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Gene Ontology term Frequency Genome frequency P-value Genes annotated to the term

Cell periphery 19 of 50 genes, 38.0% 846 of 7166 genes, 11.8% 0.00015 SSA2, CWP2, SIM1, FTR1, PMA1, 
FET3, CRR1, PHO87, FKS1, PUT4, 
CTR1, FRE1, FUI1, GIC2, SUN4, 
SRL1, UTH1, FRE4, KCC4

Cell surface 4 of 50 genes, 8.0% 20 of 7166 genes, 0.3% 0.00088 SRL1, SUN4, SIM1, UTH1

Cyclin-dependent 
protein kinase 
holoenzyme complex

4 of 50 genes, 8.0% 28 of 7166 genes, 0.4% 0.00360 PCL2, CLB1, CLN2, PCL1

Fungal-type cell wall 7 of 50 genes, 14.0% 136 of 7166 genes, 1.9% 0.00364 SIM1, UTH1, CWP2, SSA2, SRL1, 
SUN4, CRR1
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Supplementary Figure 1. Genes whose promoters are bound by Rtt106 and ontology analysis.
(a) Genes with at least one PDR responsive element (PDRE) within their promoters. Gene promoters bound
by Rtt106 (Magenta, Cluster 1 as in Fig 2) and those not (dashed grey) are shown separately. (b) Specimen
gene promoters categorised into ‘peaks’ in clusters 7 and 8 (=Type C). Yta7 binding tested by ChIP-seq
analysis performed by Lombardi et al. 2015 (ref. 1) is shown alongside Rtt106 binding (c) Gene ontology
analysis of the genes categorised to ‘peaks’ in clusters 7 and 8 (=Type C). P-values were calculated by a
hypergeometric distribution with Bonferroni Correction in GO Term Finder. (d) Specimens of gene promoters
containing centromere, tRNA, snoRNA or highly expressing gene. These promoters are considered as ‘false
positives’ because Rtt106 most likely binds centromeres, tRNA, snoRNA and highly expressing genes, rather
than binding to their promoters.
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Supplementary Figure 2. The most differentially expressed genes in rtt106D in YPD, and testing
conditions that induce expression of PDR5.
(a) Log2 fold changes of mRNA level of the most increased and decreased 20 genes in rtt106D compared
to WT grown in YPD. Numbers in brackets, cluster number. Data represents means of three biological
replicates. Asterisks, transporter genes. (b) Northern blot analysis of PDR5 mRNA in WT and rtt106D
treated with fluconazole and ketoconazole transiently (15 min) under glucose-starved conditions (YEP).
Serial dilutions of the WT RNA sample treated with ketoconazole were loaded for quantification. The
amounts of PDR5 mRNA relative to that prepared from WT in YEP are shown below the PDR5 blot. ARF1,
loading control. The positions of 25S and 18S rRNAs are shown. (c) Northern blot analysis of PDR5
mRNA in WT treated with fluconazole and ketoconazole in YPD. The intensities relative to PDR5 mRNA
prepared from WT without drug treatment are shown below the PDR5 blot. ARF1, loading control. The
positions of 25S and 18S rRNAs are shown.
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Supplementary Figure 3. Rtt106 is required for Pdr3-dependent expression of PDR5 during log
phase, but not for ketoconazole-induced Pdr1-dependent expression of PDR5.
(a) Northern blot analysis showing dependence of PDR5 mRNA in WT and rtt106D on Pdr1 or Pdr3. For
quantification, a serial dilution of the RNA sample prepared from WT grown in YPD was loaded. The
amounts of PDR5 mRNA relative to that prepared from WT in YPD are shown below the PDR5 blot. ARF1,
loading control. The positions of 25S and 18S rRNAs are shown. (b) Normalised counts of PDR5 mRNA
extracted from RNA-seq data of WT and rtt106D with and without Pdr1 and Pdr3. Data represents means of
three biological replicates. Error bars, standard deviations. Significance determined by one-way ANOVA
with post-hoc Tukey HSD test. ns, P>0.05. (c) Northern blot analysis showing dependence of PDR5 mRNA
in WT and rtt106D on Pdr1 or Pdr3 as in A, but treated with ketoconazole. The positions of 25S and 18S
