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1 Variant Calling and Pangenome reference construction
The input to our genotyping algorithm is a reference genome (FASTA-file), short-read sequencing reads (FASTQ format) and a
multisample VCF file that defines a pangenome graph containing variants and known haplotype sequences. In order to create
such an input graph, we have developed a pipeline which calls variants from haplotype resolved assemblies as described below
and uses them to construct a pangenome representation. However, we want to stress that our tool is not restricted to VCFs
created in this way and in fact can be run with any fully phased, multisample VCF file.

1.1 Callset statistics
Supplementary Table 2 shows the number of variants at different stages of our variant calling pipeline. We call variants on
each individual haplotype (first column). The second column shows the number of variants left after removing regions covered
in less than 20% of the samples. The third column corresponds to the final callset and lists the number of variants left after
filtering out positions with an mendelian error in a least one of the trios. In the last column, we show the number of bubbles in
the pangenome resulting from inserting all callset variants into the linear reference. Our variant calling pipeline calls SNPs,
insertions and deletions. We distinguish small (1-19bp), midsize (20-49bp) and large (≥ 50bp) variants. When constructing the
pangenome graph, variation will be represented by bubbles in the graph. Sets of overlapping variant alleles will be combined
into muli-allelic bubbles (i.e. bubbles with more than two branches). We therefore distinguish simple, "biallelic" bubbles that
consist of two branches and can be easily classified as SNP, insertion or deletion, and "complex" bubbles with more than two
branches representing more complex variation (Extended Data Figure 1). We counted the number of branches of each bubble in
the graph and plotted it as a function of its reference length (Supplementary Figure 1). While the number of branches is below
5 for the majority of bubbles, it tends to be higher especially for larger bubbles representing more complex regions of high
variability.

Supplementary Table 3 shows sample-specific variant numbers for all samples that were used for variant calling. For each
sample, we show the total number of variants present in at least one of its haplotypes, i.e. all variants for which the sample has
a genotype different from 0/0 (total). Additionally, we show the number of variants unique to the sample (unique), i.e. variants
not seen in any of the other samples. All variants that are unique to a sample will not be genotypable by any re-genotyping
approach and we later exclude these variants for evaluation.

2 Comparison to existing approaches
2.1 Evaluation metrics
2.1.1 Weighted genotype concordance
Each genotyped variant is either absent from the truth set (0/0, in case it is not present in the left out sample), heterozygous
(0/1) or homozygous (1/1). We construct a confusion matrix counting all cases (Supplementary Figure 2). The counts on
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the diagonal (labelled T_0/0, T_0/1, T_1/1) correspond to correctly genotyped variants. All others are errors. For all three
genotypes, we compute the concordances by counting the number of correct predictions and divide it by the total number of
variants in that category:

conc(0/0) =
T_0/0

T_0/0+F_0/0
conc(0/1) =

T_0/1
T_0/1+F_0/1

conc(1/1) =
T_1/1

T_1/1+F_1/1

Since we genotype all variants detected across multiple samples (including many rare alleles) in our evaluation sample, the
majority of variants will be absent in the evaluation sample. That is, the number of variants whose true genotype is 0/0, will be
higher compared to the ones with genotypes 0/1 or 1/1. To adjust for unqeual numbers of 0/0, 0/1 and 1/1 genotypes in our
ground truth, we compute the weighted genotype concordance as:

weighted genotype concordance =
conc(0/0)+ conc(0/1)+ conc(1/1)

3

As mentioned previously, we exclude all variants unique to the evaluation sample when computing the weighted genotype
concordance, since these variants are not part of the set of input variants given to all genotypers and thus will not be considered
for genotyping (as all tools re-genotype variants and do not detect them).

2.1.2 Fraction of genotyped variants
Many of the re-genotyping tools we consider can report genotypes "./." for input variants that they are not able to genotype. For
each tool, we compute the fraction of input variants that were reported with such an "untyped" genotype.

2.1.3 (Adjusted) Precision/Recall/F-score
We use RTG vcfeval1 in order to compute precision and recall for our genotype predictions. We compute two versions of
precision, recall and F-scores: taking all variants into account (including those that are unique to the evaluation sample and
hence missing from the input set and undetectable by regenotyping, see Supplementary Table S3), and an adjusted version,
where we remove all variants unique to the evaluation sample from the truth set. Therefore, the unadjusted version combines
the effects of variants missing the input set to be genotyped and the performance of the genotyping method, while the adjusted
version aims to only measure the performance of the method (and does not penalize variants absent in the input set). True
positives, false positives and false negatives are defined as shown in Supplementary Figure 21 and precision, recall and F-score
are defined as:

precision =
T P

T P+FP
recall =

T P
T P+FN

F-score = 2 · precision · recall
precision+ recall

2.1.4 Note on Precision/Recall/F-score metrics
We offer precision/recall/F-score metrics to facilitate comparison to other studies, including on methods for variant calling.
However, these metrics come with the following caveats when evaluating a re-genotyping experiments and should hence be
interpreted accordingly: The more samples we use to generate the set of known variants to genotype in a new sample, the larger
the amount of rare variants and thus the larger the fraction of variants whose true genotype of the new sample is 0/0. That is, we
can make our set of input variants (almost) arbitrarily large by adding variants absent in the new sample. The possibility of
adding noise when including a large number of rare alleles when constructing pangenome representations is a known effect and
an important consideration2. As a consequence, the number of false positive calls will increase with the increase of the number
of tested variants, while the number of true positive calls is limited by the actual number of variants present in the new sample,
reducing the precision. An example is shown in Supplementary Figure 3a. This also explains why the precision we see for all
genotypers in our evaluation is sometimes small compared to the genotype concordance (Supplementary Figure 3b).

