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Appendices

A Proofs for proposition 1 and proposition 2

Proposition 1

Proof. From equation (10), W (T ) has a turning point at NTfS(T ) = 0. By definition

fS(T ) : R → [0, 1], and for a non-trivial problem context we can assume that N > 0. The

turning points of W will therefore exist at fS(T ) = 0 and T = 0. From the domain of fS , if

we assume that the function has finite support then fS(T ) → 0 as T → ±∞. For T → −∞,

the integrand in equation (9) tends to the expectation of fS , and W (T ) → Ctot + NE[fS ].

For T → ∞, the integrand in equation (9) tends to zero as the integral range diminishes, and

W (T )→ −Ctot. From equation (10), d2W/dt2 = −NfS(T )−NTdfS/dT . For the domain of fS ,

at T = 0 this is less than zero, and will therefore be a local maximum. Inspecting the integral

from equation (9),
∫∞
−∞ xfS(x)dx <=

∫∞
0 xfS(x)dx for x ∈ R, and the maximum welfare at

T = 0 is therefore a global maximum. From equation (7) we define this as T ∗ = 0, and from

equation (4), it follows that at T ∗, Ctot = CL.

Proposition 2

Proof.

1. The proof is as given for Proposition 1, with some minor adjustments. We use equation

(15) to impose a perfect rank correlation between the private and societal value distri-

butions throughout the range of T . From equation (17), W (T ) has a turning point at

Nφ(T )fS(φ(T ))dφ/dT = 0. By definition fS(φ(T )) : R → [0, 1], and for a non-trivial

problem context we can assume that N > 0. The turning points of W will therefore

exist at φ(T ) = 0, fS(φ(T )) = 0 and dφ/dT = 0. From the domain of fS , if we assume

that the function has finite support then fS(φ(T )) → 0 as φ(T ) → ±∞. From equation

(15), at its maximum φ(T ) → ∞ as F̄P (T ) → 1, and at its minimum φ(T ) → −∞ as

F̄P (T ) → 0. The extreme points of φ(T ) (at which dφ/dT = 0), therefore coincide with

fS(φ(T )) = 0. For φ(T ) → −∞, the integrand in equation (16) tends to the expec-

tation of fS , and W (T ) → Ctot + NE[fS ]. For φ(T ) → ∞, the integrand in equation

(16) tends to zero as the integral range diminishes, and W (T ) → −Ctot. From equation

(17), d2W/dt2 = −NfS(φ(T ))(dφ/dT )2. For the defined domain, fS > 0, and as φ(T )

is an increasing function with positive gradient between its endpoints, at φ(T ) = 0 this

is less than zero, and will therefore be a local maximum. Inspecting the integral from
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equation (16),
∫∞
−∞ xfS(x)dx <=

∫∞
0 xfS(x)dx for x ∈ R, and the maximum welfare at

φ(T ) = 0 is therefore a global maximum. From equation (7) and equation (15) we have

that φ(T ∗) = 0 = F̄S
−1
F̄P (T ∗), or equivalently T ∗ = F̄−1P F̄S(0).

2. Consider an alternative function φ(T ) which maps private values to societal values, but

does not preserve a perfect rank correlation. Define the set of private values as {XP i}

for i = 1, 2, . . . , N , and an ordering such that XP 1 ≥ XP 2 ≥ . . . ≥ XPN . Similarly,

define the set of societal values as {XSj} for j = 1, 2, . . . , N , and an ordering such that

XS1 ≥ XS2 ≥ . . . ≥ XSN . With an imperfect rank correlation, there exists at least

one individual for which XSj = φ(XP i) is such that i 6= j. This would require that the

function φ̂ is not a 1-2-1 mapping, and that the gradient of φ̂ is not necessarily positive

between the endpoints of the function range. At φ̂(T ) = 0, the second derivative of the

welfare that is shown in Proof 2.1 is therefore not necessarily negative, and the returned

welfare is not guaranteed to be a maximum. Furthermore, the range of private values

in the treated population, XP ∈ [T,∞) is not guaranteed to map to a continuous range

XS ∈ [φ(T ),∞), and the integrand in equation (7) cannot necessarily be fully evaluated.

