
Supplementary information to: Machine

learning for medical imaging: methodological

failures and recommendations for the future
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Testing procedures for predictive models

There is no one-size-fit-all testing procedures for machine learning

classifiers. However, in this section we provide some recommendations on
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what to (not) do via an illustrative example.

Suppose we are interested in detecting cancer from lung images. Given a

dataset of healthy and cancerous images, and a performance metric of

interest –such as accuracy– how can we design statistically-sound

evaluation of a classifier? There are several different underlying questions

that call for different methods.

Evaluating a prediction rule

The first question that we might be interested in is: given a prediction rule

how well does it perform? The prediction rule can be independent of the

images, or it can come from the output of a classifier trained on the data.

In both settings, evidence for clinical application of the prediction rule, for

instance as required by regulatory agencies, calls for statistical evaluation.

For evaluating the prediction rule we can use confidence intervals or

null-hypothesis testing. For this we need test data, which (in machine

learning) is often a held-out part of the existing dataset, or new data

–external validation. The size of the test set then determines the statistical

power: the confidence errors on the measure of the prediction performance

and the effect size that can be detected. The test set should be large

enough, for example too small test sets lead to large error bars of the

estimated prediction performance.1 Riley et al2 give recommendations on

minimum sample sizes for various performance metrics.
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Evaluation of a machine-learning procedure

Another question we might be interested in is to evaluate a

machine-learning procedure. Unlike a prediction rule, by machine-learning

procedure we refer the full process of starting from training data, extracting

a prediction rule, and using it to classify test images as healthy or

cancerous. This question is often of interest in machine-learning research,

or if we want to retrain an existing prediction rule on new data. Here we

need different evaluation techniques because the machine-learning

procedure has several uncontrolled sources of variance, such as the training

set or random initialization.3 For machine-learning research, conclusions on

a given procedure should not be driven by the choice of particularly

favorable training set if we cannot expect similar performance when using

new training data. On the contrary, for clinical applications, it is safer to

evaluate an already trained algorithm which will be used as the prediction

rule in practice, to rule out the possibility of a poor performance if training

the algorithm on new training data.

Given our dataset of lung images, a good evaluation of a learning procedure

requires repeatedly sampling different training and testing data –as in a

cross-validation loop–, as well as other sources of variance. Due to the

flexibility of machine-learning classifiers, it is hard derive closed-form

expressions of confidence intervals or p-values to account for all the sources

of variability. Instead, we can estimate the distribution of performance

scores by repeating the experiments with such variations and deduce
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confidence intervals.3 Note that standard statistical tests (such as the

t-test) cannot be used across cross-validation folds, as these are not

independent samples.1

Sample size is an important factor to the success of prediction studies, both

for the training data and the testing data. To evaluate of much the amount

of data impacts the prediction performance, we can use learning curves 1

where we vary the training set size, evaluate the trained classifier on the

test set, and plot the performance metric as a function of the training set

size. If the curve is flattening, we might conclude that adding more training

data will not improve performance. We might also be able to observe that

less flexible classifiers (such as linear models) might outperform more

flexible classifiers (such as neural networks) when the training set is small,

but the situation to reverse when more training data is added. To give a

concrete example, we refer to the results from a machine-learning paper by

one of the authors4 where classifiers are evaluated on non-medical datasets,

but with similar dataset sizes and evaluation metrics as often used in

medical imaging. We refer to Fig. 7 in,4 which is not reproduced here for

copyright reasons. This figure shows several panels, each panel

corresponding to one benchmark dataset. Each panel shows a learning

curve with the training set size on the x-axis, and the area under the curve

(AUC, higher is better) on the y-axis, for seven different classifiers. We see

1Note that we use the original definition of learning curves where a classifier is trained
and evaluated multiple times, rather than the recent trend of referring to the loss of a
single training run
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AUC increases with the training set size, but the slopes of the classifiers are

different. For example, looking at the “Musk1”dataset, we see that the

classifier “minimax libsvc” starts out being the worst classifier, but is

among the best at larger training sizes. Ideally, this plot should have also

included error bars on the performances.

Comparing machine-learning procedures

In machine-learning research we might want to evaluate that a classifier is

better than one or more competing classifiers. The question is then whether

the difference in the observed performance metrics is due to chance.

