
Appendix for “Bayesian logistic regression for online recalibration

and revision of clinical prediction models with guarantees”

Notation Description

General terms
T Time horizon
d Number of variables
(xt, yt) Observed variables and outcome at time t

f̂t : X 7→ R Underlying prediction model at time t

Ât : R×X 7→ [0, 1] Model revision deployed at time t: A function that
maps the score from an underlying prediction model
at time t and patient variables to a probability. In the
special case of model recalibration, Ât is a function of
only the score.

θ̂t Parameters for logistic model revision at time t
τ = (τ1, τ2, · · · , τs) Update times for a given sequence of model revisions

Regret(
1
T

∑T
t=1

[
− log p

(
yt, Ât(f̂t(xt), xt)

)
+

log p
(
yt, Â1(f̂1(xt), xt)

)])
+

Type I Regret: The average increase in the negative
log likelihood when using the online reviser instead of
locking the original model

(
1
T

∑T
t=1

[
− log p

(
yt, Ât(f̂t(xt), xt)

)
+

log p
(
yt, A

∗
τ,t(f̂t(xt), xt)

)])
+

Type II τ -Regret: The average increase in the nega-
tive log likelihood when using the online reviser ver-
sus the oracle model reviser {A∗τ,t : t = 1, ..., T} with
update times τ

BLR and MarBLR parameters
N(θinit,Σinit) Gaussian prior in BLR and MarBLR for the logistic

revision parameter at time t = 1
α Prior probability in MarBLR that the model revision

shifts at time t
δ2 Factor controlling the variance of the MarBLR prior

over shifts in the model revision parameters

Table 1: Terminology and notation

A Practical Implementation of BLR and MarBLR

In this manuscript, we implement MarBLR using a Laplace approximation of the logistic posterior and
perform Kalman filtering with collapsing [Gordon and Smith, 1990, West and Harrison, 1997]. Because
BLR corresponds to MarBLR with α = 0 and δ2 = 0, we use this same procedure to perform approximate
Bayesian inference. The Kalman filtering approach is simple and computationally efficient; We describe the
steps below. We note that for the special case of BLR, one can also perform posterior inference by sampling
Polya-Gamma latent variables [Polson et al., 2013]. This would allow one to perform full Bayesian inference
but is significantly more costly in terms of computation time.
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We make predictions and update the posterior using the following recursive procedure. The process is
initialized with the Gaussian prior for θ1 with mean θinit and posterior covariance Σinit. Let D(t) denote the
observations up to and including time t.

Prediction step. At time t, let the approximation for θt−1|Wt−1 = wt−1, D
(t−1) be the Gaussian

distribution with mean θ̂t−1,wt−1 and covariance Σ̂t−1,wt−1 . We also assume Pr(Wt−1 = wt−1|D(t−1)) is

known. We generate predictions at time t using the posterior distribution θt|D(t−1), which is a mixture of
the distributions

θt|Wt = wt,Wt−1 = wt−1, D
(t−1) ∼ N

(
θ̂t−1,wt−1 , (1 + δ2wt)Σ̂t−1,wt−1

)
(1)

for wt, wt=1 ∈ {0, 1} with weights by Pr(Wt = wt|Wt−1 = wt−1) Pr(Wt−1 = wt−1|D(t−1)). Recall that
Pr(Wt = 1|Wt−1 = wt−1) = α in the MarBLR prior. We predict that Y = 1 for a subject x using the
posterior mean of Pr(Y = 1|X = x).

Update step. Next, we observe a new batch of labeled observations and update the posterior. That
is, we must perform inference for θt|D(t), which is a mixture of the distributions θt|Wt = wt,Wt−1 =
wt−1, D

(t) with probability weights Pr(Wt = wt,Wt−1 = wt−1|D(t)) for wt, wt−1 ∈ {0, 1}. Let ˜̀
t(θ, w) =∑n

i=1 log p (yt,i|zt,i, θ)+log p(θ | w,D(t−1)). We approximate the distribution θt|Wt = wt,Wt−1 = wt−1, D
(t)

using a Gaussian distribution with its mean computed using a Newton update

θ̂t,wt,wt−1 = θ̂t−1,wt−1 −
[
∇2
θ
˜̀
t

(
θ̂t−1,wt−1 , wt−1

)]−1

∇θ ˜̀
t

(
θ̂t−1,wt−1 , wt−1

)
(2)

and its covariance as

Σ̂t,wt,wt−1 =
[
∇2
θ
˜̀
t(θ̂t−1,wt−1 , wt−1)

]−1

.

The probability Pr(Wt = wt,Wt−1 = wt−1 | D(t)), which is proportional to[∫
θt

p (yt,· | zt,·, θt) p
(
θt | wt, wt−1, D

(t−1)
)
dθt

]
Pr(Wt|Wt−1) Pr(Wt−1|D(t−1)), (3)

is approximated using a Laplace approximation for the integral in (3), i.e.

