.  Each model was used to calibrate the data set generated under matching assumptions for tr and 
k – data set A for models 1 and 10, data set B for models 2 and 11, and data set C for models 3 and 
12 (Fig C).  Models 10-12 exhibit dramatically degraded ability to extract accurate parameter 
values compared to models 1-3; further, in these simulated data sets we know the true mean 
carrying capacity – in actual experimental data there is some variation based on experimental 
conditions.  Based on the inability of models 10-12 to extract accurate parameter values even under 
ideal conditions, we conclude that Nmax cannot be given a fixed value, and instead must be 
calibrated. 
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Figure D.  Model performance on matched and mismatched death delay assumptions.  
Model performance under the three forms of death delay is tested by using models 1, 2, and 3 to 
calibrate simulated data sets A, B, and C. Each point represents the resistant fraction parameter 
value extracted from one cell number curve; the closer to the x = y diagonal, the more accurate 
the extracted parameter value. 

We then tested our modeling framework for its ability to detect the underlying ground truth 
among models 1, 2, and 3 by calibrating each of these models to simulated data set A, which was 
generated based on assumptions matching model 1, simulated data set B, which was generated 
based on assumptions matching model 2, and simulated data set C, which was generated based on 
assumptions matching model 3 (Fig D).  When evaluating the accuracy of extracted parameter 
values, we found that model 3 does a poor job of extracting parameter values from simulated data 
sets A and B, which were generated from mismatching sets of assumptions, while models 1 and 2 
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each perform reasonably well on both data sets A and B, but each model performs better when 
used on the appropriate matching data set (model 1 with data set A, model 2 with data set B).  All 
three models perform similarly well when used to extract parameter values from data set C.  These 
performance differences can be assessed quantitatively using the PCC, with results matching the 
visual assessments laid out in Fig A-D (Table C). 
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 A B C D E F 
1 0.994 0.992 0.999 0.931 0.903 0.984 
2 0.968 0.997 0.999 0.846 0.937 0.969 
3 0.748 0.935 0.999 0.693 0.853 0.996 
4 0.342 0.266 0.218 -0.612 -0.671 -0.652 
5 0.334 0.277 0.211 -0.370 -0.408 -0.449 
6 0.194 0.241 0.245 -0.177 -0.203 -0.154 
7 0.123 0.200 0.179 0.931 0.903 0.984 
8 0.063 0.189 0.184 0.846 0.937 0.969 
9 -0.066 0.139 0.141 0.693 0.853 0.996 
10 0.741 0.671 0.702 0.228 0.259 0.264 
11 0.784 0.724 0.734 0.237 0.291 0.237 
12 0.532 0.599 0.706 0.471 0.609 0.683 
13 0.272 0.222 0.186 -0.608 -0.658 -0.662 
14 0.298 0.265 0.189 -0.370 -0.434 -0.471 
15 0.200 0.253 0.235 0.201 0.179 0.160 
16 0.030 0.083 0.134 0.228 0.259 0.264 
17 0.024 0.092 0.143 0.237 0.291 0.237 
18 -0.047 0.076 0.129 0.471 0.609 0.683 

Table C.  Model performance summarized via PCC.  Model performance evaluated via 
Pearson’s Correlation Coefficient (PCC) between ground truth values of fr and extracted values 
of fr for each possible combination of model and simulated data set.  Combinations of a model 
and data set which match in underlying ground truth assumptions are designated with bold text. 

This evaluation of the accuracy of the extracted parameter values demonstrates that 
extracted parameter values are more accurate when obtained from a model which more closely 
resembles the underlying ground truth of the process.  It also demonstrates that parameter values 
extracted by our modeling framework are acceptably accurate if the model matches the underlying 
ground truth (PCCs of 0.994, 0.997, and 0.999 for models 1, 2, and 3 respectively), provided 
models 1-3 are used in cases where tr is non-zero, or models 7-9 in cases where tr can be verified 
to be 0.  These parameter values do not speak to the accurate identification of which model to use; 
model selection was performed via AIC, and the results conveyed in the main text. To summarize, 
the AIC correctly selects model 1 for 87% of simulated cell number curves in data set A, model 2 
for 84% of simulated cell number curves in data set B, and model 3 in 97% of simulated cell 
number curves in data set C.  This level of accuracy is sufficient to provide strong overall evidence 
when considering a large data set in total.  Additionally, we must keep in mind that these models 
represent a simplification of the underlying processes; the phenomena we are measuring do not 
correspond exactly to one model or the other. The selection of one model over the other simply 
indicates that the measured behavior is better recapitulated by that model under the experimental 
conditions. 