3. This is a simple consequence of stochastic dominance. It follows from the definition of

stochastic dominance that F̄P (T ) ≤ F̄S(T ). Since F̄−1S is an increasing function, φ(T ) =

F̄−1S F̄P (T ) ≤ T .

4. It is a simple consequence of the hypothesis that F̄P (T ) = F̄S(T − c) and hence φ(T ) =

F̄−1S F̄P (T ) = T − c.

B Deriving optimal welfare and payment scheme expressions

for normally distributed value functions

In Section 3.2.2 we consider the case where the societal and private values are normally dis-

tributed as XS ∼ N (µS , σS) and XP ∼ N (µP , σP ). Substituting standard definitions into

equations (15), (16), and (17) gives, respectively

φ(T ) = µS +
σS
σP

(T − µP ), (1)

W (T ) = −Ctot +
N√
2πσS

{
1

2
exp

[
−
(
T − µP√

2σP

)2
]

+ µS

[
1

2

(
1− erf

(
T − µP√

2σP

))]}
, (2)
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and

∂W

∂T
= −Nφ(T )fP (T ), (3)

where erf represents the error function. The total welfare is maximised with respect to the

treatment price when this derivative is zero. The optimal treatment price T ∗ (for non-trivial

extrema of T ) must therefore satisfy φ(T ∗) = 0, as per Proposition 2.1.

To formally define the optimal payment scheme, setting φ(T ∗) = 0 in equation (1) returns

the optimal treatment price

T ∗ = µP −
σP
σS
µS , (4)

as given in equation (19). As the societal value is normally distributed, it is convenient to

exploit equation (18) to retrieve the corresponding maximum total welfare. The expectation

calculation for the truncated and normally distributed societal value is defined as

E[XS |XS > 0] = µS +
σ2SfS(0)

1− FS(0)
,

and substituting this into equation (18) gives

W ∗ = −Ctot +N
[
(1− FS(0))µS + σ2SfS(0)

]
, (5)

as given in equation (21).

C Details of model parameterisation

Table 1 presents the data that has been extracted from the literature to populate the model

parameters and their sources. Further details on how these values have been processed are

presented in Appendices C.1 - C.2.

C.1 Input values for the private value and context parameters

The total financial outlay is taken to be Ctot = £10M, in line with the recently publicised UK

payment model (National Institute for Health and Care Excellence 2020) (see Section 5 for

further discussion of this). The population size is set to N = 70, 936, as given in (Public Health

England 2019) for the total recorded number of new Gonorrhoea diagnoses in England in 2019.

The health impact of Gonorrhoea can been assessed in terms of chronic pelvic inflammatory

disease (PID), which is one of the most serious complications from an infection. In Aledort et al.
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Table 1: Reference data used to determine the indicative values for the model input param-
eters. Further details and descriptions of data use to construct the model input parameter
values are provided in the text. Sources: 1National Institute for Health and Care Excellence
(2020); 2Public Health England (2019); 3Nherera & Jacklin (2009), and 3∗ is extended from
data presented in Nherera & Jacklin (2009); 4Aledort et al. (2005); 5Fingerhuth et al. (2016);
6National Institute for Health and Care Excellence (2013); and 7Whittles et al. (2017).

