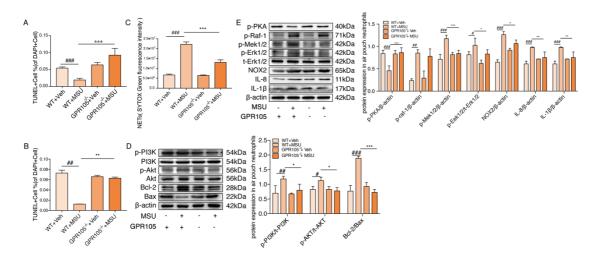
Supplementary Materials for

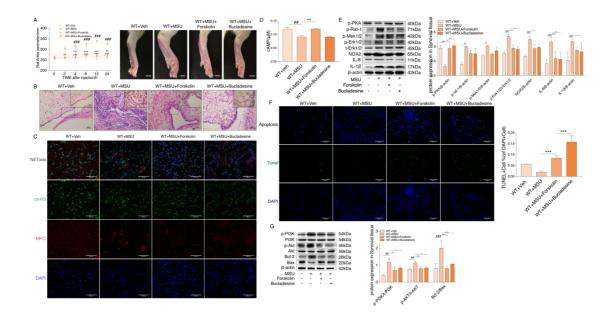
GPR105-targeted therapy promotes gout resolution as a switch between NETosis

and apoptosis of neutrophils

Chunxiao Liu, Mengze Zhou, Wenjiao Jiang, Shumin Ye, Sheng Tian, Cheng Jiang, Hao Kun,

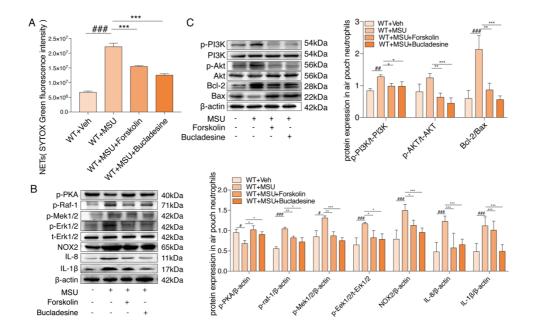

Huanqiu Li, Qinghua Hu

Correspondence to: huqh@cpu.edu.cn

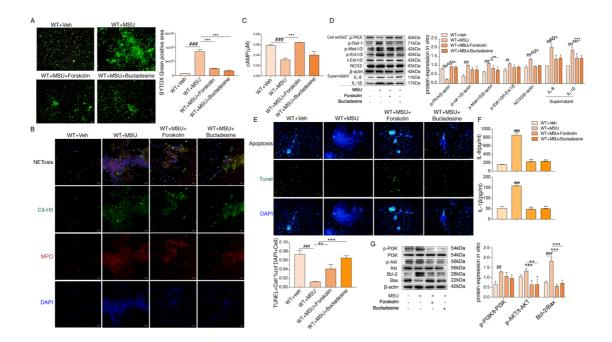

This PDF file includes:

Supplementary Figures 1 to 8 and Supplementary Tables 1,2

Supplementary Figures

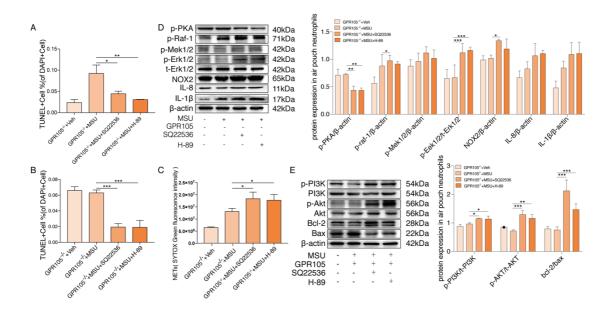


Supplementary Fig. 1 GPR105^{-/-} suppresses MSU-induced acute gouty inflammation, related to Figures 1 and 2. A Quantitative analysis of TUNEL-positive cells in Figure 1F. The apoptotic index was calculated as the number of TUNEL-positive cells/DAPI positive cells. B Quantitative analysis of TUNEL-positive cells in Figure 2E. The apoptotic index was calculated as the number of TUNEL-positive cells/DAPI positive cells. For C to D, GPR105^{-/-} and WT rats were injected with 5 mg/ml MSU into pre-formed air pouches on the backs. C Sytox green assay was used to quantify neutrophil extracellular DNA release in air pouches (n=4). D Western blot analysis and relative quantification of apoptosis-related proteins in air pouch neutrophils using the indicated antibodies. All representative blots shown are from four independent experiments. All values are presented as the mean \pm SD (${}^{#P}$ <0.01; ${}^{***}P$ <0.001 versus corresponding WT+Vehicle group. ${}^{*}P$ <0.05; ${}^{**}P$ <0.01; ${}^{***}P$ <0.001 versus corresponding WT+Vehicle group. ${}^{*}P$ <0.05; ${}^{**}P$ <0.01; ${}^{***}P$ <0.001 versus corresponding WT+Vehicle group. ${}^{*}P$ <0.05; ${}^{**}P$ <0.01; ${}^{***}P$ <0.001 versus corresponding WT+Vehicle group.