Given a particular dataset and a classifier –a learning procedure–,

cross-validation can give an estimate of the expected performance and its

distribution. But we cannot yet conclude our classifier is better than

another classifier for detecting lung cancer in images in general: in

particular, we would need to evaluate the classifier on other, independent,

datasets.

In this scenario, we can compare ranks of classifiers on multiple

independent datasets to conclude that a classifier is generally better than

another, as recommended by5 (though with caveats pointed out by the

same author6). Based on the number of datasets (samples) and the number

of classifiers, we can test whether the average classifier ranks are due to

chance. If not, we can use a post-hoc test to find the critical difference: the

minimum difference in ranks that classifiers need have, to be considered
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significantly-different. The critical difference decreases with the number of

datasets, but increases with the number of classifiers.

We show an illustration of the evaluation procedure in Table 1, also based

on data from results from Cheplygina et al .4 The table shows results for 14

different datasets (rows) and six classifiers (columns). For each

dataset/classifier combination, the mean and standard error of the

performance metric, which is the area under the curve (AUC), is reported

(missing results are due classifiers failing to converge, and are ranked as

last). The last row the table shows the average ranks of the classifiers, based

on the Friedman test recommended by.5 Since the null hypothesis (that the

differences in these ranks overall are due to chance) is rejected, the critical

difference is calculated, which for 14 datasets and six classifiers is equal to

2.0153. From these results we could conclude that although MInD is the

classifier with the lowest rank, MILES and Minimax are not significantly

different, because their ranks are within the critical difference from 1.7857.

Brain imaging biomarkers meta-analysis

While the sample size of studies increases with time, there is a wide

variability. We run a multivariable regression analysis, to separate out the

effect of sample size of the study and publication date on reported

prediction accuracy. Table 2 gives the corresponding estimated normalized

coefficients, confidence intervals, and p-values. It confirms what is visible in
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Table 1: Area under the curve (AUC) and standard error (×100), 5 × 10-
fold cross-validation for 14 datasets and 6 classifiers. The last row shows
the classifier ranks from the Friedman test, for which the critical difference
is 2.0153. Classifiers in bold are best, or not significantly worse than best.
Reproduced from Cheplygina et al .4

Classifier
Data emdd misvm boosting miles minimax meanmin
Musk1 87.4 (2.1) 81.3 (2.5) 74.3 (2.6) 92.8 (1.2) 89.1 (1.9) 93.4 (1.2)
Musk2 86.9 (2.1) 81.5 (2.1) 73.6 (2.3) 95.3 (0.8) 89.0 (1.5) 95.4 (1.4)
Fox 67.6 (3.2) 53.9 (1.6) 61.1 (1.9) 69.8 (1.7) 58.1 (1.3) 60.5 (1.9)
Tiger 75.4 (2.9) 83.3 (1.3) 84.1 (1.6) 87.2 (1.6) 81.4 (1.3) 85.1 (1.7)
Elephant 88.5 (2.1) 84.1 (1.4) 89.0 (1.4) 88.3 (1.3) 88.2 (1.0) 93.1 (0.8)
African 91.5 (1.0) 63.4 (1.2) 88.9 (0.9) 58.9 (1.7) 84.5 (1.5) 96.7 (0.4)
Beach 84.7 (1.3) 49.6 (1.6) 85.0 (1.1) 60.0 (1.9) 82.4 (0.9) 92.3 (0.6)
AjaxOrange - 93.6 (1.1) 97.9 (0.5) - 91.1 (0.9) 98.6 (0.4)
alt.atheism 51.0 (5.2) 70.9 (2.6) - 47.1 (2.4) 80.6 (1.8) 94.9 (1.0)
comp.graphics 48.2 (3.2) 59.3 (2.8) 56.3 (2.6) 57.2 (2.6) 57.1 (2.7) 92.2 (1.4)
BrownCreeper 94.5 (0.9) 85.8 (0.7) 95.4 (0.4) 95.8 (0.3) 94.1 (0.4) 95.5 (0.3)
WinterWren 98.5 (0.3) 95.3 (0.4) 97.0 (1.5) 99.2 (0.2) 98.1 (0.2) 99.5 (0.1)
Web1 - 89.7 77.8 (5.7) 88.2 (4.7) 90.4 76.0 (2.7)
Web4 60.6 (1.1) 81.2 61.8 (4.9) 70.8 (1.6) 86.7 73.7 (3.2)
Rank 4.1786 4.3571 3.9286 3.1786 3.5714 1.7857

Fig. 1c: for a given publication date, studies with larger sample sizes report

lower prediction accuracy. Publication time, on the other hand, is

associated with an improvement in prediction accuracy.