Input Data Value [Source]

Total financial outlay (Ctot) £10M [1]

Population size (N) 70,936 [2]

Treatment costs of infection £53.90 [3∗]

Probability of developing complication 0.18 [4]

Average infection duration 0.25 years [5]

Monetised health state per QALY £20, 000 [6]

Average health quality loss from infection complications 0.4 QALYs [3]

Treatment costs for PID £2, 846 [3]

Rates of new infections per case per year 0.24 - 9.15 [5,7]

(2005), the average health state quality weight for chronic pelvic pain is given as 0.6. We convert

this as a loss of 0.4 quality-adjusted life years (QALYs), as in Nherera & Jacklin (2009). The

duration of a Gonorrhoea infection is calculated to be an average of 0.25 years in (Fingerhuth

et al. 2016), and we assume that antimicrobial treatment of the Gonorrhoea bacterium also

treats PID. To translate the health benefits into costs, we use the funding threshold of cost-

effective treatment, which is set at £20, 000 per QALY in the UK (National Institute for Health

and Care Excellence 2013). We therefore calculate the monetised health benefits of avoiding

chronic PID as £0.4× 0.25× 20, 000 = £2, 000 per year. The treatment costs for PID are given

in (Nherera & Jacklin 2009) as £2, 846. The probability of developing chronic pelvic pain from

a Gonorrhoea infection is given as 0.18 in (Aledort et al. 2005), and the expected cost of chronic

PID per new Gonorrhoea case is therefore £0.18× (2, 000 + 2, 846) = £872.28.

Nherera & Jacklin (2009) calculate the standard treatment costs for Gonorrhoea, comprising

a consultation plus a monotherapy antibiotic treatment. To account for the dual antimicrobial

therapy that is currently the front-line treatment, we extend the calculations in (Nherera &

Jacklin 2009) to give a treatment cost of £53.90. The total expected cost per individual Gon-

orrhoea infection is therefore £916.48.

For our modelling purposes we seek to define the normally distributed private value function,

and we interpret this expectation as the mean private value per individual such that µP =

£916.48. In the analysis below we investigate standard deviations of σP = 0.1µP , 0.2µP , 0.3µP ,

in order to explore the impact of increasing uncertainty for the private value on the welfare

returned and the optimal treatment price. For illustration, in Section 4 we set σP = 0.3µP , and

explore the alternative values in Sections D and E below.
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C.2 Input values for the societal value

In order to parameterise the distribution of the societal value function, we consider the structure

of such a function in terms of the costs and benefits that would impact a societal value. The

average societal value can be expressed as a scaling of the average private value, and we outline

below how the main components of the societal value could be modelled in order to facilitate

this scaling.

A key benefit is reduced transmission to future cases by treating an infected individual. We

make a simple assumption that the transmission benefit is a measure of the number of future

infections of Gonorrhoea which would result from an untreated case. We denote this parameter

as I, and further assume that the societal cost from propagating I infections can be measured in

terms of the private value per individual. We can then estimate the mean transmission benefit,

per treated case, as IµP .

A key cost to society from treating an infected individual is that this creates an opportunity

for resistance to the new antimicrobial to develop. Resistance will inevitably grow through time,

and the rate of growth will increase as exposure to resistant strains of the bacteria increase.

Mathematically the number of cases with a resistant strain of the bacterial will be a portion of

the total number of future infections, αRI, for 0 ≤ αR ≤ 1 and αR growing through time. The

resistance cost will therefore also increase through time, proportional to αRI. Monetising that

cost is challenging, however, as it requires pricing the value of preserving non-resistant antibiotic

treatment. This is the subject of ongoing research (see for example Megiddo et al. (2019)). For

simplicity, let the resistance cost be expressed, per resistant case, as a positive scaling of the

mean private value, βRµP , for βR ≥ 0. This would yield a resistance cost per treated case of

αRβRIµP . As this cost is structured around growing resistance, it may be feasible that there

is an additional cost component to value a zero-resistance, such that the total resistance cost is

given as (αRβR + γR)IµP , for γ > 0.