2.2 Leave-one-out Experiment
2.2.1 Using assembly-based calls as ground truth
We ran the "leave-out-one" experiment (Methods, Extended Data Figure 2) for samples NA12878 and NA24385. We computed
the weighted genotype concordance, adjusted precision and recall, and the adjusted F-score for evaluation when comparing
to our ground truth set containing all variants detected in the haplotype-resolved assemblies of the left out sample. Results
for the different evaluation regions (Methods) are shown in Supplementary Figures 4-9. In addition to running all tools in
re-genotyping mode on our provided variants, we ran GATK and Platypus in discovery mode and let them detect their own
variant set. We evaluated the results based on the same truth set computing adjusted precision, recall and F-scores to enable a
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direct comparison of re-genotyping and discovery. Results are shown in Supplementary Figure 10. Results show that especially
Platypus benefits from re-typing assembly-based calls, as it struggles making accurate calls in STR/VNTR regions and complex
regions of the genome that are usually poorly accessible by short read alignments.

2.2.2 Using GIAB small variants as ground truth
We used the GIAB small variant benchmark3 as another ground truth set in order to evaluate our "leave-one-out" results and
computed the adjusted precision and recall for evaluation by removing all variants absent from our callsets for evaluation. In
addition to re-genotyping our variant callset, we again ran GATK and Platypus in discovery mode for comparison and computed
precision and recall in addition to their adjusted versions. Results are shown in Supplementary Figure 11. Using the discovery
mode for GATK and Platypus, results for the adjusted and non-adjusted versions are very similar, while for the re-typing tools,
the recall drops when using the un-adjusted metric. This is expected, since the adjustment would ignore variants absent from the
input panel. These positions are not present in our callset, as they have not been seen in the samples used for variant calling and
thus, are also not considered for genotyping. As a consequence these variants will be all counted as false negatives, reducing
the recall. This causes the curves for all re-typing tools to shift to the left. The discovery tools are not effected by this, since
they are able to discover variants themselves.

2.2.3 Using syndip SVs as ground truth
We used the SVs (≥ 50 bp) contained in the syndip benchmark set4 as an additional ground truth set for evaluating our
genotyping. As the syndip sample is not part of our assembly samples, we used our callset created from all eleven assembly
samples as input for genotyping. As before, we computed the weighted genotype concordance and the adjusted precision and
recall metrics for evaluation. In order to define the set of untypable variants, we ran RTG vcfeval1 in order to detect all
syndip variants that are absent from our callset and excluded them when computing our evaluation metrics (as they cannot be
genotyped by any re-genotyping approach). Results are shown in Supplementary Figure 12.

2.3 Resources.
2.3.1 Comparison of runtimes and memory usages
The runtime and peak memory usage of all genotypers is presented in in Supplementary Table 5. For all methods, we measured
the resources needed to produce genotypes given the raw, unaligned sequencing reads (“total”) as well as the resources needed
specifically for genotyping (“genotyping”). For the mapping-based approaches (Platypus, GATK, Paragraph, GraphTyper and
Giraffe) the latter excludes the resources needed for aligning the sequencing reads, for the k-mer based approaches (PanGenie
and BayesTyper) it excludes the resources needed for counting k-mers. Note that not all tools are able to genotype all considered
variant types. We ran GATK only on SNPs, small and midsize variants. Paragraph was only run on midsize and large variants
and GraphTyper only on large variants. We ran Giraffe only for sample NA12878 at coverage 30× and only on large variants,
as we observed a very high runtime for its graph alignment step. All tools were run on a HPC-cluster predominantly consisting
of Intel E5-2697v2 (2× 12 cores and 128 GB of RAM) and Intel Xeon Gold 6136 (2× 12 cores and 192 GB of RAM) nodes.

2.3.2 Asymptotic runtime of PanGenie
PanGenie is based on a Hidden Markov Model which, for each variant position, defines one state for each pair of haplotypes of
the input panel. Given n variants to be genotyped and m panel haplotypes (which equals twice the number of samples), there
will be O(m2 ·n) states. Applying the Forward-Backward algorithm to the HMM thus corresponds to a runtime quadratic in
the number of states. If the number of panel haplotypes grows, the algorithm will get slow. To tackle this problem, we have
implemented a subsampling step, which repeatedly subsamples sets of haplotypes from the full panel and genotypes all variants
in each subset. Genotype predictions resulting from each of these subsets are later combined to obtain the final genotype
likelihoods. Assume we split the set of m input haplotypes in l subsets each of a fixed size k. PanGenie’s genotyping step is
now run separately on each of the l sets in time O(k4 ·n). This will result in a total runtime linear in the number of subsets, i.e.
O(l · k4 ·n). PanGenie automatically switches to this subsampling mode if the number of input haplotypes exceeds 30. For all
experiments in this paper, we ran PanGenie without subsampling using the full HMM.

3 Genotyping HLA genes

To evaluate the accuracy of all 14 haplotype-resolved assemblies in the HLA region, we used HLA*ASM5 to determine
assembly HLA types (Supplementary Table 6). HLA*ASM successfully processed 27 out of 28 input assemblies and identified
perfect (edit distance 0) HLA G group matches6 for all classical HLA loci (HLA-A, -B, -C, -DQA1 -DQB1, -DRB1) in all
processed input assemblies with one exception (HLA-DRB1 in NA19238), which was resolved by manual curation7. To verify
the accuracy of the assembly HLA types, we integrated publicly available HLA genotype data for 1000 Genomes samples8–10

for HLA-A, -B, -C, -DQB1, and -DRB1, intersected these with the assembly-implied HLA types, and found perfect agreement
in all evaluated cases (9 samples and 85 individual genotype comparisons, Supplementary Table 6.