2πd/2
∣∣∣∣{∇2

θ
˜̀(θ̂t,wt,wt−1

)
}−1

∣∣∣∣1/2 p(yt,· | zt,·, θ̂t,wt,wt−1

)
p
(
θ̂t,wt,wt−1

| D(t−1)
)
. (4)

Let q̂wt,wt−1
denote the estimated probability. Finally, we approximate the posterior distribution θt|Wt =

wt, D
(t) using a single Gaussian distribution by moment-matching [West and Harrison, 1997, Orguner and

Demırekler, 2007] with mean and covariance

θ̂t,wt =
1

q̂wt,0 + q̂wt,1

(
q̂wt,0θ̂t,wt,0 + q̂wt,1θ̂t,wt,1

)
(5)

Σ̂t,wt =
1

q̂wt,0 + q̂wt,1

(
q̂wt,0Σ̂t,wt,0 + q̂wt,1Σ̂t,wt,1

)
. (6)

B Online model revision for batched data

In certain settings, it is more convenient and practical for the data stream to be observed in batches of size
n > 1. Here we discuss the necessary modifications to our framework for analyzing the performance on an
online model reviser for batched data. We denote a batch of observations as {(xt,i, yt,i) : i = 1, ...., n} and
use the notation at,· to denote the sequence (at,1, ..., at,n).

We extend the online model reviser to output a probability distribution over all possible outcomes for
a batch of observations, i.e. Ât : Rn × Xn 7→ ∆2n where ∆2n is the probability simplex over all possible
outcomes (yt,1, ..., yt,n). The loss of the online model reviser over the entire time period is then defined as
the average negative log likelihood

− 1

nT

T∑
t=1

log p
(
yt,·, Ât

(
f̂t(xt,·), xt,·

))
. (7)
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This theoretical framework allows predictions from the online model reviser to depend on all unlabeled
observations {xt,i : i = 1, ..., n}. By defining regret with respect to (7), we are able to derive Type I and II
regret bounds for the batched setting. This is necessary for analyzing BLR and MarBLR because outcomes
are not independent given the observations up to time t in the Bayesian framework. In particular, the
outcomes are correlated because of the shared (latent) revision parameter θt.

Table 2: Descriptive statistics of variables included in the COPD risk prediction model. Continuous variables
are summarized by Mean (SD). Binary/ordinal variables are summarized by number of nonzero entries (%).

Variable

Diagnosed with COPD 2756 (2.55)
Age at encounter 60.31 (18.60)

Medical history
Asthma 741 (0.69)
Bronchitis 5855 (5.42)
COPD 14950 (13.84)
Smoking 42651 (39.49)
Pulmonary Function Test 2844 (2.63)
Intubation 2420 (2.24)
Spirometry 1091 (1.01)
Bilevel positive airway pressure 710 (0.66)
Acute coronary syndrome 11008 (10.19)
Pneumonia 15386 (14.25)
Steroids 23249 (21.53)
Antihypertensives 7740 (7.17)
Short-acting bronchodilator 13088 (12.12)
Antihistiminic 17768 (16.45)
Respiratory Clearance 2791 (2.58)
Upper Respiratory Infection 1242 (1.15)
Antiarrythmic order 7650 (7.08)
Inhaled bronchodilators 122 (0.11)
Inhaled corticosteroid 78 (0.07)
Long-acting bronchodilator 91 (0.08)
Combination of inhaled bronchodilators 8 (0.001)

History of current emergency department visit
Pneumonia 3503 (3.24)
Short-acting bronchodilator 5982 (5.54)
Steroids 4518 (4.18)
Antihypertensives 694 (0.64)
Acute coronary syndrome 2386 (2.21)
Antiarrthymic 1665 (1.54)
Antihistaminic 2624 (2.43)
Inhaled corticosteroid 146 (0.14)
Inhaled bronchodilators 304 (0.28)
Long-acting bronchodilator 420 (0.39)
Asthma 142 (0.13)
Upper Respiratory Infection 238 (0.22)
Respiratory Clearance 131 (0.12)
Combination of inhaled bronchodilators 3 (0.003)
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C Type I and II Regret bounds

C.1 Notation and assumptions

We suppose there are n observations at time points t = 1, ..., T for some T ≥ 2. Consider any sequence
of revision parameters θ = {θ1, θ2, . . . , θT }, where θt ∈ Rd for all t = 1, 2, . . . , T , with unique values at
times τ = {τ1, τ2, ..., τs}, where τ1 = 1 < τ2 < . . . < τs ≤ T . In other words, {θτ1 , θτ2 , . . . , θτs} denotes the
sequence of values that the sequence θ shifted over. Henceforth, we use |τ | (rather than s) to indicate the
number of times in τ . For ease of notation, we use the convention τ|τ |+1 := T + 1. Note that the variable
τ|τ |+1 is not part of the sequence τ and is used purely to simplify the notation. We use τ locked := {τ1} = {1}
to denote the shift times in the edge case of “locked” sequences θ that do not shift over time. Let D(t)

denote all the data observed up to time t.
The cumulative negative log-likelihood when using Bayesian inference at each time point is

LBF = −
T∑
t=1

log p
(
yt,· | zt,·, D(t−1)

)
,

where p
(
yt,· | zt,·, D(t−1)

)
is the posterior distribution at time t. The cumulative negative log-likelihoods

for MarBLR and BLR are denoted by LMarBLR and LBLR, respectively, and are special cases of LBF for
their specific choice of priors. The MarBLR prior p0 over θ is defined using a Gaussian random walk with
a homogeneous transition matrix as follows. Given θinit ∈ Rd, Σinit ∈ Rd×d, and some shift probability
α ∈ [0, 1], let

θ1 ∼ N(θinit,Σinit), W1 = 1, (8)

and for t = 2, 3, . . . , T let
θt = θt−1 + βtWt

Wt ∼ Bernoulli(α)

βt ∼ N(0, δ2Σinit).