That reported prediction accuracy decreased with study sample size has

already been reported.1 There are multiple reasons that can explain such a

finding. First, larger cohorts tend to be more heterogeneous, and thus lead

to harder prediction tasks. Second, the smaller the cohort, the smaller the

test set; as a result, it is more likely that a good prediction accuracy is

observed by chance, due to sampling error on the test set. This good

prediction accuracy would however be misleading, as it would not reflect an
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Table 2: Regression analy-
sis of published accuracy
as a function of sample size
and publication year

coef Confidence interval p value

pMCI vs sMCI (n = 166)
log(subjects) -0.0352 -0.059 — -0.012 0.004
Year 0.0074 0.002 — 0.012 0.004

AD vs HC (n = 86)
log(subjects) -0.0188 -0.037 — -0.000 0.047
Year 0.0024 -0.002 — 0.006 0.224

actual generalization capacity to new data.

Literature popularity review methods

We give here the methodological details behind Fig. 2. To assess relative

popularity of studies on breast versus lung cancer in medical and AI

research, we quantify the prevalence of these topics in the corresponding

literature. For this, we use the Dimensions.AI app,7 querying the titles and

abstracts of papers, with the following two queries:

• lung AND (tumor OR nodule) AND (scan OR image)

• breast AND (tumor OR nodule) AND (scan OR image)

We do this for two categories, which are the largest subcategories within

top-level categories “medical sciences” and “information computing”:

• 1112 Oncology and Carcinogenesis

• 0801 Artificial Intelligence and Image Processing
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We then normalize the number of papers per year, by the total number of

papers for the “cancer AND (scan OR image)” query in the respective

categories (1112 Oncology or 0801 AI).

Included Kaggle challenges

We selected 8 medical-imaging challenges from Kaggle, which allows

efficient retrieval of public and private leaderboard scores. In July 2021,

there were around 15 medical-imaging challenges available, of which we

selected four based on their varying focus (classification or segmentation)

and incentives. Table 3 gives details on the challenges we use to compare

performance gains to evaluation noise.

For each competition, we looked at the public and private leaderboards,

extracting the following information:

• Differences di, defined by the difference of the i-th algorithm between

the public and private leaderboard

• Distribution of di’s per competition, its mean and standard deviation

• The interval t10, defined by the difference between the best algorithm,

and the “top 10%” algorithm
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Description URL Incentive Test size Entries
Lung cancer detection in CT scans https://www.kaggle.com/c/data-science-bowl-2017 1M USD max 1K 394
Schizophrenia classification in MR scans https://www.kaggle.com/c/mlsp-2014-mri/overview Publications 120 313
Lung pneumothorax segmentation in X-rays https://www.kaggle.com/c/

siim-acr-pneumothorax-segmentation

30K USD max 6K 350

Nerve segmentation in ultrasound images https://www.kaggle.com/c/

ultrasound-nerve-segmentation

100K USD 5.5K 922

Intracranial hemorrhage detection in CT im-
ages

https://www.kaggle.com/c/

rsna-intracranial-hemorrhage-detection

15K USD 120K 2 553

Prostate cancer grade assessment https://www.kaggle.com/c/

prostate-cancer-grade-assessment

25K USD 1K 19 723

COVID-19 abnormalities location on chest
radiographs

https://www.kaggle.com/c/siim-covid19-detection 100K USD 1 200 32 307

Pneumonia detection from chest radiographs https://www.kaggle.com/c/

rsna-pneumonia-detection-challenge

30K USD 3 00 2 001

Table 3: Details of Kaggle challenges used for our analysis. The test size
shows the number of test images provided, and the number of entries corre-
sponds to the number of results on the private leaderboard.
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