rRNAs are shown. (d) Normalised counts of PDR5 mRNA extracted from RNA-seq data of WT and rtt106D
with and without Pdr1 and Pdr3 as in panel b, but treated with ketoconazole. Data represents means of
three biological replicates. Significance determined by one-way ANOVA with post-hoc Tukey HSD test. ns,
P>0.05. (e) ChIP-qPCR analysis of Rtt106 in YPD, YEP and YEP plus ketoconazole to test Rtt106 binding
at PDR5 promoter. Data are presented as mean values +/- SD (n = 3 biological replicates). Significances
determined by one-way ANOVA with post-hoc Tukey HSD test. ns, P>0.05. (f) Sensitivity to ketoconazole of
WT, pdr1D, pdr3D, pdr1D pdr3D, pdr5D, snf2D, and rtt106D. Five-fold dilutions of indicated strains were
spotted on YPD and YPD containing ketoconazole and incubated at 30°C for 3 days.
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Supplementary Figure 4. Construction of epitope-tagged PDR3 and ChIP-qPCR analysis of Pdr3.
(a) Functionality tests for a series of epitope-tagged Pdr3 by drug sensitivity assays show that PDR3-13Myc
is the best tagged PDR3 strain among the tags tested. Five-fold dilutions of indicated strains were spotted
on YPD and YPD containing ketoconazole and incubated at 30°C for 3 days. 1-3 isolates per strain were
tested. All N-terminally tagged PDR3 strains showed were constructed by CRISPR-Cas9 genome editing.
‘pdr3 out-of-frame’, a frame shift mutation introduced when 3Myc was inserted. (b and c) Expression check
of the indicated strains by western blot. Expression of neither 3HA-Pdr3 nor 2HA-Pdr3 was confirmed. (d)
ChIP-qPCR analyses of Pdr3-13myc at the PDR5 promoter in the indicated strains grown in YPD. ChIP
efficiency, the recovery of ChIPed DNA relative to the amount of input. Data are presented as mean values
+/- SD (n = 3 biological replicates). (e) Protein levels of Pdr3 in whole cell extracts from the indicated strains
grown in YPD. The histogram shows protein level of Pdr3 relative to WT (normalised to loading),
represented as mean values +/- SD (n = 3 biological replicates). The panels below show a western blot and
a Stain-free image of one of the three experiments. (f) GST pull-down analysis of GST-Pdr3 and His-Rtt106,
both of which are purified from E. coli.
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Supplementary Figure 5. Sensitivity to ketoconazole of fzo1D and mitochondrial
DNA-depleted strains. (a and b) Sensitivity to ketoconazole of WT and 7 isolates of
fzo1D (a) and 7 isolates of mitochondrial DNA (mtDNA)-depleted strains by ethidium
bromide (EtBr) treatment (b). Five-fold dilutions of indicated strains were spotted on YPD
and YPD containing ketoconazole and incubated at 30°C for 3 days. Loss of mtDNA was
evaluated by growth defect in YEP containing glycerol (YP Gly). In inconsistent with
previous reports, loss of mtDNA did not cause resistance to azole antifungal drug in the
strain background used in this study. BY4741 is used in this study, while SEY6210 in the
previous studies.
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Supplementary Figure 6. Minichromosome isolation, the contribution of the SWI/SNF subunits to
azole antifungal resistance and gene expression of PDR5, and purification of the SWI/SNF complex.
(a) Proteins remain associated with purified minichromosomes analysed by SYPRO Ruby staining and
western blotting (WB), and anti-HA antibody to detect Rtt106. Minichromosome isolation was performed as
in Fig. 5 and described in Methods. Relative intensity of the Rtt106 band is shown below the western blot. (b
and c) The immunopurified fraction of the SWI/SNF complex (via Snf6-3FLAG) from yeast cells was
analysed by SYPRO Ruby staining (b) and by mass spectrometry (c). # PSMs, the number of peptide