(9)

Note that τ =
{
τ1, τ2, . . . , τ|τ |

}
can be regarded as the indices at which the sequence {W1,W2, . . . ,WT } is

1-valued. In particular, having τ = τ locked implies that W1 = 1 and Wt = 0 for all t > 1. The BLR prior is
a special case where δ2 = α = 0.

Type I regret compares BLR and MarBLR to locking the original revision parameters at its initial value
θinit, i.e. θt = θinit for all t ∈ {1, 2, . . . , T}. The cumulative negative log-likelihood of the locked initial model
is given by

Llocked = −
T∑
t=1

log p (yt,· | zt,·; θinit) .

Type II τ -regret compares BLR and MarBLR to the best sequence of parameters in retrospect for update
times τ , denoted θ̃τj for j = 1, ..., |τ |. Its cumulative negative log-likelihood is defined as

LDyn,τ = −
T∑
t=1

log p
(
yt,· | zt,·; θ̃t

)
where θ̃τj for j = 1, ..., |τ | satisfy

∇
τj+1−1∑
t=τj

log p (yt,· | zt,·; θ)

∣∣∣∣∣∣
θ=θ̃τj

= 0, ∀j = 1, . . . , |τ |. (10)

In addition, we introduce the notion of a distribution over the sequences θ. For such a distribution Q,
its expected negative log-likelihood is given by

LQ = EQ

[
−

T∑
t=1

log p (yt,· | zt,·; θt)

]
.
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Given mean and variance parameters µ = (µt)t∈τ and Σ = (Σt)t∈τ , we define Qτ ,µ,Σ to be the distribution
over θ with shift times τ where θτj for j = 1, ..., |τ | are jointly independent and normally distributed per

θτj ∼ N
(
µτj ,Σj

)
. (11)

Some results in the following sections rely on the assumption that there exists a constant c > 0 such that∣∣∣∣ ∂2

∂w2
log p

(
y|z>θ = w

)∣∣∣∣ ≤ c, (12)

for all y and w. This always holds for logistic regression with c ≤ 1.

C.2 Useful Results

Consider the prior distribution p0(θ) over sequences θ. Let p0(τ ) be its marginal distribution over shift
times τ and p0 (θ | τ ) be the conditional distribution over sequences θ with shift times τ .

Lemma 1 (Variational bound). Consider any prior distribution p0 over sequences θ. Given any τ and any
distribution Q, it holds that

LBF − LQ ≤ Eτ∼Q [KL (Q(θ|τ ) || p0 (θ | τ ))] + KL (Q(τ ) || p0 (τ )) .

Proof. First, we can reexpress the cumulative negative log-likelihood of the Bayesian dynamical model by
chaining the conditional probabilities as follows:

LBF = −
T∑
t=1

log p
(
yt,· | zt,·, D(t−1)

)
= − log p ((yt,·)t=1,...,T | (zt,·)t=1,...,T ) .

Similarly, the cumulative negative log-likelihood of any sequence of calibration parameters can be written as

−
T∑
t=1

log p (yt,· | zt,·; θt) = − log p ((yt,·)t=1,...,T | (zt,·)t=1,...,T ;θ) .

Thus, the difference in the cumulative negative log-likelihood between the Bayesian dynamical model and
any sequence of parameters is given by

LBF − LQ = EQ

[
log

p ((yt,·)t=1,...,T | (zt,·)t=1,...,T ;θ)

p ((yt,·)t=1,...,T | (zt,·)t=1,...,T )

]
.

By Bayes’ Rule, the posterior distribution pT over θ with respect to the Bayesian dynamical model satisfies

pT (θ) =
p ((yt,·)t=1,...,T | (zt,·)t=1,...,T ;θ) p0 (θ)

p ((yt,·)t=1,...,T | (zt,·)t=1,...,T )
.

Thus, we have that

LBF − LQ = EQ

[
log

pT (θ)

p0 (θ)

]
= Eτ∼Q

[
Eθ∼Q(·|τ )

[
log

pT (θ | τ )

p0 (θ | τ )

]]
+ Eτ∼Q

[
log

pT (τ )

p0(τ )

]
.

(13)

Moreover, because the KL divergence is always positive, it holds that

Eθ∼Q(·|τ )

[
log

pT (θ | τ )

p0 (θ | τ )

]
= KL (Q(·|τ ) || p0 (θ | τ ))−KL (Q(·|τ ) || pT (θ | τ ))

≤ KL (Q(·|τ ) || p0 (θ | τ )) .

(14)

Likewise,

Eτ∼Q

[
log

pT (τ )

p0(τ )

]
≤ KL (Q(τ ) || p0(τ )) . (15)

Finally, by combining equations (13) and (14) we arrive at the conclusion of this theorem.
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C.3 Type I regret results for MarBLR

Let the distribution p0 be the MarBLR prior as defined per (8) and (9). For a given τ , let Q
(W )
τ ,β,ν be a

Gaussian random walk with expected shifts βj at known shift times τj for j = 1, ..., |τ |. That is,

θτj − θτj−1 ∼ N
(
βj , ν

2Σinit

)
. (16)

and

θτ1 ∼ N
(
µ1, ε

2
1Σinit

)
. (17)

We begin with simplifying the KL divergence term in Lemma 1.