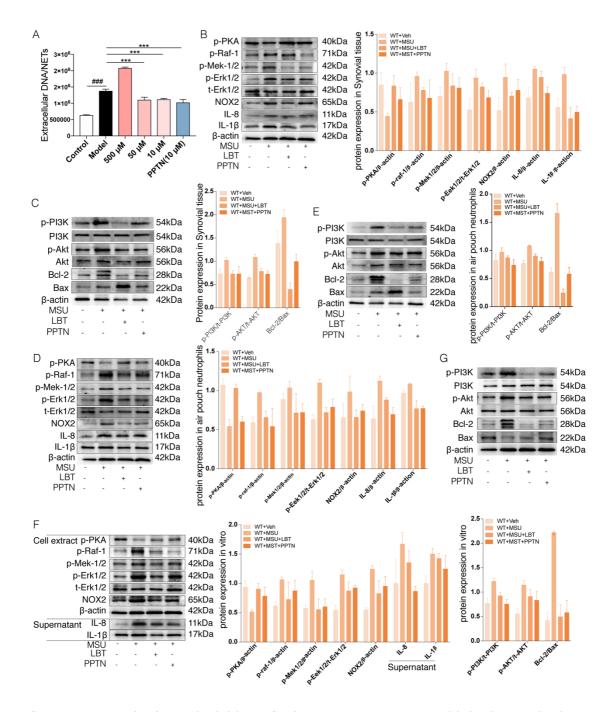


Supplementary Fig. 2 Activation of cAMP-PKA pathway suppresses NETosis and promotes apoptosis in vivo. WT rats were intra-articularly injected with 5 mg/ml MSU crystals to induce gouty arthritis. Rats were additionally treated with Forskolin (30 µM), Bucladesine (300µM) or Veh respectively as indicated. A The ankle perimeter at 0, 2, 4, 8 12, 24 h after MSU injection. The representative photograph of ankle at 8 h after injection of MSU. B Histologic analyses of synovial membrane at 24 h after MSU injected. The small boxed areas show higher magnification views of the large boxes. C Representative images of synovial tissues infiltrating neutrophils (MPO, red) and presence of NETs (citrullinated H3, green). D Intracellular cAMP levels of synovial tissue. E Western blot analysis and relative quantification of NETosis-related proteins in synovial tissues using the indicated antibodies. F Representative images of apoptosis cell (TUNEL, green) in synovial tissues. The apoptotic index was calculated as the number of TUNEL-positive cells/DAPI positive cells. G Western blot analysis and relative quantification of apoptosis-related proteins in synovial tissues using the indicated antibodies. All representative blots shown are from four independent experiments. All values are presented as the mean \pm SD ($^{\#}P < 0.05$, $^{\#}P < 0.01$,

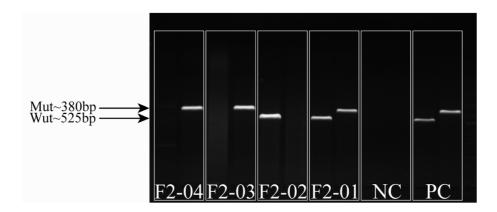
###P < 0.001 versus corresponding WT+Vehicle group. *P<0.05; **P<0.01; ***P<0.001 versus
corresponding WT+MSU group, One–Way ANOVA).</pre>