Text B.  Constraining the model calibration 
One of the key steps in model calibration is properly constraining the parameter space to 

ensure that the optimum solutions identified by the modeling framework will be physiologically 
meaningful. 
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Resistant fraction, fr 

The resistant fraction is allowed to vary from zero to one in all calibrations. 
0 ≤ 𝑓) ≤ 1	

Relapse growth rate, gr 
The relapse growth rate must be constrained with a minimum value in order to require the 

modeling framework to meaningfully fit fr.  Without such a constraint, in cases where growth is 
not detected by the end of the experiment, the framework could not distinguish between a solution 
with a resistant fraction of 0 accompanied by an arbitrary value of gr and a solution with a growth 
rate of 0 and an arbitrary value for fr.  The minimum value for gr was set at 0.003	 ./001

./00∗345)
 based 

on the practical limit of detectability within the time frame of the experiment.  Values of gr fit at 
that minimum value of 0.003 should be interpreted to indicate that the growth rate is 
0.003	 ./001

./00∗345)
 or less, with the experimental setup insufficiently sensitive to limit this more 

precisely. 
A maximum constraint was also placed on gr, because in cases where fr approaches 0, the 

solution is not sensitive to the value of gr – gr is arbitrary.  A value of 0.1	 ./001
./00∗345)

 was selected 
for this constraint; this value is more than double the maximum proliferation rate actually observed 
for any of the cell lines used in this work, so again any value fit at the limit of 0.1	 ./001

./00∗345)
 should 

be interpreted as indicating that gr could not be meaningfully fit for that replicate culture. 

Sensitive cell death rate, kd 

Maximum and minimum constraints were placed on kd, such that 0.0005 ./001
./00∗345)

≤ 𝑘8 ≤

0.05 ./001
./00∗345)

.  The minimum constraint is based on the limits of detectability over the time frame 
of the experiment.  The maximum constraint was set at an order of magnitude higher than that 
typically observed in cultures receiving the highest doses of doxorubicin; in such cultures, the 
death rate can be fit with high confidence due to the prolonged duration of the population decline. 
While it is possible that such cultures do not exhibit the maximum death rate theoretically possible, 
we believe it is unlikely that we would observe a death rate more than an order of magnitude higher 
in this set of experiments.  Values of kd fit at the constraints should be interpreted to indicate that 
the data for that particular replicate is insufficient to accurately determine kd.   

Sensitive cell death delay half-life, td 
The sensitive cell death delay half-life, td, is constrained with a minimum value of 0.3 hours 

in all data sets.  This minimum value allows model 1 to recapitulate the performance of model 3, 
which has no time delay on cell death, when appropriate for the data.  Values fit at this minimum 
can be interpreted to suggest that any time delay on cell death is not detectable. 

The maximum constraint for td is varied based on the time over which the data being 
calibrated was collected.  Because the data for each replicate culture is truncated, either based on 
the maximum cell number or on data reliability, data sets can vary in duration from approximately 
90 hours in some untreated controls to over 600 hours for the highest impact drug exposures.  Long 
data sets allow the sensitivity to detect longer delays on death – in a short data set, it is not possible 
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to distinguish between cell death with a long delay, and cell survival, so we are limited to detecting 
cell death that occurs with a shorter delay.  The maximum constraint for td was varied such that 
𝑡8 ≤

:;<=>?
@

, where tfinal represents the time of the last data point calibrated for the particular 
replicate. 