Lemma 2. For any τ , consider the Gaussian random walk Q
(W )
τ ,β,ν . We have that

KL
(
Q

(W )
τ ,β,ν || p0 (θ | τ )

)
=

1

2
ε21d+

1

2
(µ1 − θinit)

>
Σ−1

init (µ1 − θinit)−
d|τ |

2

+ d(|τ | − 1) log
δ

ν
− d log ε1

+
dν2(|τ | − 1)

2δ2
+

1

2δ2

|τ |∑
j=2

β>j Σ−1
initβj .

(18)

Proof. For ease of notation, let ΘJ be the space over sequences (θ1, ..., θJ). Given the known times τ , there
is a one-to-one mapping from sequences in Θ|τ | to sequences in ΘT with unique values at times τ . Let Qsub

be the probability distribution over Θ|τ | as defined by Q
(W )
τ ,β,ν . Likewise, let psub

0 be the PDF over Θ|τ | as
defined by the conditional prior distribution p0 (· | τ ).

We have that

KL
(
Q

(W )
τ ,β,ν || p0 (θ | τ )

)
=

∫
· · ·
∫
Qsub(θ) log

Qsub(θ)

psub
0 (θ)

dθ

=

∫
Qsub(θ1) log

Qsub(θ1)

psub
0 (θ1)

dθ1 +

|τ |−1∑
j=1

∫ ∫
Qsub(θj , θj+1) log

Qsub(θj+1 | θj)
psub

0 (θj+1 | θj)
dθj+1dθj (19)

The first term in (19) is the KL divergence of two multivariate Normal distributions, N(µ1, ε
2
1Σinit) and

N(θinit,Σinit), and can be shown to be equal to

1

2
ε21d+

1

2
(µ1 − θinit)

>
Σ−1

init (µ1 − θinit)− d log ε1 −
d

2
. (20)

Also, for j = 1, ..., |τ | − 1, we have that each summand in the second term in (19) is equal to∫ ∫
Qsub(θj , θj+1) log

Qsub(θj+1 | θj)
psub

0 (θj+1 | θj)
dθj+1dθj

=d log
δ

ν
+

1

2δ2

∫ ∫
Qsub(θj , θj+1) (θj+1 − θj)>Σ−1

init (θj+1 − θj) dθj+1dθj −
d

2
. (21)

By the definition of Q
(W )
τ ,β,ν , we have that ∆j+1 = θτj+1 − θτj ∼ N

(
βj+1, ν

2Σinit

)
. Thus,∫

Qsub(θj , θj+1) (θj+1 − θj)>Σ−1
init (θj+1 − θj) dθj+1dθj =dν2 + β>j+1Σ−1

initβj+1.

Plugging in the above result into (21), we have that∫ ∫
Qsub(θj , θj+1) log

Qsub(θj+1 | θj)
psub

0 (θj+1 | θj)
dθj+1dθj =d log

δ

ν
+

1

2δ2

(
dν2 + β>j+1Σ−1

initβj+1

)
− d

2
. (22)

Combining the results (19), (20) and (22), we attain the desired conclusion.
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To bound the Type I regret for MarBLR, we compare the regret via the intermediary Q with marginal

distribution over τ the same as p0 and the conditional distribution given τ to be Q
(W )
τ ,β,ν with βj = 0 for all

j = 2, ..., |τ |. That is, the regret is decomposed into

(LBF − LQ) + (LQ − Llocked). (23)

We bound LBF − LQ by marginalizing Lemma 2 over τ as follows.

Lemma 3. Let the distribution p0 be defined as above. Let distribution Q over θ have the same distribution
over τ as p0, with θ1 distributed N(θinit, ε

2
1Σinit), and Q(·|τ ) be a zero-centered Gaussian random walk βj = 0

for all j = 2, ..., |τ |. Let ξ = Ep0
|τ |. We have that

LBF − LQ ≤
1

2
ε21d−

dξ

2
+ d(ξ − 1) log

δ

ν
− d log ε1 +

dν2(ξ − 1)

2δ2
. (24)

Proof. Taking the expectation of (18) from Lemma 2 with respect to τ under the additional assumptions of
this Lemma, and plugging the result into Lemma 1 yields the desired conclusion.

Next we bound LQ − Llocked.

Lemma 4. Assume that there is a c > 0 that bounds the second derivative as in (12). Assume that there is an

R such that 1
n(τj+1−τj)

∑τj+1−1
t=τj

∑n
i=1 zt,iz

>
t,i � R2I for all j ∈ {1, 2, . . . , |τ |}. Let Q

(W )
τ ,β,ν be the zero-centered

Gaussian random walk with µ1 = θinit. Then it holds that

L
Q

(W )
τ,β,ν

− Llocked ≤
cnR2

2
Tr(Σinit)

Tε21 + ν2

|τ |∑
j=2

(τj+1 − τj)(j − 1)

 .

Proof. We use a Taylor expansion. For j = 1, ..., |τ |, there is some θmid such that

−
τj+1−1∑
t=τj

n∑
i=1

log p
(
yt,i | zt,i; θτj

)
=−

τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θinit)− ∇θ
τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θ)

∣∣∣∣∣∣
>

θ=θinit

(
θτj − θinit

)

− 1

2

(
θτj − θinit

)> ∇2
θ

τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θ)

∣∣∣∣∣∣
θ=θmid

(
θτj − θinit

)
.