Other benefits may also be gained, such as diversity benefit – reducing the growth in resis-

tance to existing antibiotic treatments by reducing selection pressure of those resistant strains

of the bacteria, through increased diversity of treatments. This could also be extended to con-

sider the knock-on impact treatment of related diseases, such as chlamydia which is a common

co-infection (Bignell et al. 2013) and in some countries has the same first-line treatment option

(National Health Service 2018). In its simplest form, the benefits of this diversity can be mod-

elled similarly to the cost of resistance, in this case representing avoided resistance. The total

diversity benefit per treated case is then αDβDIµP , for 0 ≤ αD ≤ 1 and βD ≥ 0. Note that

αDβD represents the total (avoided) growth of resistance and cost of that resistance, across all
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other Gonorrhoea treatments. Such a simple formulation may not be measurable in practice,

but with the prevalence of the current first-line treatment therapy, basing this measurement on

resistance to ceftriaxone and azithromycin may serve as a reasonable estimation. Additionally,

as it assumed that resistance to current treatments already exists, a zero-resistance preserving

term is omitted for simplicity.

Combining the above modelling of treatment benefit, diversity benefit and resistance cost

gives an approximate formulation for the average societal value as

µS = (1 + αDβD − αRβR − γR)IµP . (6)

Whittles et al. (2017) and Fingerhuth et al. (2016) each present models for transmission of

Gonorrhoea, which account for the number of sexual partners per person and the rate of infection

per partner. In (Whittles et al. 2017) the average rate of new infections per case per year is

given as 5.2 for men who have sex with men in England. Fingerhuth et al. (2016) present

more granular data, which includes data on heterosexual men and women in England, and

distinguishes between low and high sexual activity. The resulting rates of new infections per case

per year (which can be calculated from the partner change rate multiplied by the transmission

probability per partnership, within each grouping) then range between 0.2419 - 9.147. As noted

in the previous discussion, however, parameterising the resistance growth rates αD, αR and their

associated cost parameters βD, βR is more challenging. In broad terms it could be expected

that in early years of use for the new treatment, αD > αR. The nature of this relationship will

vary through time, however, and will be dependent on the extent to which the new treatment is

deployed. The value of preserving resistance in each case would perhaps contrast this, with most

value to be gained from preserving zero resistance, and this value diminishing as the resistance

becomes more widespread. A reciprocal non-linear relationship between corresponding α and

β could therefore be expected. Similarly, the no-resistance preserving component γR could be

expected to be dependent on αR, and for αR = 0, very large values of γR could be expected.

Depending on the specific parameterisations of these terms and the resulting nature of the term

in brackets in equation (6), it is therefore feasible that the average societal value could take a

broad range of positive and negative values. This will be particularly sensitive to the values

that are placed on preventing or reducing resistance to the respective treatments.

As noted above, the purpose of this analysis is to illustrate the application of the modelling

presented in Section 3. We therefore do not accurately define the parameters comprising the µS

definition, but explore the impact as these parameters result in different values for the average

societal value. From the decision-making perspective of a social planner, the important consid-
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erations are the optimal treatment price, the corresponding payment split between lumpsum

and volume-based components, and the resulting social welfare. In order to demonstrate the

impact on these metrics over different scenarios, we investigate a range of parameterisations

for the societal value distribution. From equation (18), it is evident that the social welfare is

directly dependent on the nature of the societal value distribution in relation to zero. From

equation (13) and Proposition 2.1, the treatment cost and payments will also be dependent

on the relationship between the societal and private value distributions. Furthermore, recall-

ing the discussion in Section 3.2.2, W ∗ will tend to asymptotic limits when the probability

mass of the societal value becomes predominantly distributed over either large positive or large

negative values. We therefore consider variations to the societal value distribution, as the non-

negligible support of the distribution transitions from being predominantly ranged over negative

values, to being predominantly ranged over values greater than the corresponding non-negligible

support of the private value distribution. Specifically, we investigate mean societal values of

µS = −0.5µP , 0, 0.5µP , 1.5µP in order to explore these variations. For illustration, in Section 4

we focus on µS = 0, 1.5µP , and explore the alternative values in Sections D and E below.