Carrying capacity, Nmax 
In data sets where net regrowth is observed for a relatively short amount of time, or where 

the total cell number is very low over the course of the experiment, the ability to accurately 
determine the carrying capacity is degraded.  Carrying capacity was therefore constrained such 
that 5,000 ≤ 𝑁BCD ≤ 120,000.  These constraints are necessary, because the model fitting can 
otherwise substitute an arbitrarily low carrying capacity for accurately fitting kd, and an arbitrarily 
high carrying capacity can decrease sensitivity to accurately fit fr and gr.   These constraints were 
set to be outside of the limits at which we have observed carrying capacity in experiments with 
sufficient regrowth to calibrate carrying capacity accurately; in replicates in which carrying 
capacity is calibrated at these limits, the interpretation should be that the data is insufficient to 
precisely determine carrying capacity. 

Text C.  Structure of model preferences 
While model 1 had the best performance across the range of conditions explored in these 

experiments, model 2 was preferred in 19.9% of replicate cultures, and model 3 was preferred in 
21.1% of cultures.  Additionally, the preference for model 1 in 59.0% of replicate cultures is 
somewhat lower than the 87% identification in simulated data set A, suggesting that the match 
between model 1 and the underlying biology is somewhat lower than the match between model 1 
and the underlying ground truth of data set A.  Analysis of these model preferences in greater depth 
provides additional context for the overall assessment that model 1 is best. 

In the 137 replicate cultures for which model 3 was selected as optimal, the magnitude of 
the ΔAIC between model 3 and either model 1 or 2 was approximately 2, which results simply 
from the difference in the number of parameters between the less complex model 3 and the more 
complex models 1 and 2.  These data indicate that even in cases where model 3 is ideal, models 1 
and 2 converge to the same solution as model 3. 

In 21.1% of replicate cultures model 3 was found to be optimal, indicating that there is no 
detectable delay in sensitive cell death in those cultures, while in 78.9% of replicate cultures, 
inclusion of a delay on cell death improved model performance even after accounting for the added 
complexity.  In the subset of cultures which did not exhibit a delay in sensitive cell death, all three 
models converged to identical solutions.  Within the subset of cultures where a model 
incorporating a delay on sensitive cell death was selected, a model representing the delay as an 
exponential decay (model 1) performed optimally 75% of the time, while a model representing the 
delay as linear (model 2) performed optimally 25% of the time.  Model 1 was therefore selected 
as the most interesting for further analysis and discussion, due to its overall performance over the 
range of conditions tested.  Although model 2 was not further explored in this manuscript, the 
substantial minority of cases in which it is selected suggests that the type of process described by 
model 2 plays a role under some conditions, and exploration of the exact nature of the tradeoffs 
between these models may be a fruitful area for further inquiry. 
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Figure E.  Selection of model 1 over model 2.  The Akaike Information Criterion is evaluated 
to quantify the preference for model 1 over model 2 in the MCF7, BT474, and MDA-MB-231 
cell lines as doxorubicin concentration varies in the MCF7 cell line (A), the BT474 cell line (D), 
and the MDA-MB-231 cell line (G), as the interval between two 24 hour doxorubicin exposures 
varies at 75 nM in the MCF7 cell line (B), at 35 nM in the BT474 cell line (E), and at 200 nM in 
the MDA-MB-231 cell line (H), and as the number of sequential 24 hour doxorubicin exposures 
varies at a two day interval and 75 nM in the MCF7 cell line (C), at a zero day interval 
(continuous exposure) and 35 nM in the BT474 cell line (F), and at a two day interval and 200 
nM in the MDA-MB-231 cell line (I).   Positive values indicate preference for model 1, while 
negative values indicate preference for model 2. 
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Model 1 has better overall performance than model 2, but many experimental groups have 