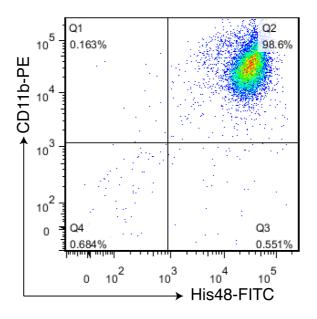
Supplementary Fig. 3 Activation of cAMP-PKA pathway suppresses NETosis and promotes apoptosis in air pouch model. WT rats were injected with 5 mg/ml MSU into pre-formed air pouches on the backs. Rats were additionally treated with Forskolin (30 μ M), Bucladesine (300 μ M) or Veh respectively as indicated. A Sytox green assay was used to quantify neutrophil extracellular DNA release in air pouches 24 h after injection of MSU crystals in WT rats. **B** Western blot analysis and relative quantification of NETosis-related proteins in air pouch neutrophils using the indicated antibodies 24 h after MSU injected into pre-formed air pouches. **C** Western blot analysis and relative quantification of apoptosis-related proteins in air pouch neutrophils using the indicated antibodies 24 h after MSU injected into pre-formed air pouches. **C** Western blot analysis and relative quantification of apoptosis-related proteins in air pouch neutrophils using the indicated antibodies 24 h after MSU injected into pre-formed air pouches. **C** Western blots shown are from four independent experiments. All values are presented as the mean \pm SD. (#P < 0.05, ##P < 0.01, ###P < 0.001 versus corresponding WT+Vehicle group. *P < 0.05; **P < 0.01; ***P < 0.001 versus corresponding WT+MSU group, One–Way ANOVA).


Supplementary Fig. 4 Activation of cAMP-PKA pathway suppresses NETosis and promotes apoptosis in vitro. Primary Neutrophils were treated with 250 µg/ml MSU. Primary Neutrophils were additionally incubated with Forskolin (30 μ M), Bucladesine (300 μ M) or Veh respectively as indicated (n=3). A Representative microphotographs and relative quantification of extracellular DNA staining (SYTOX green, green) in primary Neutrophils. B Representative microphotographs of NETs formation (citrullinated H3, green and MPO, red) in primary Neutrophils. C Intracellular concentration of cAMP in primary neutrophils. D Western blot analysis and relative quantification of NETosis-related proteins in primary neutrophils using the indicated antibodies. Quantification of the protein level of IL-1 β and IL-8 in supernatant was expressed as the ratio of WT+Vehicle group. E Representative images of apoptosis cell (TUNEL, green) in synovial tissues. The apoptotic index was calculated as the number of TUNEL-positive cells/DAPI positive cells. F Levels of IL-8 and IL-1 β in the MSU-treated neutrophils supernatant measured by ELISA. G Western blot analysis and relative quantification of apoptosis-related proteins in primary neutrophils using the indicated antibodies. All representative blots shown are from three independent experiments. All

values are presented as the mean \pm SD ([#]P < 0.05, ^{##}P < 0.01, ^{###}P < 0.001 versus corresponding WT+Vehicle group. ^{*}P < 0.05; ^{**}P < 0.01; ^{***}P < 0.001 versus corresponding WT+MSU group, One–Way ANOVA).


Supplementary Fig. 5 Inhibition of cAMP-PKA pathway suppresses the effect of GPR105 knockout and switches apoptosis to NETosis, related to Figures 3 and 4. A and **B**, Quantitative analysis of TUNEL-positive cells in Fig. 4**E** and Fig. 5**D**. The apoptotic index was calculated as the number of TUNEL-positive cells/DAPI positive cells. For **C** to **E**, GPR105^{-/-} rats were injected with 5 mg/ml MSU into pre-formed air pouches on the backs. Rats were additionally treated with SQ22536 (100 µM), H-89 (10 µM) or DMSO respectively as indicated. **C** Sytox green assay was used to quantify neutrophil extracellular DNA release in air pouches 24 h after injection of MSU crystals in WT rats. **D** Western blot analysis and relative quantification of NETosis-related proteins in air pouch neutrophils using the indicated antibodies 24 h after MSU crystals injected into preformed air pouches. **E** Western blot analysis and relative quantification of apoptosis-related proteins in air pouch neutrophils using the indicated antibodies 24 h after MSU crystals injected into pre-

formed air pouches. All representative blots shown are from three independent experiments. All values are presented as the mean \pm SD (*P<0.05; **P<0.01; ***P<0.001 versus corresponding


GPR105^{-/-}+MSU group, One–Way ANOVA).