3/7



We analyzed our genotyping performance inside of the MHC region. Since we used a reference genome containing
alternative HLA contigs, the MHC region was not covered well by our callset described previously (Section Constructing a
pangenome reference). We therefore used the same pipeline to generate a second version of our variant calls and pangenome
graph using a reference genome that contains only chromosomes 1-22, chromosome X and chromosome Y. We analyzed
the MHC region by repeating the leave-one-out experiment described earlier with this new callset and evaluated genotyping
performance for commonly studied HLA-genes. We ran our leave-one-out experiment for three samples: HG00731, NA12878
and NA24385. Analogously to what we described in Methods and Extended Data Figure 2, we repeatedly construct callsets and
pangenome graphs excluding the respective samples and evaluate genotypes by comparing to the variants detected in the left
out sample. As mentioned previously, we restrict our evaluation to all variants that are genotypable and exclude such that are
unique to the left out sample.

We present weighted genotype concordances that we obtained for the HLA genes in Extended Data Figure 9. We separately
evaluate variants (all types) located in biallelic regions of the genome and such located in regions with complex bubbles in the
pangenome graph. Our callset did not fully cover the C4 genes (C4A and C4B) since the region was not completely covered
by contig alignments in most haplotypes (including one of the haplotypes of NA12878) possibly due to the presence of large
structural variants in this region. Thus, the evaluation for these genes only corresponds to the parts that were accessible for
variant calling (Supplementary Figure 13).

4 Genotyping Larger Cohorts
We randomly selected 100 trios (20 of each superpopulation: AFR,AMR,EAS,EUR,SAS) that are part of the 1000 Genomes
Project and genotyped all our variant calls across these 300 samples. We used the pangenome graph containing all eleven
assembly samples as an input for PanGenie. Our callset might contain variants that are difficult to genotype correctly. Our
goal is to identify a high quality subset of variants that we can reliably genotype. For this purpose, we define different filters
based on the predicted genotypes that we will list below. One metric used for defining filters is the mendelian consistency. We
computed the mendelian consistency for each variant by counting the number of trios for which the predicted genotypes are
consistent with Mendelian laws. We only consider trios with at least two different genotypes, that is, we exclude a trio if all
three genotypes are 0/0, 0/1 or 1/1. This results in a more strict definition of mendelian consistency. For the unfiltered variant
set, the mean mendelian consistency for SNPs was 0.98, for small variants between 0.93-0.95, for midsize variants between
0.90-0.93 and for large variants we observed numbers between 0.88-0.89 (Supplementary Figure 14). In addition to genotyping
all 300 trio samples we also genotyped all eleven panel samples using the full input panel. Genotyping samples that are also in
the input graph can help us to find cases where panel haplotypes and reads disagree and thus is another useful filter criterion.
We define filters as follows:

• ac0-fail: a variant fails this filter, if it was genotyped with allele frequency 0.0 across all samples.

• mendel-fail: a variant fails this filter if the fraction of mendelian consistent trios was below 90%. Our definition of
mendelian consistency excludes all trios with all 0/0, all 0/1 or all 1/1 genotypes and only considers such with at least
two different genotypes.

• gq-fail: a variant fails this filter if it was genotyped with a genotype quality below 200 in less than 5 samples.

• self-fail: in addition to the 100 trios, we also genotyped the 11 panel samples. A variant fails this filter, if the genotype
concordance across all panel samples was below 90%.

• non-ref-fail: the variant was genotyped as 0/0 across all panel samples.

For all combinations of filters, we show the number of large deletions and large insertions in each category in Supplementary
Figure 15. In order to define a strict, high quality set of variants, we select those that passed all five filters. This rather
stringent set of variants contains about 93% of all SNPs, between 62-67% of all small insertions and deletions, and about
50% of all midsize and large variants (Supplementary Table 7). For quality control, we analyzed allele frequencies and the
fraction of heterozygous genotypes for all variants contained in our unfiltered and strict sets (Supplementary Figures 16 and
17). Additionally, we used VCFTools11 to test the genotype predictions of all variants typed with an allele frequency > 0.0 for
conformance with Hardy-Weinberg equilibrium and corrected for multiple hypothesis testing by applying Benjamini-Hochberg
correction12 (α = 0.05). For both sets, the majority of variants behave as expected by Hardy-Weinberg equilibrium. For the
unfiltered set, between 87-91% of all variants/types show no significant deviation from HWE in non-repetitive regions. In
repetitive regions, the fractions are between 83-90%. For the strict set, we observed numbers between 88−93% in non-repetitive
regions and 89−94% in repeat regions (Supplementary Figures 16, 17).
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In addition to defining a strict set, we constructed a more lenient set for our SV calls (≥ 50bp) using a machine learning
approach based on support vector regression. We use the strict set as positive set and define a negative set consisting of all
variants that were typed with an allele frequency > 0.0 and failed at least 3 filters. For large insertions, the negative set contained
2,611 variants, for large deletions 1,125. The model then predicts scores between -1 (worst) and 1 (best) for all variants that are
neither in the positive nor the negative set. We show the distribution of scores for our variant calls in Supplementary Figure 18a
. The lenient set is then constructed by adding all variants with a score above -0.5 to our strict SV set. We show the number of
variants contained in the strict and lenient sets in Supplementary Table 8. For large insertions and deletions, the lenient set
contains around 78% and 83% of all variants, respectively, while showing statistics similar to the strict set (Supplementary
Figure 18).