mixed preferences, with model 1 performing best on some replicates and model 2 performing best 
on others (Fig E).  When drug concentration is varied, all three cell lines consistently prefer model 
1, with the exception of the lowest doses in the MCF7 cell line; at these lowest doses variation in 
the cell death parameters has little effect on the resulting predicted cell number curve, resulting in 
the modeling framework having low sensitivity to accurately quantify cell death parameters under 
these circumstances.  When the interval between drug exposures is varied, the MCF7 and MDA-
MB-231 cell lines tend to show similar performance between the models (ΔAIC near 0), with 
replicates tending to prefer model 1 when there is a significant difference; in the BT474 cell line, 
the opposite is true, with the trend leaning towards model 2.  This could result from cell-line 
specific characteristics, or it could be a result of the slightly lower lethality of the dose used for 
repeated treatment in the BT474 cell line.  When the number of sequential treatments is varied, the 
trend is again for the performance of the two models to be similar and the ΔAIC to be small, with 
those replicates that do show significant differences in model performance favoring model 1. 
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Figure F.  Selection of model 1 over model 3.  The Akaike Information Criterion is evaluated 
to quantify the preference for model 1 over model 3 in the MCF7, BT474, and MDA-MB-231 
cell lines as doxorubicin concentration varies in the MCF7 cell line (A), the BT474 cell line (D), 
and the MDA-MB-231 cell line (G), as the interval between two 24 hour doxorubicin exposures 
varies at 75 nM in the MCF7 cell line (B), at 35 nM in the BT474 cell line (E), and at 200 nM in 
the MDA-MB-231 cell line (H), and as the number of sequential 24 hour doxorubicin exposures 
varies at a two day interval and 75 nM in the MCF7 cell line (C), at a zero day interval 
(continuous exposure) and 35 nM in the BT474 cell line (F), and at a two day interval and 200 
nM in the MDA-MB-231 cell line (I).   Positive values indicate preference for model 1, while 
negative values indicate preference for model 3.  
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Across the range of conditions explored in these experiments, model 1 was widely 
preferred over model 3 (Fig F); this is indicated not only by the direction of preference, but also 
by magnitude – the AIC values in replicate cultures that prefer model 1 average a much higher 
magnitude, while those that prefer model 3 always have a ΔAIC of approximately 2, indicating 
that the two models converged to the same solution and that model 3 is preferred solely due to 
simplicity. 
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Text D.  Details of Model Validation Results 
Overall, 80.6% of the 140,093 data points evaluated in this step fell within the 95% 

confidence interval generated for that point based on the leave-one-out validation scheme.  
However, there is significant heterogeneity in model performance across the experimental 
conditions tested, with the model predictions performing well in some circumstances and poorly 
in others.  The performance for each replicate group tested in the experiment is summarized in 
Table D. 
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Cell Line Experiment Type 
Replicate 
Group 

Recovering or 
Dying 

Total 
Points 

Points in 
95% CI % 95 CI 

MCF7 Dose Response 
Untreated 
Control Recovering 348 342 98.3% 

MCF7 Dose Response 10 nM Recovering 396 339 85.6% 
MCF7 Dose Response 20 nM Recovering 522 466 89.3% 
MCF7 Dose Response 35 nM Recovering 828 801 96.7% 
MCF7 Dose Response 50 nM Recovering 1170 1009 86.2% 
MCF7 Dose Response 75 nM Recovering 1638 1467 89.6% 
MCF7 Dose Response 100 nM Recovering 1638 1510 92.2% 
MCF7 Dose Response 125 nM Recovering 819 772 94.3% 
MCF7 Dose Response 125 nM Dying 819 218 26.6% 
MCF7 Dose Response 150 nM Recovering 819 751 91.7% 
MCF7 Dose Response 150 nM Dying 819 175 21.4% 
MCF7 Dose Response 300 nM Dying 1638 815 49.8% 
MCF7 Inter-Treatment Interval 0 Int Recovering 1785 1777 99.6% 
MCF7 Inter-Treatment Interval 0 Int Dying 1275 372 29.2% 
MCF7 Inter-Treatment Interval 12 Int Recovering 1968 1956 99.4% 
MCF7 Inter-Treatment Interval 14 Int Recovering 1824 1817 99.6% 
MCF7 Inter-Treatment Interval 16 Int Recovering 1680 1676 99.8% 
MCF7 Inter-Treatment Interval 2 Int Dying 2130 2064 96.9% 
MCF7 Inter-Treatment Interval 4 Int Recovering 1379 1351 98.0% 
MCF7 Inter-Treatment Interval 4 Int Dying 985 966 98.1% 
MCF7 Inter-Treatment Interval 6 Int Recovering 1810 1784 98.6% 
MCF7 Inter-Treatment Interval 8 Int Recovering 1980 1903 96.1% 
MCF7 Inter-Treatment Interval 10 Int Recovering 1812 1669 92.1% 
MCF7 Serial Treatment 1 Treatment Recovering 2904 2539 87.4% 
MCF7 Serial Treatment 2 Treatments Recovering 672 645 96.0% 
MCF7 Serial Treatment 2 Treatments Dying 2016 1773 87.9% 
MCF7 Serial Treatment 3 Treatments Dying 2472 2284 92.4% 
MCF7 Serial Treatment 4 Treatments Dying 2256 2201 97.6% 
MCF7 Serial Treatment 5 Treatments Dying 2040 1913 93.8% 