(25)

Note that (
θτj − θinit

)>∇2
θ log p (y | z; θ)

(
θτj − θinit

)
=

∂2

∂w2
log p (y|w)

(
z>
(
θτj − θinit

))2
,

where w = z>θ is the predicted logit. Using equation (12) it follows that∣∣∣∣∣∣12 (θτj − θinit

)> ∇2
θ

τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θ)

∣∣∣∣∣∣
θ=θmid

(
θτj − θinit

)∣∣∣∣∣∣ (26)

≤ c
2

τj+1−1∑
t=τj

n∑
i=1

(
z>t,i
(
θτj − θinit

))2
(27)

=
c

2

(
θτj − θinit

)>τj+1−1∑
t=τj

n∑
i=1

zt,iz
>
t,i

(θτj − θinit

)
. (28)

Because the expected value of θ with respect to Q is θinit, we have the following after taking the expectation
of equation (25) combined with equation (26):
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LQ = EQ

[
−

T∑
t=1

n∑
i=1

log p (yt,i | zt,i; θt)

]

≤ Llocked +

|τ |∑
j=1

c

2
EQ

(θτj − θinit

)>τj+1−1∑
t=τj

n∑
i=1

zt,iz
>
t,i

(θτj − θinit

) .
Assuming there exists some R2 that satisfies the lemma assumptions, the following holds after taking the

expectation with respect to Q:

EQ

(θτj − θinit

)>τj+1−1∑
t=τj

n∑
i=1

zt,iz
>
t,i

(θτj − θinit

) ≤ (τj+1 − τj)nR2 EQ ‖θτj − θinit‖2

= (τj+1 − τj)nR2
(
ε21 + (j − 1)ν2

)
Tr(Σinit).

After summing over j = 1, ..., |τ |, we reach our desired result.

We combine the two prior lemmas to obtain the following bound on the Type I error for MarBLR.

Theorem 5 (Type I regret for MarBLR). Let ξ = Ep0
|τ | denote the expected number of shift times be

denoted. The Type I regret for MarBLR is bounded as follows:

LMarBLR − Llocked ≤
d

2
log

(
1 +

cnR2T Tr(Σinit)

d

)
+
dα(T − 1)

2
log

(
1 +

δ2cnR2T Tr(Σinit)

2d

)
.

Proof. First, note that under the MarBLR prior p0 over shift times τ as defined previously, we have that

Ep0

 |τ |∑
j=2

(τj+1 − τj)(j − 1)

 = Ep0

[
T∑
t=2

Wt(T + 1− t)

]
=
α

2
T (T − 1),

and ξ = Ep0
|τ | = α(T − 1) + 1.

Thus, summing the upper bounds from Lemmas 3 and 4 and taking expectations with respect to τ ∼ p0,
we have that

LBF − Llocked ≤
1

2
ε21d−

dα(T − 1)

2
− d

2
+ dα(T − 1) log

δ

ν
− d log ε1 +

dα(T − 1)

2δ2
ν2 (29)

+
cnR2T

2
Tr(Σinit)

(
ε21 +

α

2
(T − 1)ν2

)
. (30)

We minimize the upper bound by selecting

ε21 =
d

d+ cnR2T Tr(Σinit)

and

ν2 =
d

d
δ2 + c

2nR
2T Tr(Σinit)

to obtain the upper bound

d

2
log

(
1 +

cnR2T Tr(Σinit)

d

)
+
dα(T − 1)

2
log

(
1 +

δ2cnR2T Tr(Σinit)

2d

)
.

8



C.4 Type II τ -regret results for BLR

Let θ̃τlocked
be the minimizer of the cumulative log-likelihood of the locked model, i.e., θ̃τlocked

satisfies that

∇
T∑
t=1

n∑
i=1

log p (yt,i | zt,i; θ)

∣∣∣∣∣
θ=θ̃τlocked

= 0.

Let Q̃ denote the distribution Qτ locked,θ̃τlocked
,ε2Σinit

(defined according to section C.1 and equation (11) with

the parameters specified here). That is, we have that

Q̃(θ1) = Qτ locked,θ̃τlocked
,ε2Σinit

(θ1) = N
(
θ̃τlocked , ε

2Σinit

)
,

and θt = θ1 for all t ∈ {2, 3, . . . , T}.
We bound the difference in the cumulative negative log-likelihood, LBLR − LDyn,τ , by breaking it into

two summands

LBLR − LDyn,τ =
(
LBLR − LQ̃

)
+
(
LQ̃ − LDyn,τ

)
. (31)

We have already bounded the first summand by Lemmas 1 and 2. We just need to bound the second
summand.

Lemma 6. Assume that the second derivative is bounded by a constant c as shown in equation (12), and
that there are Rτ1 , Rτ2 , . . . , Rτ|τ| such that

1

n(τj+1 − τj)

τj+1−1∑
t=τj

n∑
i=1

zt,iz
>
t,i � R2

jI.

It holds that

LQ̃ − LDyn,τ ≤
cn
∑|τ |
j=1R

2
j (τj+1 − τj)
2

ε2 Tr(Σinit) +
cn

2

|τ |∑
j=1

R2
j (τj+1 − τj)

∥∥∥θ̃τlocked − θ̃τj∥∥∥2

.

Proof. Because θ̃τj is the minimizer of ∇θ
∑τj+1−1
t=τj

∑n
i=1 log p (yt,i | zt,i; θ), per Taylor’s expansion there is

some θmid such that

−
τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θ) = −
τj+1−1∑
t=τj

n∑
i=1

log p
(
yt,i | zt,i; θ̃τj

)

− 1

2

(
θ − θ̃τj

)>
∇2
θ

τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θ)

∣∣∣∣∣∣
θ=θmid

(
θ − θ̃τj

)
.