We compared our variant calls to the Genome in a Bottle set of medically relevant SVs13. Our unfiltered callset contained
209 of all 250 medically relevant SVs. We further analyzed which fraction of these made it into our strict and lenient sets. We
observed that 174 medically relevant SVs were contained in our lenient set, of which 119 were part of our strictly filtered set.
We show the score distribution for these variants as well as allele frequencies and heterozygosities observed across all 200
unrelated samples for the lenient set in Extended Data Figure 10.

5 Comparison to gnomAD
We compared the variant calls that we obtained from haplotype-resolved assemblies of eleven individuals to the variants that are
part of the Genome Aggregation Database (gnomAD)14. gnomAD contains 433,371 structural variants collected across 14,891
genomes from different populations. Since gnomaD calls were generated relative to reference genome version GRCh19, we
used UCSC liftOver (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to convert their coordinates to GRCh38.
For comparison, we used all our SV calls that were contained in our lenient set. We define two variant calls to be the same if
their reciprocal overlap is at least 50% or their start, end and allele lengths deviate by less than 200bp. Based on these criteria,
we found that both callsets had 34,468 variants in common. 344,815 variants were only contained in gnomAD and 84,658 were
only in our assembly callset. 51% of the 34,468 variants in the intersection are located inside of STR/VNTR regions. For the
variants contained only in our assembly callset, this percentage is around 80%.

6 LD analysis
We performed a linkage disequilibrium (LD) analysis based on the genotypes we obtained across all 200 unrelated samples. We
used gatk415 to annotate the calls with variant ids from dbSNP16. We selected variants that are contained in the NHGRI-EBU
GWAS catalog17 and used plink18 to determine structural variants that are in LD with the GWAS variants (r2 ≥ 0.8). For 147
disease-associated GWAS variants we found a SV in linkage disequilibrium. We list all SVs in strong LD with GWAS variants
(r2 ≥ 0.9) in Supplementary Table 9.

Our linkage disequilibrium analysis showed one interesting insertion of length 129 bp located at position 133,278,856 of
chromosome 9, that was in LD with six GWAS SNPs (rs2519093, rs495828, rs507666, rs579459, rs635634 and rs651007).
Supplementary Figure 19 shows dot pairwise dot plots of the insertion sequence, LTR10B2 consensus sequence and the
reference sequence of this region (LTR-annotated sequence from GRCh38). It indicates that the insertion sequence contains 3
exact copies of “TAACGCAGTTTCTGTTTCTGTGTCCTTCCCCTATTGGCTGGGG" (43bp) and suggests that this sequence
is expanded from one to four copies.

The other interesting case was a 322 bp insertion inside of the CCDC91 gene at position 28,264,365 of chromosome 12
(Supplementary Figure 20). It was in LD with two GWAS variants (rs10843151 and rs11049566) both linked to body fat17 and
is located close to regulatory element E1601673/enhD reported by ENCODE19.

7 Command lines used for variant calling and genotyping
7.1 Assembly-based variant calling and pangenome graph construction
For variant calling, contigs of each haplotype were aligned against the reference genome using minimap2 (version 2.18)

minimap2 -cx asm20 -m 10000 -z 10000,50 -r 50000 --end-bonus=100 -O 5,56 -E 4,1 -B 5
--cs reference.fa contigs.fa | sort -k6,6 -k8,8n > alignments.paf

Variants were called on each haplotype using paftools (https://github.com/lh3/minimap2/tree/master/
misc).

paftools.js call -L 50000 -f reference.fa alignments.paf > calls.vcf
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We developed a pipeline for merging and filtering our variant calls, and to create a multisample VCF file representing a
pangenome graph (“pangenome.vcf”) based on our assembly-based callset (“variants.vcf”). Details can be found here: https:
//bitbucket.org/jana_ebler/genotyping-experiments/src/master/data/rules/assembly-vcfs.
smk

7.2 Re-genotyping
Depending on which genotyping tool was run, we either directly genotyped the callset variants (“variants.vcf”) or we used their
pangenome graph representation (“pangenome.vcf”). We used the corresponding VCFs as input variants for the genotyping
tools and genotyped them based on short Illumina reads as described in Section Comparison to existing genotyping methods of
the main paper.

We ran BayesTyper (version v1.5) and PanGenie with default parameters using the raw, unaligned Illumina reads (FASTQ
format) as input. For BayesTyper, we used the Snakemake pipeline provided in their repository (https://github.com/
bioinformatics-centre/BayesTyper). PanGenie (https://github.com/eblerjana/pangenie, com-
mit: 1f3d2d2, using jellyfish 2.2.10 ) was run based on the command shown below,

PanGenie -i reads.fq -v pangenome.vcf -r reference.fa -o pangenie -j 24 -t 24 -g

The remaining tools were provided with the aligned reads in BAM format, produced by mapping them to the reference
genome using bwa. Platypus (version 0.8.1) was run in re-typing mode with additional options --source=variants.vcf,
--minPosterior=0 and --getVariantsFromBAMs=0 based on all callset variants (“variants.vcf”).

In order to run GATK (version 4.1.3.0), we first marked duplicates in our BAMs and then used HaplotypeCaller in re-typing
mode in order to compute genotypes for the input variants using the command below. Note that we did not genotype large
variants with GATK, therefore we removed them from the input VCF file prior to genotyping.