BT474 Dose Response 
Untreated 
Control Recovering 660 560 84.8% 

BT474 Dose Response 10 nM Recovering 696 595 85.5% 
BT474 Dose Response 15 nM Recovering 1386 1247 90.0% 
BT474 Dose Response 20 nM Recovering 906 755 83.3% 
BT474 Dose Response 27.5 nM Recovering 1038 855 82.4% 
BT474 Dose Response 35 nM Recovering 1128 943 83.6% 
BT474 Dose Response 42.5 nM Recovering 1386 1195 86.2% 
BT474 Dose Response 50 nM Recovering 1386 1183 85.4% 
BT474 Dose Response 60 nM Recovering 1386 1180 85.1% 
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BT474 Dose Response 120 nM Dying 1386 605 43.7% 
BT474 Serial Treatment 1 Treatment Recovering 4176 2857 68.4% 
BT474 Serial Treatment 2 Treatments Recovering 5181 4533 87.5% 
BT474 Serial Treatment 3 Treatments Recovering 1392 1184 85.1% 
BT474 Serial Treatment 3 Treatments Dying 4176 999 23.9% 
BT474 Serial Treatment 4 Treatments Dying 4570 3767 82.4% 
BT474 Serial Treatment 5 Treatments Dying 5400 1216 22.5% 
BT474 Inter-Treatment Interval 0 Int Recovering 2574 2166 84.1% 
BT474 Inter-Treatment Interval 2 Int Recovering 2664 2474 92.9% 
BT474 Inter-Treatment Interval 4 Int Recovering 2520 2515 99.8% 
BT474 Inter-Treatment Interval 6 Int Recovering 2376 2345 98.7% 
BT474 Inter-Treatment Interval 8 Int Recovering 2232 2174 97.4% 
BT474 Inter-Treatment Interval 10 Int Recovering 2292 2062 90.0% 
BT474 Inter-Treatment Interval 12 Int Recovering 2148 1886 87.8% 
BT474 Inter-Treatment Interval 14 Int Recovering 2004 1780 88.8% 
BT474 Inter-Treatment Interval 16 Int Recovering 1860 1660 89.2% 