Following the same arguments as in the proof of Lemma 4, we have that

EQ̃

− τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θ)

 ≤ − τj+1−1∑
t=τj

n∑
i=1

log p
(
yt,i | zt,i; θ̃τj

)

+
c

2
EQ̃

(θ1 − θ̃τj
)>τj+1−1∑

t=τj

n∑
i=1

zt,iz
>
t,i

(θ1 − θ̃τj
) .

9



Taking expectation with respect to Q̃, we note that

EQ̃

(θ1 − θ̃τj
)>τj+1−1∑

t=τj

n∑
i=1

zt,iz
>
t,i

(θ1 − θ̃τj
)

= EQ̃

(θ1 − θ̃τlocked

)>τj+1−1∑
t=τj

n∑
i=1

zt,iz
>
t,i

(θ1 − θ̃τlocked

)+
(
θ̃τlocked

− θ̃τj
)>τj+1−1∑

t=τj

n∑
i=1

zt,iz
>
t,i

(θ̃τlocked
− θ̃τj

)
≤ (τj+1 − τj)nR2

j ε
2 Tr (Σinit) + (τj+1 − τj)nR2

j

∥∥∥θ̃τlocked
− θ̃τj

∥∥∥2

.

We arrive at our results after summing over all j = 1, ..., |τ |.

Theorem 7 (Type II regret for BLR). Assume that there is an R such that 1
n(τj+1−τj)

∑τj+1−1
t=τj

∑n
i=1 zt,iz

>
t,i �

R2I for all j ∈ {1, 2, . . . , |τ |}. It holds that

LBLR − LDyn,τ ≤
1

2

(
θ̃τlocked

− θinit

)>
Σ−1

init

(
θ̃τlocked

− θinit

)
+
d

2
log

(
d+ cnTR2 Tr(Σinit)

d

)

+
cnR2

2

|τ |∑
j=1

(τj+1 − τj)
∥∥∥θ̃τlocked

− θ̃τj
∥∥∥2

.

Proof. To bound the first summand of decomposition (31), we use Lemmas 1 and 2 and the fact that
p0(τ locked) = 1 under BLR. We use Lemma 6 to bound the second summand of decomposition (31). Thus,
we obtain

LBLR − Llocked ≤
1

2
ε2d+

1

2

(
θ̃τlocked − θinit

)>
Σ−1

(
θ̃τlocked − θinit

)
+
d

2
− d log(ε) +

cnTR2

2
ε2 Tr(Σinit)

+
cnR

2

|τ |∑
j=1

(τj+1 − τj)
∥∥∥θ̃τlocked − θ̃τ,j∥∥∥2

.

Choosing ε2 = d
d+cnTR2 Tr(Σinit)

will minimize this expression, which yields the desired conclusion.

C.5 Type II τ -regret results for MarBLR

As before, we bound the difference in the cumulative negative log-likelihood, LBF − LDyn,τ , by breaking it
into two summands

LBF − LDyn,τ =
(
LBF − LQ

τ ′,θ̃′,ε2Σinit

)
+
(
LQ

τ ′,θ̃′,ε2Σinit
− LDyn,τ

)
. (32)

Thus the proof proceeds by comparing against an intermediary distribution Qτ ′,θ̃
′
,ε2Σinit

defined per (11),

where τ ′ be any subsequence of τ with τ ′1 = 1, θ̃
′

:= (θ̃t)t∈τ ′ , and ε2 =
(
ε21, ε

2
2, . . . , ε

2
|τ ′|

)
. This intermediary

distribution is centered around a dynamic oracle that may evolve slower than than the specified update times
τ . The final Type II regret bound will depend on τ ′. Optimizing our choice of τ ′ can lead to tighter Type
Ii regret bounds, particularly when α in the MarBLR prior is small and |τ | is large.

We use the following lemma to bound the first summand of (32).

Lemma 8. Consider the distribution Qτ ,µ,ε2Σinit
as defined above, and the MarBLR prior p0 as defined per

(8) and (9). For any τ , µ and ε2, we have that

KL
(
Qτ ,µ,ε2Σinit

|| p0 (θ | τ)
)

=
d

2
ε21 +

1

2
(µ1 − θinit)

>
Σ−1

init (µ1 − θinit)− d log ε1 −
d

2
|τ |+ (|τ | − 1)d log δ

+

|τ |∑
t=2

[
1

2δ2

(
d
(
ε2t−1 + ε2t

)
+ (µt − µt−1)

>
Σ−1

init (µt − µt−1)
)
− d log εt

]
.
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Proof. We define ΘJ and psub
0 as in Lemma 2. We define Qsub as the distribution over ΘJ as defined by

Qτ ,µ,ε2Σinit
. We have that

KL
(
Qτ,(µt)t∈τ || p0 (θ | τ)

)
= KL

(
Qsub || psub

0

)
=

∫
· · ·
∫
Qsub(θ)

|τ |∑
t=1

log
Qsub (θt)

psub
0 (θt | θt−1)

dθ|τ | · · · dθ1, (33)

because θt in Qsub are jointly independent and θt in psub
0 only depend on θt−1. As such,