Parameterising the standard deviation for the societal value is also challenging to reason

through. The scaling between the average societal value and average private value could be

extended to a defined scaling between these values in general, such that S ∝ P . This seems

unrealistic, however, as there would inevitably be variation in I within a population of Gonor-

rhoea cases. Formally defining a distribution for I, however, such that the societal value is a

product S ∝ I ∗ P would not yield a normal distribution for the societal value. Additionally,

αR and αD could be expected to vary through time. Conceptually, more variation in the so-

cietal value than the private value would seem appropriate giving the nature and combination

of influencing factors in equation (6). We therefore take the simple approach of investigating a

standard deviation for the societal value of σS = 0.4µP , controlling this to be larger than the

standard deviation for the private value.

The full range of parameter values that are investigated are given in Table 2. Note that

parameter combinations (l) and (f) correspond with parameter combinations (i) and (ii), re-

spectively, in Section 4; cross-reference with Section 4 Table 1 for clarity.

D Detailed comparison of the social planner’s welfare under

dependency

Extending Section 4.3, the analysis is repeated with additional parameterisations, as defined in
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Table 2: Indicative values based on Gonorrhoea infection used to parameterise the model for
analysis. Further details and derivation of these values is provided in Appendix C above. The
final column indicates the parameter values used in each subplot of Figures 1, 2 and 4.

Model input parameter Notation
Indicative Relevant

Value subplots

Total financial outlay Ctot £10M All
Population size N 70,936 All
Mean total private value µP £916.48 All

Standard deviation of total private value σP

£92 (a), (d), (g), (j)
£183 (b), (e), (h), (k)
£275 (c), (f), (i), (l)

Mean total societal value µS

−£458 (a), (b), (c)
£0 (d), (e), (f)

£458 (g), (h), (i)
£1375 (j), (k), (l)

Standard deviation of total societal value σS £92 All

Table 2, investigating 12 distinct combinations of the distribution parameters. In the scenarios

shown in Figure 1, as the mean societal value increases, the benefits from reduced transmission

and increased diversity increasingly dominate the costs of emergent or increasing resistance.

Figure 2 demonstrates that these increases have a substantial impact on the modelling outputs.

As the private value standard deviation, σP , increases, a larger range of private values can be

expected. For treatment prices T > µP , the same treatment price will therefore treat larger

portions of the population, and the converse holds true for T < µP . It is apparent from Figure

2 that the impact of changing σP has limited impact on the modelling outputs.

Recall that the optimal treatment price T ∗ = φ−1(0) – that is, T ∗ is the price which would

split the private value distribution into the same proportions as the y-axis splits the societal

value distribution. From Figure 1 we can intuitively expect that T ∗ will increase moving from left

to right along each row, as a higher price is required to treat the same portion of cases. Moving

down each column, we can intuitively expect that T ∗ will decrease, as the y-axis intersects closer

to the left-hand tail of the societal value distribution. Specifically, more cases become treated at

optimality, and so the corresponding treatment price must reduce to facilitate more accessible

treatment. These behaviours are confirmed in Figure 2.

Recalling from equations (12) - (13) that the payment components are independent of the

societal value, these are consistent within each column of Figure 2. The maximum volume-

based payment is made when T is sufficiently small that a large portion of the population are

treated, but where each treatment is sufficiently expensive that the cumulated cost is relatively

large. The impact of varying σP on the maximum volume-based payment will be dependent on

the mean private value. As noted in Section 4.3.1 some values of the treatment price result in
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Figure 1: Visualisation of the private and societal value distributions, as the standard deviation
of the private value and the mean societal value are varied. All parameter values are given in
Table 2.

volume-based payments greater than Ctot and would therefore incur a negative payment – for

Figures 2 (d)-(k) it is clear that at T ∗ the lumpsum payment is negative.