MDA-MB-231 Dose Response 
Untreated 
Control Recovering 384 307 79.9% 

MDA-MB-231 Dose Response 25 nM Recovering 486 457 94.0% 
MDA-MB-231 Dose Response 50 nM Recovering 684 579 84.6% 
MDA-MB-231 Dose Response 75 nM Recovering 684 662 96.8% 
MDA-MB-231 Dose Response 100 nM Recovering 804 647 80.5% 
MDA-MB-231 Dose Response 150 nM Recovering 924 882 95.5% 
MDA-MB-231 Dose Response 200 nM Recovering 1020 964 94.5% 
MDA-MB-231 Dose Response 300 nM Recovering 1194 1078 90.3% 
MDA-MB-231 Dose Response 500 nM Recovering 1188 1054 88.7% 
MDA-MB-231 Dose Response 1000 nM Dying 1188 633 53.3% 
MDA-MB-231 Inter-Treatment Interval 0 Int Recovering 2952 2624 88.9% 
MDA-MB-231 Inter-Treatment Interval 2Int Recovering 1380 1324 95.9% 
MDA-MB-231 Inter-Treatment Interval 2 Int Dying 1380 315 22.8% 
MDA-MB-231 Inter-Treatment Interval 4 Int Recovering 1410 953 67.6% 
MDA-MB-231 Inter-Treatment Interval 4 Int Dying 1410 661 46.9% 
MDA-MB-231 Inter-Treatment Interval 6 Int Recovering 1752 1672 95.4% 
MDA-MB-231 Inter-Treatment Interval 6 Int Dying 876 531 60.6% 
MDA-MB-231 Inter-Treatment Interval 8 Int Recovering 1827 1770 96.9% 
MDA-MB-231 Inter-Treatment Interval 8 Int Dying 609 243 39.9% 
MDA-MB-231 Inter-Treatment Interval 10 Int Recovering 1683 1579 93.8% 
MDA-MB-231 Inter-Treatment Interval 10 Int Dying 561 185 33.0% 
MDA-MB-231 Serial Treatment 1 Treatment Recovering 3396 3150 92.8% 
MDA-MB-231 Serial Treatment 2 Treatments Recovering 4620 3907 84.6% 
MDA-MB-231 Serial Treatment 3 Treatments Recovering 1053 844 80.2% 
MDA-MB-231 Serial Treatment 3 Treatments Dying 3159 2876 91.0% 
MDA-MB-231 Serial Treatment 4 Treatments Dying 3792 2541 67.0% 
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MDA-MB-231 Serial Treatment 5 Treatments Dying 3312 2834 85.6% 
 
 
Table D.  Leave-one-out validation of model 1 calibration results.  Predictive power of model 
1 is analyzed by comparing each cell number curve to a projected distribution created with a 
leave-one-out approach, and determining what fraction of the data falls within the 95% 
confidence interval of the distribution. 
 Overall trends are consistent with those observable in Table C, with model 1 performing 
somewhat better for the MCF7 cell line than for the BT474 and MDA-MB-231 cell lines, and 
model 1 performing better for cell populations which eventually recover than for those which never 
recover. 
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Text E.  Processing Definition Optimization in the Incucyte Zoom 
 Optimal image processing settings vary from experiment to experiment.  This results from 
factors such as differences in cell size and morphology between cell lines, variation in cell size 
and morphology over the course of an experiment as a result of drug exposure, variation in 
fluorescent signal brightness (in the experiments presented here, the brightness of the nuclear 
localized GFP is normally stable in a given cell line under normal growth conditions, but it 
sometimes changes after drug exposure), and variation in background fluorescence levels.  
Consequently, we can not give a single value for the optimal parameter settings.  Instead we present 
an optimization procedure.  The processing parameters of each experiment were determined as 
follows: 
 

1. Open the experiment file and generate an image collection.  This image collection should 
include a minimum of three images: 

a. One image shortly after cells have adhered (24-48 hours after cell seeding), 
allowing characterization of the cells in their initial morphology and size, and at a 
low cell density. 

b. One image late in the experiment in a well that has grown to 50% confluence or 
more, allowing characterization of the post treatment morphology and size, and at 
a high cell density. 

c. One image at the height of drug impact, to allow characterization of any transient 
changes in cell size and morphology as a result of the drug response.  For this initial 
image collection it is generally best to use an image that is near the center of the 
range of conditions being tested - a moderate dose in a dose response experiment, 
a moderate interval in an inter-treatment interval, or a moderate number of drug 
exposures for a serial treatment experiment. 

You can add additional images if you know that your experiment includes additional 
qualitatively different conditions.  You want the image collection to represent the range of 
conditions in the data set. 

2. Create a new processing definition using this image collection.  Alternatively, if you have 
an existing processing definition for this cell line under similar conditions, you can load 
the new image collection into your existing processing definition and skip to step 4. 

3. Run an initial analysis to visualize the results of the initial parameter values.  At this stage, 
we recommend the following settings: 

a. Uncheck the phase analysis to reduce processing time; cell counting is performed 
using the green fluorescent image. 

b. In the green channel analysis, the “Parameters” field represents the background 
subtraction algorithm.  We have found the Top Hat method of background 
subtraction to be optimal in all analyses of whole-well images in 96-well plates.  
For the time being, leave the radius setting at its default value. 

c. Set a minimum area filter; 10 µm2 is a good starting point, although you may adjust 
this downward for cell lines with particularly small nuclei.  This excludes single 
bright pixels and small debris from the count. 

d. Set a maximum eccentricity filter to 0.99.  This excludes scratches on the well plate 
and many imaging artifacts from the count without removing any actual cells. 