KL
(
Qsub || psub

0

)
=

∫
Qsub (θ1) log

Qsub (θ1)

psub
0 (θ1)

dθ1 (34)

+

|τ |∑
t=2

∫ ∫
Qsub (θt−1, θt) log

Qsub (θt)

psub
0 (θt | θt−1)

dθtdθt−1. (35)

The first term (34) is the KL divergence of two multivariate Normal distributions, N(µ1, ε
2
1Σinit) and

N(θinit,Σinit), and can be shown to be equal to∫
Qsub (θ1) log

Qsub (θ1)

psub
0 (θ1)

dθ1 =
1

2
ε21d+

1

2
(µ1 − θinit)

>
Σ−1

init (µ1 − θinit)− d log ε1 −
d

2
. (36)

Next each term in the summation of (35) is equal to∫ ∫
Qsub(θt−1, θt) log

Qsub(θt)

psub
0 (θt | θt−1)

dθtdθt−1

=d log
δ

εt
+

1

2δ2

∫ ∫
Qsub(θt−1, θt) (θt − θt−1)

>
Σ−1

init (θt − θt−1) dθtdθt−1 −
d

2
. (37)

We note that under Qsub it holds that

(θt − θt−1) ∼ N
(
µt − µt−1, (ε

2
t−1 + ε2t )Σinit

)
.

Therefore, (37) simplifies to∫ ∫
Qsub(θt−1, θt) log

Qsub(θt)

psub
0 (θt | θt−1)

dθtdθt−1

=d log
δ

εt
+

1

2δ2

(
d
(
ε2t−1 + ε2t

)
+ (µt − µt−1)>Σ−1

init(µt − µt−1)
)
− d

2
. (38)

Plugging (36) and (38) into (34) and (35) gives us the desired result.

Next we need to bound the second summand of (32).

Lemma 9. Suppose there is a constant c that bounds the second derivative as in (12). Assume that there is

an R such that 1
n(τj+1−τj)

∑τj+1−1
t=τj

∑n
i=1 zt,iz

>
t,i � R2I for all j ∈ {1, 2, . . . , |τ |}. Then it holds that

LQ
τ ′,θ̃′,ε2Σinit

− LDyn,τ ≤
1

2
cnR2

|τ |∑
j=1

(τj+1 − τj)
(
ε2k(j) Tr(Σinit) +

∥∥∥θ̃τ ′
k(j)
− θ̃τj

∥∥∥2
)

where k(j) := max{k : τ ′k ≤ τj}.

Proof. For the ease of notation denote Q̃ := Qτ ′,θ̃
′
,ε2Σinit

. It holds that

LQ̃ − LDyn,τ

=

|τ |∑
j=1

EQ̃
τj+1−1∑

t=τj

n∑
i=1

− log p (yt,i | zt,i; θt) + log p
(
yt,i | zt,i; θ̃τj

)
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Recall that for any sequence θ drawn from Q̃, for any j = 1, . . . , |τ |, the parameters θt are constant over
t = τ ′j , . . . , τ

′
j+1 − 1. Taking a Taylor expansion, there exists some θmid such that

−
τj+1−1∑
t=τj

n∑
i=1

log p (yt,i|zt,i; θ) = −
τj+1−1∑
t=τj

n∑
i=1

log p
(
yt,i

∣∣∣zt,i; θ̃τj)

− ∇θ
τj+1−1∑
t=τj

n∑
i=1

log p (yt,i|zt,i; θ)

∣∣∣∣∣∣
>

θ=θ̃τj

(
θ − θ̃τj

)

− 1

2

(
θ − θ̃τj

)>
∇2
θ

τj+1−1∑
t=τj

n∑
i=1

log p (yt,i|zt,i; θ)

∣∣∣∣∣∣
θ=θmid

(
θ − θ̃τj

)
.

(39)

Since τ ′ is a subsequence of τ , for θ ∼ Q̃ we have that θt = θτ ′
k(j)

for all t = τj , ...., τj+1 − 1, where

k(j) := max{k : τ ′k ≤ τj}. Thus, we can use the above decomposition to evaluate (39) with θt = θτ ′kj
in place

of θ.
By the definition of θ̃τj , the gradient in the expression above is zero, so the second term is equal to zero.

Because we assumed the second derivative was bounded by c as in (12), the expression simplifies to the
bound

−
τj+1−1∑
t=τj

n∑
i=1

log p (yt,i | zt,i; θt) ≤ −
τj+1−1∑
t=τj

n∑
i=1

log p
(
yt,i | zt,i; θ̃τj

)

+
c

2

(
θτ ′
k(j)
− θ̃τj

)>τj+1−1∑
t=τj

n∑
i=1

zt,iz
>
t,i

(θτ ′
k(j)
− θ̃τj

)
.

Assuming there exists some R2 that satisfies the lemma assumptions, it follows that

EQ̃

(θτ ′
k(j)
− θ̃τj

)>τj+1−1∑
t=τj

n∑
i=1

zt,iz
>
t,i

(θτ ′
k(j)
− θ̃τj

)
≤ (τj+1 − τj)nR2 EQ̃

∥∥∥θτ ′
k(j)
− θ̃τj

∥∥∥2

= (τj+1 − τj)nR2

(
ε2k(j) Tr(Σinit) +

∥∥∥θ̃τ ′
k(j)
− θ̃τj

∥∥∥2
)
.

We finish the proof by summing over j.

We combine the results to get the following bound.