GATK HaplotypeCaller
--reference reference.fa
---input reads.bam
---output gatk.vcf
---minimum-mapping-quality 20
---genotyping-mode GENOTYPE_GIVEN_ALLELES
---alleles variants_no_large.vcf

In order to run Paragraph (version v2a), we first computed the depth of the input BAM file using the command

/bin/idxdepth -b reads.bam -r reference.fasta -o depth.json

and prepared the Manifest file required for genotyping. In the next step, we used the command bin/multigrmpy.py with
default parameters in order to genotype the input variants (pangenome graph representation). Note that we removed all variants
shorter than 20 bp from the input VCF before running Paragraph in order to only type midsize and large variants.

GraphTyper (version 2.7.1) was run on all large callset variants (≥ 50bp) using the following command:

graphtyper genotype_sv reference.fa variants_large.vcf --sam=reads.bam
--output=graphtyper

We ran the Giraffe genotyping pipeline using the Snakmake workflow provided here: https://github.com/vgteam/
vg_snakemake (commit e2a60b, VG v1.30.0) using all large variants contained in our callset VCF (“variants.vcf”).

7.3 Variant detection based on short reads
Besides re-genotyping our assembly-based variant calls using GATK and Platypus, we also ran both tools in discovery mode.
For Platypus this was done based on the command:

Platypus callVariants --bamFiles=reads.bam --refFile=reference.fa
--output=platypus-calling.vcf

For GATK, we marked duplicates in our BAMs (as before) and called variants as:
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GATK HaplotypeCaller
--reference reference.fa
--input reads.bam
--output gatk-calling.vcf
--minimum-mapping-quality 20
--genotyping-mode DISCOVERY

The complete pipeline used to run the evaluation including the commands used to run all tools can be found here:
https://bitbucket.org/jana_ebler/genotyping-experiments/src/master/genotyping/
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Supplementary Figure 1. Variant calling and graph construction. For our pangenome graph constructed from eleven
samples, we show the number of branches in a bubble as a function of its length which we define by the length of the longest
path through the bubble (in bp).