4. Optimize the Top Hat radius for a single image.  Zoom in to several regions of the image 
and check the quality of the background subtraction.  The default settings will often 
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perform acceptably, but if you see regions with significant background brightness (visually 
appearing to be on the same order of magnitude as the cell nuclei you want to count), adjust 
the radius setting up and down slightly to attempt to resolve this.  With some settings, you 
may see imaging artifacts appear in the background as sharp edges in the background 
fluorescence level.  It is particularly important to adjust the radius parameter until these 
disappear, as they tend to be picked up in the cell count if they are not eliminated at this 
point.  We have found values for the radius between 10 and 80 to be useful, and generally 
search in this range.  During each optimization step, you should zoom in to several regions 
of the image and make sure that the performance is consistent throughout. 

5. Once you have optimized the radius parameter for a single image from your image 
collection, check the other images in the image collection.  Generally a single parameter 
value will work consistently for all images from a single experiment, but in some cases you 
will need to iterate through the images, find the range of values that works reasonably well 
for each, and pick the value that makes the best tradeoff for average quality.  In cases where 
the background subtraction proves particularly difficult, you may choose to implement the 
optional step 8 to compensate. 

6. Optimize the fluorescence Threshold parameter for a single image.  Look at the overlay 
between the green channel and the green mask channel.  Manipulate this parameter until 
the green mask is slightly inside of the edge of the visible green region for a typical cell.  
Generally you want to set this threshold as high as you can while still capturing the majority 
of the visibly green area of the nuclei, because a high threshold reduces the effect of 
background fluorescence and improves counting of tightly clustered cells.  The optimal 
value for this parameter is usually between 0.5 and 2, although it can occasionally vary 
from as low as 0.3 for especially dim cells to as high as 20 for especially bright cells. 

7. Cycle through the other images in your image collection, checking the optimal threshold 
value.  You will need to select the lowest of these threshold values, corresponding to the 
image in which your cells are least bright, to ensure that counting will work in all images. 

8. Optionally, set the Adjust Size parameter to 1 or 2 pixels, and raise the threshold to 
compensate, going back through steps 6 and 7 with Adjust Size turned on.  This can be a 
useful way to compensate for lower quality in the background subtraction process.  By 
identifying only the brightest cores of cells for counting (using the high threshold) you can 
bypass a high level of background fluorescence.  Using a very high threshold requires you 
to add in the Adjust Size parameter to avoid dividing single bright cells into multiple 
regions and multi-counting them.  The Adjust Size parameter expands all identified areas 
outward, which generally results in collapsing these divided cells back into a single counted 
region.  This process is imperfect, and it introduces a small amount of additional error into 
the cell count.  As a result we recommend skipping this unless you find it necessary as a 
result of high background fluorescence that is resistant to subtraction or dim cells that are 
close to the background brightness. 

9. Optimize the minimum area filter.  The minimum area filter can be used to remove debris 
that is smaller than an actual cell.  To optimize this parameter, you should set both a 
minimum and maximum area filter, and check which marked objects fall within that band.  
For example, if you have started with a 10 µm2 filter, you can set the maximum area filter 
to 20 µm2, visually scan the objects now marked on the green object mask, and decide if 
any of them are actually cells by checking the phase contrast image.  If few of the marked 
objects are cells, you can increase the minimum filter to 20 µm2, increase the maximum to 
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30 µm2, and check the next size band.  Continue increasing the minimum area filter until 
you start to lose cells. 

10. Cycle through the images in your image collection and ensure that you are not losing a 
significant number of cells from any of them.  You should select a minimum area filter that 
removes at most a handful of the smallest cells from your image collection. 