It is evident from Figure 2 that, for each scenario (a)-(l), there are essentially two levels of

social planner’s welfare, one for each extreme of T . With higher treatment prices fewer cases are

treated and only small health benefits are returned, and the welfare therefore approaches the

lumpsum payment of −Ctot = −£10M. At the other extreme, a treatment price close to zero

will allocate treatment to the majority of cases – with private value assumed to be non-negative.

When µS = 0 (Figures 2(d)-(f)), the positive and negative societal values are equally balanced
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Figure 2: Visualisation of the optimal treatment price, the corresponding payment split between
lumpsum and volume-based components, and the resulting social welfare, as the private and
societal value distributions are varied via the standard deviation of the private value and the
mean societal value. All parameter values are given in Table 2.

such that the total health benefit received is zero, and the welfare again approaches a lumpsum

payment of −Ctot = −£10M. As µS increases (decreases) from zero, the positive (negative)

societal values will dominate, and the social welfare increases (decreases).

To illustrate in more detail the behaviour of the welfare as the treatment price varies, Figure

3 focuses on the social planner’s welfare for each of the defined distributions for the private and

societal values discussed above. For each variant of the distributions, the welfare is normalised to

the interval [0, 1] to aid comparison. The discussion points above in terms of impact of changes
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in σP and µS are clearly shown. In Figure 3(d) the welfare is shown to be approximately

optimal for a large range of T . This is also true in Figures 3(a) and (c); however, with non-

monotonic transition between the two levels of welfare for extreme values of T , setting T to the

appropriate extreme value would return sub-optimal welfare. Taken in conjunction with the

preceding discussion, Figure 3 highlights the importance to a social planner from ascertaining a

good approximation to the societal value, as there are contrasting impacts from choosing T ∗−δ

and T ∗ + δ, for relatively small δ ∈: R.

Figure 3: Visualisation of the social planner’s welfare, normalised to the interval [0, 1], as the
private and societal value distributions are varied via the standard deviation of the private value
and the mean societal value (varied as shown). All other parameter values are given in Table 1.

E Detailed comparison of model outputs with varying depen-

dency

The simulation outputs from Section 4.3.2 are extended in Figure 4, where each of the subplots

(a)-(l) corresponds to the same model parameterisations used in Appendix D. The features

discussed in Section 4.3.2 are shown to be vary between the two scenarios presented there, as

the parameter values vary. With independent samples of societal values and treatment price

T = 0, increasing (decreasing) µS > 0 (µS < 0)), positive (negative) societal values become

more prominent, and the social welfare increases (decreases). The main effects of increasing T
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and varying σP are as discussed for Appendix D.

Figure 4: Visualisation of the impact on the social planner’s welfare as the level of correlation
between private and societal value distributions is varied, and the private and societal value
distributions are varied via the standard deviation of the private value and the mean societal
value. All parameter values are given in Table 2. For each investigations the distributions are
sampled 1,000,000 times. Note that the y-axis scale varies between rows.

Figures 5 and 6 illustrate this behaviour further, extracting the optimal welfare value and

treatment price as the level of correlation varies. As discussed for µS = 0 (Figure 5(b)), the

optimal welfare is consistently equal to the manufacturer payment for ρ ≤ 0, and increases with

ρ for ρ > 0. The difference between different levels of correlation is also largest for this case.

The fluctuation shown in Figures 6(b) for T ∗ is partially a factor of the numerical simulations,
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with marginal differences in private values sampled above or below µP translating into marginal

differences in the preferred treatment strategy for ρ close to zero. For the remaining parameter

investigations, the behavior of the optimal welfare is related to the behaviour of the welfare

per correlation level, as the treatment price transitions between the two extreme scenarios of

treating every individual or no individual.

Figure 5: Visualisation of the optimised social welfare as the level of correlation between private
and societal value distributions is varied. The private and societal value distributions are varied
via the standard deviation of the private value and the mean societal value (varied as shown).
All other parameter values are given in Table 1. Note that the y-axis scale varies between rows.
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