Supplementary Fig. 6 LBT inhibition MSU-induced acute gouty arthritis in vivo and in vitro, related to Figures 5 and 6. A Effects of LBT and PPTN on levels of extracellular DNA in MSUtreated neutrophils. All values are presented as the mean \pm SD. (${}^{\#}P < 0.05$, ${}^{\#\#}P < 0.01$, ${}^{\#\#\#}P < 0.001$ versus corresponding Control. *P<0.05; **P<0.01; ***P<0.001 versus Model group, One-Way ANOVA). For **B** to **C**, WT rats were intra-articularly injected with 5 mg/ml MSU to induce gouty arthritis. Rats were additionally treated with Lobetyolin (10 μ M) and PPTN (10 μ M) or Veh respectively as indicated. B Western blot analysis and relative quantification of NETosis-related proteins in synovial tissues. C Western blot analysis and relative quantification of apoptosis-related proteins in synovial tissues. For D to E, WT rats were injected with 5 mg/ml MSU crystals into preformed air pouches on the backs. Rats were additionally treated with LBT (10 μ M), PPTN (10 μ M) or Veh respectively as indicated. D Western blot analysis and relative quantification of NETosisrelated proteins in air pouch neutrophils. E Western blot analysis and relative quantification of apoptosis-related proteins in air pouch neutrophils. For F to G, Primary Neutrophils were prepared from the bone marrow of WT rats and then treated with 250 µg/ml MSU. Neutrophils were additionally incubated with LBT (10 µM), PPTN (10 µM) or Veh respectively as indicated. F Western blot analysis and relative quantification of NETosis-related proteins in primary neutrophils. Quantification of the protein level of IL-1ß and IL-8 in supernatant was expressed as the ratio of WT+Vehicle group. G Western blot analysis and relative quantification of apoptosis-related proteins in primary neutrophils. All values are presented as the mean \pm SD. (#P < 0.05, ##P < 0.01, $^{\#\#}P < 0.001$ versus corresponding WT+Vehicle group. $^*P < 0.05$; $^{**}P < 0.01$; $^{***}P < 0.001$ versus corresponding WT+MSU group, One-Way ANOVA).

Supplementary Fig. 7 Representative gene identification results of F2 generation rats. PC

represents a positive control and NC represents a negative control.

Supplementary Fig. 8 Representative FACS images of CD11b/Hs48-stained neutrophils purified

using RBC lysis and Histopaque methods.

Supplementary Table

Reagent		
Reagent	Company	Cat. No
IBMX	Sigma-Aldrich	17018
Ro 20-1724		B8279
Uric acid sodium salt		U2875
Histopaque-1119		11191
Histopaque-10771		10771
Forskolin	MCE	HY-15371
SQ22536		HY-100396
Bucladesine		HY-B0764
H-89		HY-15979
cAMP-Glo TM Assay	Promega	V1502
In Situ Cell Death Detection Kit	Roche	11684817910
SYTOX Green Nucleic Acid Stain	Thermo Fisher	S7020
Lobetyolin	Topscience	T3825
All-In-One RT Master Mix Kit	ABM	G490
AceQ Universal SYBR qPCR Master Mix	Vazyme	Q511-02
Antibody		
Mouse anti-MPO		ab90810
	Abcam	

Supplementary Table 1. Reagents and antibodies

rabbit anti-cit-H3

ab5103

Goat anti-Mouse IgG H&L (Alexa Flour® 568)		ab175473
Donkey Anti-Rabbit IgG H&L (Alexa Flour® 647)		ab150075
Monoclonal Antibody (HIS48)-FITC		11-0570-82
CD11b/c Monoclonal Antibody (OX42)-PE	eBioscience	12-0110-82
rabbit anti-Phospho-PKA alpha+beta		bs-3725R
rabbit anti-Phospho-Raf1(Ser338)		bs-3377R
rabbit anti-Phospho-MER1/2(Ser218+Ser222)	bs-3270	
rabbit anti-Erk1/2		bs-0022R
rabbit anti-Phospho-ERK1/2 (Thr202+Tyr204)	bs-3016R	bs-3016R
rabbit anti-NOX2		bs-3889R
rabbit anti-PI3K	bs-3332R	
rabbit anti-Phospho-PI3K	BIOSS bs-3332R	
rabbit anti-Akt1+2+3	bs-6951R bs-0876R	
rabbit anti-Phospho-Akt (Ser473)		
rabbit anti-Bcl-2		bs-4563R
rabbit anti-Bax		bs-0127R
rabbit anti-IL-1Beta		bs-6319R
rabbit anti-β-actin	bs-0061R bs-0295G	
goat anti- rabbit IgG HRP		
rabbit anti-IL-8	Affinity	DF-6998

Supplementary Table 2. Primers

Primers for Standard polymerase chain reaction			
Gene	Forward (5' to 3')	Reverse (5' to 3')	
GPR105-WT	CTTTGTAACCACTATGCCCAAGCAG	TGATTTGACTTAAGGCCCAGCAGTA	
GPR105-Mut	AGGCAGGAGGAAGTGTCAGGT	GCTCAGAGCCTTGCTTTTTGGTG	
Primers for Real-time PCR			
hGPR105	TACGTGCCCAGCTCTAAGAGT	GTCACCAAGGATCTTGAAAGGAA	
hGADPH	ATCCCATCACCATCTTCCAGG	GATGACCCTTTTGGCTCCC	