11. Optimize Edge Sensitivity.  Start with the image in your collection with the highest cell 
density.  Zoom in to dense regions where cells are closely clustered, and check whether 
they are being accurately separated by comparing the green channel and the green object 
mask.  The phase contrast image can be consulted to aid in distinguishing cells.  In most 
cases, good thresholding will facilitate accurate counting with edge sensitivity at the default 
setting.  When cells are clustered particularly tightly, they may overlap enough to interfere 
with this, and in those cases increasing the edge sensitivity parameter is helpful.  The edge 
sensitivity parameter should be tuned so that it splits clusters accurately without splitting 
any individual cells if possible, or tuned so that the overcounting and undercounting errors 
balance each other out if necessary.  The cell count is sensitive to changes in the edge 
sensitivity, so adjustments should be as small as possible.  It’s generally advisable to keep 
the edge sensitivity parameter between -10 and +20, and adjustments leaving that range 
should be made cautiously and checked particularly carefully to make sure that they 
haven’t caused systematic miscounting. 

12. Cycle through the images in your image collection and ensure that the cell counts are 
accurate under the selected edge sensitivity parameters. 

13. Set the Whole Well Keep-out.  When using whole-well imaging, the wall of the well is 
usually captured as a bright ring in the fluorescence channel.  This large green region will 
sometimes be counted as hundreds or thousands of cells depending on the variation in the 
brightness, the threshold in the experiment, etc.  To avoid this, the whole well keep-out 
trims images inward from the edge by the specified number of pixels.  You should set this 
to completely exclude the wall of the well from all images in your image collection, which 
can generally be done with settings in the range of 0-20 pixels. 

14. Save the processing definition and start an analysis job applying it to your data set.  This 
can take up to 24 hours depending on the number of images in your experiment and the 
ongoing workload on your Incucyte instrument, so if time is a constraint you can start by 
analyzing a subset of your data.  If you take this approach, it is a good idea to include one 
or two wells from each replicate set rather than one replicate set out of the experiment, so 
that you can test the processing definition across the range of conditions in your 
experiment. 

15. Once the analysis job is complete, open the analysis job metrics and graph the green object 
count, which is the metric corresponding to cell number, for your data set.  This will allow 
you to make an initial estimate of the quality of the analysis.  Ideally you want to see 
smooth curves with few discontinuities, and with general trends corresponding to your 
expectations for the experiment.  If you see unexpected discontinuities or regions of some 
curves with high noise levels, note the time stamps for several discontinuities or noisy 
regions. 

16. Switch to the completed analysis job window.  Start by spot checking several images to 
make sure that the image processing is accurate in the regions where the cell counts are 
smooth.  This is generally the case, but occasionally you will find that there is systematic 
over or undercounting.  To verify that the count is accurate, you should zoom into several 
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regions of each image and check the overlay between the green object mask and the green 
channel image.  The green object mask should clearly mark each cell nucleus as a single 
object.  It is acceptable for there to be occasional inaccuracies - such as a single cell that is 
split into multiple objects, or a cluster of cells that are marked as a single object - so long 
as the inaccuracies are rare (below 1% occurrence) and balanced, with roughly equal 
undercounting and overcounting.  Should you determine that the count is not accurate, 
select one image which exhibits the inaccuracies and add it to your image collection.  It 
isn’t necessary to check every well, or possible to check every image over the course of 
the experiment, but we recommend checking at least one well at each end of the range of 
the variable being tested, and for each well checking one early image, one late image, and 
one midway between. 

17. Navigate to the wells and time stamps that correspond to discontinuities or noise in the 
green object count curve.  Check before and after the discontinuity, pick the image that is 
less accurately counted, and add that image to the image collection.  You will often find 
that there is a specific issue that is common to multiple miscounted regions - for example, 
the brightness of the cells may change from one image to the next, resulting in a large 
number of cells falling below the detection threshold.  If multiple discontinuities result 
from the same issue, pick only one of the images to add to your image collection. 

18. Return to step 4, and repeat your optimization of the image processing parameters on the 
expanded image collection.  Iterate this process until you are satisfied that the count is as 
accurate as possible.  It will not be possible to remove all discontinuities, as you will find 
that some discontinuities result from inherent problems with the images.  For example, 
some images may be out of focus, and some discontinuities may result from actual 
disruption of the cell populations.  The iterative process of identifying discontinuities and 
checking them will clear the correctable issues until the count is as accurate as possible. 