8/7



Supplementary Figure 2. Metrics used to evaluate genotyping results and how they define errors.
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Supplementary Figure 3. Evaluation example. a) Shown is a set of variants (represented by circles) that are used as input
for genotyping and a sample carrying only one of these variants (i.e. the true genotype for all others is 0/0). Both variants
colored in red were genotyped as non-0/0, resulting in a genotyping error for the second one which will be counted as a false
positive call. This example illustrates why precision/recall measures are not ideal for a re-genotyping scenario: when variants
are called across a large set of samples and then genotyped in another, new sample, there will be a large fraction of variants
absent in the new sample. Thus, even if the false positive rate is low, the number of false positives will increase as the number
of input variants increases, while the number of true positives is limited. In this example, only a single genotyping error will
decrease the precision to 0.5. b) Confusion matrix for PanGenie and the resulting values for precision, recall and weighted
genotype concordance (matrix for large insertions in repetitive regions). While the false positive rate is low (only 415 of 9713
variants absent from the truth set are genotyped as non-0/0), it is relatively high compared to the number of true positives which
explains why the precision is so low compared to the weighted genotype concordance. The same effect applies to all other
re-genotyping methods.
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Supplementary Figure 4. weighted genotype concordance for NA24385 (non-repetitive regions). Weighted genotype
concordance at different coverages for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK,
GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported genotype
qualities (“all”), we additionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype quality
>= 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex
contains all variant alleles falling into regions with complex bubbles in the pangenome graph representation.
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Supplementary Figure 5. weighted genotype concordance for NA24385 (STR/VNTR regions). Weighted genotype
concordance at different coverages for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK,
GraphTyper and Giraffe in order to re-genotype all callset variants. Besides not applying any filter on the reported genotype
qualities (“all”), we additionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype quality
>= 200). SNPs, insertions and deletions include all respective variants in biallelic regions of the genome, while complex
contains all variant alleles falling into regions with complex bubbles in the pangenome graph representation.
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Supplementary Figure 6. adjusted precision/recall for NA24385 (non-repetitive regions). Adjusted precision/recall at
different coverages for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe
in order to re-genotype all callset variants. Besides not applying any filter on the reported genotype qualities (“all”), we
additionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype quality >= 200). SNPs,
insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Supplementary Figure 7. adjusted precision/recall for NA24385 (STR/VNTR regions). Adjusted precision/recall at
different coverages for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe
in order to re-genotype all callset variants. Besides not applying any filter on the reported genotype qualities (“all”), we
additionally report genotyping statistics for PanGenie when using “high-gq” filtering (genotype quality >= 200). SNPs,
insertions and deletions include all respective variants in biallelic regions of the genome, while complex contains all variant
alleles falling into regions with complex bubbles in the pangenome graph representation.
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Supplementary Figure 8. adjusted F-score for NA24385 (non-repetitive regions). Adjusted F-score at coverage 30×
for sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to
re-genotype all callset variants. Besides not applying any filter on the reported genotype qualities (“all”), we additionally report
genotyping statistics for PanGenie when using “high-gq” filtering (genotype quality >= 200). SNPs, insertions and deletions
include all respective variants in biallelic regions of the genome, while complex contains all variant alleles falling into regions
with complex bubbles in the pangenome graph representation.
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Supplementary Figure 9. adjusted F-score for NA24385 (STR/VNTR regions). Adjusted F-score at coverage 30× for
sample NA24385. We ran PanGenie, BayesTyper, Paragraph, Platypus, GATK, GraphTyper and Giraffe in order to re-genotype
all callset variants. Besides not applying any filter on the reported genotype qualities (“all”), we additionally report genotyping
statistics for PanGenie when using “high-gq” filtering (genotype quality >= 200). SNPs, insertions and deletions include all
respective variants in biallelic regions of the genome, while complex contains all variant alleles falling into regions with
complex bubbles in the pangenome graph representation.
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Supplementary Figure 10. variant discovery vs. re-genotyping for NA12878. In addition to re-genotyping given
variants, GATK and Platypus were run in discovery mode to detect and genotype their own SNPs and indels (< 50bp). Results
were evaluated inside of STR/VNTR regions and in non-repetitive regions. Adjusted F-scores were computed for coverage
level 30×. We separately evaluate results for all variants falling into biallelic and complex regions of the genome as defined by
the bubble structures in the pangenome graph.
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Supplementary Figure 11. Comparison to GIAB small variants for NA12878. The GIAB small variants benchmark
set3 was used as ground truth for evaluating the results of our "leave-one-out" experiment for SNPs and indels (< 50bp). We
computed the adjusted precision and recall (left), as well as the un-adjusted versions (right) including variants unique to
NA12878 and thus not genotypable by a re-genotyping approach. GATK and Platypus were additionally run in detection mode.
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Supplementary Figure 12. Comparison to syndip benchmark SVs. SVs contained in the syndip benchmark set were
used as ground truth for evaluation. We computed the weighted genotype concordance and the adjusted precision and recall
metrics to evaluate our results.
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Supplementary Figure 13. HLA genotyping. While all other genes considered where fully covered by assembly
alignment and therefore accessible for variant calling, the C4 genes where not since there was a large gap in the alignment of
one haplotype of NA12878 (possibly caused by a large deletion) and the alignments of many other samples. Thus, the
evaluation shown in a) corresponds only for the parts accessible by variant calling.
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Supplementary Figure 14. Mendelian Consistency. Distribution of mendelian consistencies computed for each variant
across all trios with at least two different genotypes. Our definition of mendelian consistency only takes trios with at least two
different genotypes into consideration. That is, we exclude trios with all 0/0, 0/1 or 1/1 genotypes.
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Supplementary Figure 15. Filters. We show all combinations of filters that we have applied to our genotyped variant
callset and the respective number of variants in each subset. The black dots indicate that the respective filter failed.
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Supplementary Figure 16. Unfiltered set. Allele frequency vs. heterozygosity of the PanGenie genotypes across all 200
unrelated trio samples and all 11 panel samples for the unfiltered set of variants. The table shows the number of variants for
which no significant deviation from Hardy-Weinberg equilibrium was observed.
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Supplementary Figure 17. Strict set. Allele frequency vs. heterozygosity of the PanGenie genotypes across all 200
unrelated trio samples and all 11 panel samples for the strictly filtered set of variants. The table shows the number of variants
for which no significant deviation from Hardy-Weinberg equilibrium was observed.
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Supplementary Figure 18. Lenient set. a) Distributions of SVR scores predicted for the positive (blue), negative (red) and
unassigned variants (grey). b) Allele frequency vs. heterozygosity of the PanGenie genotypes across all 200 unrelated trio
samples and all 11 panel samples for the lenient set of variants. The lenient set contains all variants contained in the strict set
(=positive set), as well as all variants for which the SVR score was ≥−0.5.
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Supplementary Figure 20. LD analysis. We calculated LD for GWAS variants and SVs that were part of our assembly
based callset. We detected an insertion (marked in blue) in CCDC91 gene which was in linkage disequilibrium with two GWAS
SNPs (rs10843151 and rs11049566). The plots shows all callset variants with AF≥ 0.05 in this region, GWAS variants are
annotated with their name.
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Sample Haplotype v13 / hifiasm
ctg. N50 # contigs length (bp) largest contig (bp)

HG00512 h1 34,301,582 1,777 3,188,143,530 101,334,844
HG00512 h2 34,874,650 1,449 3,163,234,783 112,440,880
HG00513 h1 45,364,295 1,500 3,136,967,952 133,503,586
HG00513 h2 45,319,314 1,227 3,113,449,797 139,638,253
HG00514 h1 17,395,387 1,983 3,141,391,447 94,121,208
HG00514 h2 18,722,440 1,650 3,121,917,894 72,949,789
HG00731 h1 35,342,509 2,218 3,179,873,135 130,295,053
HG00731 h2 31,517,176 1,791 3,145,395,507 131,214,380
HG00732 h1 22,794,071 1,084 3,161,371,445 70,183,886
HG00732 h2 18,785,010 849 3,128,313,934 85,401,373
HG00733 h1 32,098,695 1,711 3,141,624,750 81,981,905
HG00733 h2 39,889,742 1,327 3,127,483,091 110,942,518
HG02818 h1 14,735,342 1,645 3,148,193,201 62,389,557
HG02818 h2 13,891,585 1,346 3,131,545,528 53,330,289
HG03125 h1 19,740,003 1,453 3,144,381,367 78,085,250
HG03125 h2 16,030,141 1,233 3,121,673,094 69,854,835
HG03486 h1 13,742,469 1,400 3,172,408,948 63,278,388
HG03486 h2 15,627,668 1,269 3,152,826,116 58,336,852
NA12878 h1 33,400,276 3,631 3,129,308,283 104,882,848
NA12878 h2 27,880,200 3,014 3,108,352,699 110,737,365
NA19238 h1 15,612,125 2,954 3,126,238,496 71,400,915
NA19238 h2 15,239,724 2,418 3,107,339,654 72,441,052
NA19239 h1 19,056,746 2,217 3,198,825,166 84,398,966
NA19239 h2 16,698,371 1,806 3,171,600,679 95,184,935
NA19240 h1 29,153,232 1,978 3,153,890,228 104,206,385
NA19240 h2 32,117,261 1,588 3,136,752,685 95,070,688
NA24385 h1 23,950,673 1,649 3,173,344,587 98,025,482
NA24385 h2 28,576,363 1,306 3,156,300,763 111,314,854