spectrum matches. All proteins listed were identified by at least three PSMs were listed. Subunits of
SWI/SNF (cyan), Replication and repair proteins (yellow), and Pdr1 (red) are highlighted. The interaction of
SWI/SNF with the checkpoint kinase Mec1-Ddc2 complex (a homolog of human ATR-ATRIP) was
previously reported2. Ddc2 binds Replication Protein A (RPA) composed of Rfa1, Rfa2, and Rfa3 (ref. 3). (d)
Sensitivity to fluconazole of deletion mutants of the SWI/SNF subunits. Five-fold dilutions of indicated strains
were spotted on YPD and YPD containing fluconazole and incubated at 30°C for 3 days. (e) The top 7
mutants exhibiting the most decreased level of PDR5 mRNA, along with the mutants of other SWI/SNF
subunits. Changes in PDR5 mRNA in the indicated mutants (from 1487 mutants tested) were extracted from
Kemmeren et al. 2014 (ref. 4).
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Supplementary Figure 7. Nucleosome positioning and occupancy at the PDR5 locus in the presence
and absence of Snf2 and Rtt106, and the number of promoters bound by SWI/SNF and/or Rtt106.
(a) Venn chart showing the number of promoters bound by either SWI/SNF or Rtt106 (black numbers) or by
both (red). A, B, and C indicate Type A-C promoters as in Fig. 6b. (b) Nucleosome positioning and occupancy
and bindings of TBP and PolII at the RPB2-ATG40-PDR5 locus, along with bindings of Swi3 and Rtt106.
Nucleosome positioning data (MNase-seq), bindings of TBP and PolII (ChIP-seq) and binding of Swi3 (ChEC-
seq) at the RPB2-ATG40-PDR5 locus extracted from published datasets in Kubik et al. 2019 (ref. 5). At the
PDR5 promoter, the +1 nucleosome was shifted in the absence of Snf2 (dashed red arrow) and bindings of
TBP and PolII were decreased in the absence of Snf2 (thick red arrow), while at the RPB2 promoter depletion
of Snf2 caused no change in the position of the +1 nucleosome (dashed blue arrow) or bindings of TBP and
PolII (thick blue arrow). (c) Nucleosome positioning and occupancy at the PDR5 promoter in the presence and
absence of Rtt106. Data of nucleosome positioning (MNase-seq) at the PDR5 locus were extracted from the
published datasets in Lombardi et al. 2015 (ref. 1). TSS-seq extracted from Malabat et al. 2015 (ref. 6).
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Supplementary Figure 8. RNA-seq and ChIP-qPCR analyses of C. glabrata strains.
(a) Normalised read counts of transcripts from genes which can be induced by ketoconazole. Read
counts are shown relative to WT (the C. glabrata reference strain ATCC 2001) in cells treated with
ketoconazole in YEP were shown. All genes whose transcripts increased more than 4-fold on
ketoconazole treatment in WT are shown. Data are presented as mean values +/- SD (n = 3 biological
replicates). Asterisks indicate genes whose expression is significantly lower (P<0.05, one-way ANOVA
with post-hoc Tukey HSD tests), compared to that in WT treated with ketoconazole. (b) Read counts of
transcripts prepared from C. glabrata lacking CgRtt106 or CgSnf2 normalised to those prepared from WT
in YPD. Data are presented as mean values +/- SD (n = 3 biological replicates). Asterisks indicate genes
whose expression is significantly altered (P<0.05, one-way ANOVA with post-hoc Tukey HSD tests),
compared to WT in YPD. (c) ChIP-qPCR analyses of CgRtt106 and the CgSwp82 SWI/SNF subunit at
the CgCDR1 promoter in YPD (blue, proximal; green, distal, as illustrated in Figure 7b. Data are
presented as mean values of 3 technical replicates +/- SD (n = 1 biological experiment). No statistical
analysis was carried out. Control (white), a coding region of the CgADY3 gene (a meiosis gene not
expressed in YPD).
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Supplementary Table 1. Changes of mRNA level of PDR genes in absence of 
Rtt106 and Pdr3 in YPD analysed by RNA-seq