Theorem 10 (Type II regret for MarBLR). Suppose there is a constant c that bounds the second derivative as

in (12). Assume that there is an R such that 1
n(τj+1−τj)

∑τj+1−1
t=τj

∑n
i=1 zt,iz

>
t,i � R2I for all j ∈ {1, 2, . . . , |τ |}.

Let τ ′ be any subsequence of the sequence of shift times τ . Then it holds that

LMarBLR − LDyn,τ

≤ 1

2

(
θ̃1 − θinit

)>
Σ−1

init

(
θ̃1 − θinit

)
+
d

2
log

(
1 +

1

δ2
+
cnR2 Tr(Σinit) (τ ′2 − τ ′1)

d

)

+
1

2

|τ ′|∑
t=2

[
1

δ2

(
θ̃τ ′t − θ̃τ ′t−1

)>
Σ−1

init

(
θ̃τ ′t − θ̃τ ′t−1

)
+ d log

(
2

δ2
+
cnR2 Tr(Σinit)

(
τ ′j+1 − τ ′j

)
d

)]

− log p0(τ ′) + (|τ ′| − 1)d log δ +
1

2
cnR2

|τ |∑
j=1

(τj+1 − τj)
∥∥∥θ̃τ ′

k(j)
− θ̃τj

∥∥∥2

.
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Proof. By combining Lemmas 1, 8 and 9 we obtain the following upper bound

LBF − LDyn,τ ≤
d

2
ε21 +

1

2

(
θ̃1 − θinit

)>
Σ−1

init

(
θ̃1 − θinit

)
− d log ε1 −

d

2
|τ ′|+ (|τ ′| − 1)d log δ

+

|τ ′|∑
t=2

[
1

2δ2

(
d
(
ε2t−1 + ε2t

)
+
(
θ̃τ ′t − θ̃τ ′t−1

)>
Σ−1

init

(
θ̃τ ′t − θ̃τ ′t−1

))
− d log εt

]

− log p0(τ ′) +
1

2
cnR2

|τ |∑
j=1

(τj+1 − τj)
(
ε2k(j) Tr(Σinit) +

∥∥∥θ̃τ ′
k(j)
− θ̃τj

∥∥∥2
)
.

(40)

We minimize the upper bound with respect to (εj)j=1,2,...,|τ ′|.

For j = 1, ε1 only contributes to the above bound through the terms

1

2

(
d+

d

δ2
+ cnR2 Tr(Σinit) (τ ′2 − τ ′1)

)
ε21 − d log ε1. (41)

For j = 2, ..., |τ ′| − 1, εj only contributes to the bound through the terms

1

2

[
2d

δ2
+ cnR2 Tr(Σinit)

(
τ ′j+1 − τ ′j

)]
ε2j − d log εj . (42)

For j = |τ ′|, ε|τ ′| only contributes to the bound through the terms

1

2

[
d

δ2
+ cnR2 Tr(Σinit)

(
τ ′|τ ′|+1 − τ

′
|τ ′|

)]
ε2|τ ′| − d log ε|τ ′|. (43)

It follows that the upper bound is minimized for

ε21 =
d

d+ d
δ2 + cnR2 Tr(Σinit) (τ ′2 − τ ′1)

, (44)

ε2j =
d

2d
δ2 + cnR2 Tr(Σinit)

(
τ ′j+1 − τ ′j

) , ∀j ∈ {2, 3, . . . , |τ ′| − 1} , (45)

ε|τ ′| =
d

d
δ2 + cnR2 Tr(Σinit)

(
τ ′|τ ′|+1 − τ

′
|τ ′|

) . (46)

Note that the upper bound (40) is a sum of the terms (41), (42) repeated once for each j ∈ {2, 3, . . . , |τ ′| − 1},
(43), and the following remaining terms

1

2

(
θ̃1 − θinit

)>
Σ−1

init

(
θ̃1 − θinit

)
− d

2
|τ ′|+ (|τ ′| − 1)d log δ − log p0(τ ′)

+

|τ ′|∑
t=2

1

2δ2

(
θ̃τ ′t − θ̃τ ′t−1

)>
Σ−1

init

(
θ̃τ ′t − θ̃τ ′t−1

)
+

1

2
cnR2

|τ |∑
j=1

(τj+1 − τj)
∥∥∥θ̃τ ′

k(j)
− θ̃τj

∥∥∥2

.

Plugging in (44), (45) and (46), we get the desired bound.
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(a) Initial Shift, All-Refit (b) Decay, All-Refit

(c) Initial Shift, Subset-Refit
(d) Decay, Subset-Refit

Figure A.1: Evolution of the estimated intercepts and coefficients by BLR and MarBLR when combining the
original model with an evolving prediction model (Scenario 3). Data is simulated to be stationary over time
after an initial shift (Initial Shift) and nonstationary such that the original model decays in performance
over time (Decay). Underlying prediction model is updated by continually refitting on all previous data
(All-Refit) or refit on the most recent subset of data (Subset-Refit).
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(a) Online recalibration of a fixed prediction model

(b) Online logistic revision with respect to a fixed prediction model and patient variables

(c) Online ensembling of the original and continually-refitted prediction models

Figure A.2: Evolution of the estimated intercepts and coefficients for online recalibration and revision of a
fixed COPD risk prediction model (a and b, respectively) and online reweighting for fixed and continually-
refitted (evolving) COPD risk prediction models using BLR and MarBLR.
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