mean 25,423,466 1,767 3,145,791,027 92,748,083

Supplementary Table 1. Assembly statistics. Shown are N50s, the number of contigs, the length of the assembly (bp) as
well as the size of the largest contig for all our 14 haplotype-resolved assemblies.
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type
variants
(unfiltered)

variants
(callable regions)

variants
(mendelian consistent)

bubbles in
pangenome graph

SNP 13,628,117 12,560,841 12,095,177 11,556,580
small insertion 2,229,474 2,163,433 1,922,163 810,298
small deletion 2,026,998 1,961,042 1,811,123 819,445
small complex 0 0 0 597,044
midsize insertion 123,304 120,505 110,882 20,300
midsize deletion 87,263 85,114 80,027 12,720
midsize complex 0 0 0 87,392
large insertion 135,150 123,990 108,929 18,325
large deletion 48,724 45,419 41,499 4,397
large complex 0 0 0 52,272

Supplementary Table 2. Variant calling statistics. Numbers of variants obtained at different stages of variant
calling/pangenome graph construction. The first column corresponds to the number of raw variant calls made across all
individual haplotypes. The second column contains the number of variants within the callable regions, that is, after removing
sites with more than 20% of missing (“./.”) genotypes. The third column shows to the number of variants left after removing
sites with mendelian inconsistencies and corresponds to our final variant callset. The last column presents the number of
bubbles in the graph after constructing a pangenome from all variants in the previous column. Columns 1-3 contain only
variant alleles that can be classified as SNPs, insertions and deletions. In the graph however, overlapping variant alleles are
combined into multi-allelic bubbles. All such bubbles with more than two branches are defined as “complex”.
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SNP small INS small DEL midsize INS midsize DEL large INS large DEL
HG00512 total 3,724,332 444,561 442,280 15,635 14,685 14,742 8,623

unique 251,925 48,811 42,229 5,531 2,831 5,830 1,412
HG00513 total 3,767,798 447,734 444,429 16,025 15,019 15,098 8,900

unique 258,979 46,955 39,971 5,758 2,978 6,191 1,540
HG00731 total 3,792,925 446,416 448,667 15,630 15,002 15,006 8,717

unique 237,125 43,607 38,016 5,299 2,585 5,645 1,336
HG00732 total 3,850,476 552,952 469,341 16,943 15,401 15,882 9,082

unique 258,515 122,268 57,321 6,157 2,961 6,554 1,552
HG02818 total 4,604,971 559,626 566,604 20,166 18,904 17,837 10,740

unique 605,439 100,220 97,157 8,881 5,455 8,820 2,710
HG03125 total 4,631,416 576,887 580,655 20,290 19,106 18,132 10,759

unique 608,299 113,155 108,740 9,021 5,574 9,074 2,726
HG03486 total 4,679,604 582,370 575,677 20,421 19,430 18,376 11,027

unique 670,228 118,933 106,370 9,146 5,935 9,364 2,891
NA12878 total 3,775,211 445,739 448,293 16,029 15,027 15,374 8,777

unique 247,345 46,445 40,769 5,739 2,816 6,001 1,444
NA19238 total 4,629,589 562,928 584,771 20,099 19,081 18,321 10,870

unique 606,621 102,902 108,613 8,803 5,496 9,066 2,771
NA19239 total 4,573,111 551,810 575,465 19,611 18,642 17,721 10,664

unique 589,863 98,383 106,349 8,327 5,466 8,636 2,620
NA24385 total 3,761,904 459,907 447,880 16,144 15,046 15,023 8,769

unique 247,111 56,090 43,103 5,710 2,792 5,921 1,370
total total 12,095,177 1,922,163 1,811,123 110,882 80,027 108,929 41,499

Supplementary Table 3. Variants in pangenome graph. Total number of variants detected across all assembly samples
(“total”), as well as the number of variants unique to a sample, that is, variants seen only in the respective sample and in none of
the other samples (“unique”).
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non-repetitive regions repeat regions repeat regions [%]
SNPs biallelic 10,736,632 527,498 4.7 %

complex 179,476 368,385 67.2 %
small biallelic INS 682,987 115,702 14.5%

biallelic DEL 696,243 123,055 15.0 %
complex INS+DEL 1,238,489 817,458 39.7 %

midsize biallelic INS 9,313 10,997 54.2 %
biallelic DEL 5,651 7,909 58.3 %
complex INS + DEL 43,105 104,734 70.8 %

large biallelic INS 7,537 10,757 58.8 %
biallelic DEL 2,212 2,397 52.0 %
complex INS + DEL 29,277 89,297 75.3 %