gene name

Rtt106 binding to 
promoter (analysed by 
ChIP-seq in Fig. 2)

rtt106D/WT 
(log2)

pdr3D rtt106D/WT 
(log2)

PDR5 yes -2.0516 -2.7227
SNQ2 yes -0.4707 -0.6926
PDR15 yes -0.9578 -1.7397
PDR3 yes -0.7805 -13.4112
YGR035C yes -0.8245 -1.7794
IPT1 yes -0.7381 -0.6557
VHR1 yes -0.5398 -0.6679
RSB1 yes -1.9445 -2.3552
YMR102C yes -1.0427 -0.5265
RTS3 yes 0.0319 -0.1863
YGR161W-C yes -0.5694 -0.9480
LAC1 yes -0.2934 -0.2221
CIS1 yes -3.1423 -3.7244
ICY1 yes -0.7833 -1.5518
SPO24 yes -0.6355 -0.6444
PDR16 yes -0.2940 -0.4793
HXT3 yes -0.9574 -0.6058
MIG2 yes -1.6336 -1.2240
CAP1 yes 0.0184 -0.2138
YOR1 no -0.0901 -0.4117
GRE2 no 0.2577 -0.2001
YPL088W no 0.3451 0.2082
ICT1 no -0.0658 -0.0294
BDH2 no -0.4074 -0.6379
YHR139C-A no #N/A #N/A
YHR140W no 0.2227 0.0098
YGP1 no 0.3295 -0.4685
IML2 no -0.0137 -0.2477
PDR10 N/A 0.2493 0.2852
YKL071W N/A 0.4667 0.4934



Supplementary Table 2. Changes of mRNA levels of genes in Types A, B and C in the 
absence of Rtt106 and Snf2 in YPD, analysed by RNA-seq

Genes whose 
promoters bound 
by both SWI/SNF 
and Rtt106

Cluster in this 
study (Fig. 2) Feature (Fig. 2)

Promoter 
Type (Fig. 2)

rtt106D/WT 
(log2)

snf2D/WT 
(log2)

FAA4 1 broad A -0.821 0.504
SNQ2 1 PDRE A -0.471 -0.580
PDR3 1 PDRE A -0.780 -1.227
CIS1 1 PDRE A -3.142 -2.346
LAC1 1 PDRE A -0.293 -0.060
YMR102C 1 PDRE A -1.043 -1.059
PDR5 1 PDRE A -2.052 -2.419
YGR161W-C 1 PDRE A -0.569 1.115
IPT1 1 PDRE A -0.738 -0.041
RSB1 1 PDRE A -1.944 -5.701
RTS3 1 PDRE A 0.032 1.786
ICY1 1 PDRE A -0.783 0.186
YGR035C 1 PDRE A -0.824 -4.546
VHR1 1 PDRE A -0.540 -0.325
SPO24 1 PDRE A -0.635 0.642
PDR15 1 PDRE A -0.958 -1.558
HTB1 2 histone B -0.339 -0.243
HHF2 2 histone B -0.610 0.295
HTA1 2 histone B 0.320 -0.863
ECL1 2 peak B -0.551 1.573
AGP1 2 peak B 0.356 -0.716
ALD6 2 PDRE B -1.626 -0.173
FTR1 7 peak C -0.105 0.009
CIN1 7 peak C 0.189 0.762
UTH1 7 peak C -0.145 -0.127
AMN1 7 peak C -0.960 -0.301
SOK2 7 peak C -0.122 -0.152
PUT4 7 peak C 1.204 3.670
HAP4 7 peak C -1.023 -0.592
IES6 8 peak C 0.017 0.486
AAC1 8 peak C 0.176 2.427
MDH2 8 peak C -1.246 -0.725
SNA2 8 peak C -0.254 1.331
YEL007W 8 peak C #N/A #N/A
CWP2 8 peak C 0.174 -0.074
FUI1 8 peak C -2.212 -1.514
WSC4 8 peak C 0.289 -1.625
GLY1 8 peak C -0.350 0.094