Supplementary Table 4. Repetitive regions. Shown are the numbers of variants located inside and outside of STR/VNTR
regions for sample NA12878. “biallelic” corresponds to all genomic regions outside of complex bubbles (= bubbles with more
than two branches) in our pangenome graph. “complex” corresponds to all callset variants that are located inside of complex
bubbles.
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coverage method NA12878 NA24385

time total time
genotyping

memory
total

memory
genotyping time total time

genotyping
memory

total
memory

genotyping

5 PanGenie 21:06:10 19:42:05 84.8 36.4 31:44:24 29:30:54 84.6 36.2
BayesTyper 27:23:15 26:22:21 39.3 39.3 36:31:30 35:20:37 39.2 39.2
Platypus 18:12:42 1:20:10 18.2 0.2 20:39:51 1:31:42 8.7 0.1
GATK1 34:41:06 17:24:26 18.2 0.4 35:24:17 15:53:15 8.7 0.4
Paragraph2 39:49:37 22:57:04 18.2 10.1 40:51:58 21:43:48 11.1 11.1
GraphTyper3 22:06:44 5:14:12 18.2 0.2 23:12:02 4:03:52 8.7 0.2

10 PanGenie 21:36:59 19:27:31 84.8 36.4 33:07:31 29:29:26 84.7 36.2
BayesTyper 38:42:03 37:20:08 40.7 40.7 36:05:15 34:16:52 40.7 40.7
Platypus 35:20:29 1:42:35 18.6 0.4 42:57:08 1:57:21 8.8 0.3
GATK1 59:42:39 25:21:58 18.6 0.4 67:21:06 25:36:00 8.8 0.5
Paragraph2 66:02:14 32:24:20 18.6 13.2 86:19:41 45:19:54 12.2 12.2
GraphTyper3 42:52:25 9:14:31 18.6 0.3 49:30:28 8:30:41 8.8 0.2

20 PanGenie 23:46:08 19:39:33 84.8 36.4 24:24:09 19:41:24 84.7 36.3
BayesTyper 32:03:53 29:59:40 41.0 41.0 44:49:37 41:59:38 41.1 41.1
Platypus 68:38:45 2:11:46 28.4 0.7 81:28:44 2:42:48 8.8 0.5
GATK1 107:04:36 39:18:12 28.4 0.5 120:51:45 40:43:18 8.8 0.8
ParaGraph2 137:18:30 70:51:31 28.4 14.3 139:56:03 61:10:07 12.9 12.9
GraphTyper3 84:34:29 18:07:30 28.4 0.5 92:58:00 14:12:04 8.8 0.3

30 PanGenie 24:58:54 19:31:51 84.8 36.4 26:48:22 19:41:23 84.7 36.3
Bayestyper 32:24:13 29:34:54 41.1 41.1 48:30:38 44:34:30 44.4 44.4
Platypus 99:12:01 1:59:29 39.1 1.0 123:09:20 3:02:53 8.8 0.9
GATK1 143:57:46 44:54:12 39.1 0.5 176:26:20 54:21:41 8.8 0.9
Paragraph2 210:28:50 113:16:17 39.1 14.7 256:00:10 135:53:43 13.3 13.3
GraphTyper3 123:03:06 25:50:33 39.1 0.7 141:57:38 21:51:11 8.8 0.5
Giraffe3 3043:47:18 11:10:38 188.7 45.2

1 GATK was run on SNPs, small and midsize variants only.
2 Paragraph was run on midsize and large variants only.
3 GraphTyper and Giraffe were run on large variants only.

Supplementary Table 5. Resources. Runtime (in CPU hhh:mm:ss) and peak memory usage (in GB) of the different
genotyping methods at different coverages. For all methods, we show the total resources needed for producing genotypes from
raw, unaligned sequencing reads (“total”), as well as the resources needed only for the genotyping step (“genotyping”). Thus,
for Platypus, GATK, Paragraph and GraphTyper the latter excludes the time needed to generate alignments against the
reference genome. For Giraffe, it excludes the time for graph construction with vg, indexing and alignment. For k-mer based
k-mer based approaches (PanGenie and BayesTyper), it excludes the k-mer counting step. All tools were run on a HPC-cluster
predominantly consisting of Intel E5-2697v2 (2× 12 cores and 128 GB of RAM) and Intel Xeon Gold 6136 (2× 12 cores and
192 GB of RAM) nodes.
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Table is provided as a separate xlsx file.
Supplementary Table 6. Evaluation of HLA region in haplotype-resolved assemblies. HLA*ASM was used to
determine HLA types from our haplotype-resolved assemblies. Table is provided in separate xlsx-file.
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SNP small INS small DEL midsize INS midsize DEL large INS large DEL
unfiltered 12,095,177 1,922,163 1,811,123 110,882 80,027 108,929 41,499

strict 11,234,462 1,198,663 1,202,791 57,699 40,752 56,290 20,490

Supplementary Table 7. Number of variants in strict set. Number of variants contained in the strictly filtered set of all
variant types.
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large INS large DEL
unfiltered 108,929 41,499

lenient 84,836 34,290
strict 56,290 20,490

Supplementary Table 8. Number of variants in filtered and unfiltered sets. Number of variants contained in the
unfiltered, strict and lenient set constructed for large variants (≥ 50bp).
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Table is provided as separate xlsx file.
Supplementary Table 9. LD hits. We show all SVs that were reported in strong linkage disequilibrium with GWAS SNPs
(r2 >= 0.9). Coordinates are shown relative to reference genome GRCh38. We show only the most common phenotypes for
each GWAS variant17. The column “mapped gene(s)" lists the genes mapped to the GWAS SNPs as reported by17. If a SNP is
located outside of a gene region, the closest upstream and downstream genes are listed separated by a hyphen17.
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