Supplementary Table 3. Yeast strains used in this study
Name Relevant genotype Reference 
BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 Brachmann et al. 1998 (ref. 7)
BY4742 MATalpha his3∆1 leu2∆0 lys2∆0 ura3∆0 Brachmann et al. 1998 (ref. 7)
TKY147 BY4741 RTT106-6HA::hphNT1 Gali et al., 2018 (ref. 8)
VNY22 BY4741 RTT106-6HA::hphNT1  pdr1∆::kanMX  pdr3∆::natMX this study
VNY27 BY4741 RTT106-6HA::hphNT1  hir1∆::kanMX this study
VNY31 BY4741 RTT106-6HA::hphNT1  yta7∆::kanMX this study
VNY2.1 BY4741 rtt106∆::kanMX this study
VNY45 BY4741 pdr3∆::natMX this study
VNY49 BY4741 pdr3∆::natMX  rtt106∆::kanMX this study
VNY70 BY4741 pdr1∆::natNT2 this study
VNY71 BY4741 pdr1∆::natNT2  rtt106∆::kanMX this study
BRY3 BY4741 PDR5-3HA::HIS3MX this study
BRY4 BY4741 PDR5-3HA::HIS3MX rtt106∆::kanMX this study
pdr5∆ BY4741 pdr5∆::kanMX EUROSCARF deletion collection
VNY50 BY4741 pdr1∆::kanMX  pdr3∆::natMX this study
VNY34 BY4741 RTT106-6HA::hphNT1  pdr1∆::kanMX this study
VNY24 BY4741 RTT106-6HA::hphNT1  pdr3∆::natMX this study
VNY30 BY4741 RTT106-6HA::hphNT1  asf1∆::kanMX this study
VNY33 BY4741 RTT106-6HA::hphNT1  rtt109∆::kanMX this study
VNY66 BY4741 RTT106-6HA::hphNT1 3FLAG-PDR3 this study
TKY583 BY4741 PDR3-3FLAG::natMX this study
TKY584 BY4741 PDR3-6HA::hphNT1 this study
TKY585 BY4741 PDR3-13Myc::HIS3MX this study
TKY586 BY4741 3HA-PDR3 this study
TKY587 BY4741 2HA-PDR3 this study
TKY588 BY4741 3Myc-PDR3 this study
TKY589 BY4741 PDR3-13Myc::HIS3MX  rtt106∆::kanMX this study
TKY590 BY4741 PDR3-13Myc::HIS3MX  snf2∆::kanMX this study
TKY591 BY4741 PDR3-13Myc::HIS3MX  asf1∆::kanMX this study
TKY545 BY4741 pdr1-3 this study
TKY547 BY4741 pdr3-2 this study
TKY549 BY4741 pdr1-3 rtt106∆::kanMX this study
TKY551 BY4741 pdr3-2 rtt106∆::kanMX this study
TKY553 BY4741 pdr1-3 snf6∆::kanMX this study
TKY557 BY4741 pdr3-2 snf6∆::kanMX this study

TKY493 MATa arg4∆::natMX4 his3∆1 leu2∆0 lys2∆0 ura3∆0 
trp1∆::CMV-LacI-3FLAG::URA3 this study

TKY494 MATa arg4∆::natMX4 his3∆1 leu2∆0 lys2∆0 ura3∆0 
trp1∆::CMV-LacI-3FLAG::URA3  RTT106-6HA::hphNT1 this study

VNY40 BY4741 SWP82-6HA::hphNT1 this study
VNY62 BY4741 SWP82-6HA::hphNT1  pdr1∆::kanMX  pdr3∆::natMX this study
TKY507 BY4741 SWP82-6HA::hphNT1  pdr1∆::kanMX this study
TKY508 BY4741 SWP82-6HA::hphNT1  pdr3∆::natMX this study

TKY541 MATa ura3-52 trp1-289 leu2-3,112 prb1-1122 prc1-407 pep4-3 
SNF6-3FLAG::kanMX this study

snf2∆ BY4741 snf2∆::kanMX EUROSCARF deletion collection
snf5∆ BY4741 snf5∆::kanMX EUROSCARF deletion collection
swi3∆ BY4741 swi3∆::kanMX EUROSCARF deletion collection
snf6∆ BY4741 snf6∆::kanMX EUROSCARF deletion collection
snf12∆ BY4742 snf12∆::kanMX EUROSCARF deletion collection
snf11∆ BY4741 snf11∆::kanMX EUROSCARF deletion collection
swp82∆ BY4741 swp82∆::kanMX EUROSCARF deletion collection
CBS138 Candida glabrata wild-type (ATCC 2001) Dujon et al. 2004 (ref. 9)
VNG3 CBS138 Cgrtt106∆::NAT this study
TKG1 CBS138 Cgsnf2∆::NAT this study
TKG3 CBS138 CgRTT106-3HA::NAT this study
TKG5 CBS138 CgSWP82-3HA::NAT this study
VNG5 CBS138 Cgcdr1∆::NAT this study
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